Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984862

RESUMEN

Teleost IgM+ B cells can phagocytose, like mammalian B1 cells, and secrete Ag-specific IgM, like mammalian B2 cells. Therefore, teleost IgM+ B cells may have the functions of both mammalian B1 and B2 cells. To support this view, we initially found that grass carp (Ctenopharyngodon idella) IgM+ plasma cells (PCs) exhibit robust phagocytic ability, akin to IgM+ naive B cells. Subsequently, we sorted grass carp IgM+ PCs into two subpopulations: nonphagocytic (Pha-IgM+ PCs) and phagocytic IgM+ PCs (Pha+IgM+ PCs), both of which demonstrated the capacity to secrete natural IgM with LPS and peptidoglycan binding capacity. Remarkably, following immunization of grass carp with an Ag, we observed that both Pha-IgM+ PCs and Pha+IgM+ PCs could secrete Ag-specific IgM. Furthermore, in vitro concatenated phagocytosis experiments in which Pha-IgM+ PCs from an initial phagocytosis experiment were sorted and exposed again to beads confirmed that these cells also have phagocytic capabilities, thereby suggesting that all teleost IgM+ B cells have phagocytic potential. Additionally, we found that grass carp IgM+ PCs display classical phenotypic features of macrophages, providing support for the hypothesis that vertebrate B cells evolved from ancient phagocytes. These findings together reveal that teleost B cells are a primitive B cell type with functions reminiscent of both mammalian B1 and B2 cells, providing insights into the origin and evolution of B cells in vertebrates.

2.
J Immunol ; 212(1): 81-95, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038392

RESUMEN

Antimicrobial peptides/proteins (AMPs) constitute a critical component of gut immunity in animals, protecting the gut from pathogenic bacteria. However, the interactions between AMPs and gut microbiota remain elusive. In this study, we show that leukocyte-derived chemotaxin-2 (LECT2)-b, a recently discovered AMP, helps maintain gut homeostasis in grass carp (Ctenopharyngodon idella), one of the major farmed fish species globally, by directly regulating the gut microbiota. Knockdown of LECT2-b resulted in dysregulation of the gut microbiota. Specifically, LECT2-b deficiency led to the dominance of Proteobacteria, consisting of proinflammatory bacterial species, over Firmicutes, which includes anti-inflammatory bacteria. In addition, the opportunistic pathogenic bacteria genus Aeromonas became the dominant genus replacing the probiotic bacteria Lactobacillus and Bacillus. Further analysis revealed that this effect was due to the direct and selective inhibition of certain pathogenic bacterial species by LECT2-b. Moreover, LECT2-b knockdown promoted biofilm formation by gut microbiota, resulting in tissue damage and inflammation. Importantly, LECT2-b treatment alleviated the negative effects induced by LECT2-b knockdown. These findings highlight the crucial role of LECT2-b in maintaining the gut microbiota homeostasis and mucosal health. Overall, our study provides important data for understanding the roles of AMPs in the regulation of gut homeostasis in animals.


Asunto(s)
Antiinfecciosos , Microbioma Gastrointestinal , Probióticos , Animales , Bacterias , Homeostasis
3.
Front Immunol ; 14: 1128138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891317

RESUMEN

Antimicrobial peptides are important components of the host innate immune system, forming the first line of defense against infectious microorganisms. Among them, liver-expressed antimicrobial peptides (LEAPs) are a family of antimicrobial peptides that widely exist in vertebrates. LEAPs include two types, named LEAP-1 and LEAP-2, and many teleost fish have two or more LEAP-2s. In this study, LEAP-2C from rainbow trout and grass carp were discovered, both of which are composed of 3 exons and 2 introns. The antibacterial functions of the multiple LEAPs were systematically compared in rainbow trout and grass carp. The gene expression pattern revealed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C were differentially expressed in various tissues/organs, mainly in liver. After bacterial infection, the expression levels of LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C in the liver and gut of rainbow trout and grass carp increased to varying degrees. Moreover, the antibacterial assay and bacterial membrane permeability assay showed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and LEAP-2C all have antibacterial activities against a variety of Gram-positive and Gram-negative bacteria with varying levels through membrane rupture. Furthermore, cell transfection assay showed that only rainbow trout LEAP-1, but not LEAP-2, can lead to the internalization of ferroportin, the only iron exporter on cell surface, indicating that only LEAP-1 possess iron metabolism regulation activity in teleost fish. Taken together, this study systematically compared the antibacterial function of LEAPs in teleost fish and the results suggest that multiple LEAPs can enhance the immunity of teleost fish through different expression patterns and different antibacterial activities to various bacteria.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Animales , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias Gramnegativas , Bacterias Grampositivas , Hígado/metabolismo , Hierro/metabolismo
4.
J Immunol ; 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36426989

RESUMEN

Complement peptides C3a, C4a, and C5a are important components of innate immunity in vertebrates. Although they diverged from a common ancestor, only C3a and C4a can act as antibacterial peptides in Homo sapiens, suggesting that C5a has evolved into a purely chemotactic molecule; however, the antibacterial properties of C3a, C4a, and C5a across vertebrates still require elucidation. In this article, we show that, unlike those in H. sapiens, Mus musculus C3a, C4a, and C5a all possess antibacterial activities, implying that the antibacterial properties of C3a, C4a, and C5a have evolved divergently in vertebrates. The extremely different net charge, a key factor determining the antibacterial activities of cationic antimicrobial peptides, of vertebrate C3a, C4a, and C5a supports this speculation. Moreover, the antibacterial activity of overlapping peptides covering vertebrate C3a, C4a, and C5a further strongly supports the speculation, because their activity is positively correlated with the net charge of source molecules. Notably, the structures of C3a, C4a, and C5a are conserved in vertebrates, and the inactive overlapping peptides can become antibacterial peptides if mutated to possess enough net positive charges, indicating that net charge is the only factor determining the antibacterial properties of vertebrate C3a, C4a, and C5a. More importantly, many vertebrate C3a-, C4a-, and C5a-derived peptides possess high antibacterial activities yet exhibit no hemolytic activities, suggesting the application potential in anti-infective therapy. Taken together, our findings reveal that vertebrate C3a, C4a, and C5a are all sources of antibacterial peptides that will facilitate the design of excellent peptide antibiotics.

5.
J Immunol ; 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36280254

RESUMEN

Complement peptides C3a, C4a, and C5a are important components of innate immunity in vertebrates. Although they diverged from a common ancestor, only C3a and C4a can act as antibacterial peptides in Homo sapiens, suggesting that C5a has evolved into a purely chemotactic molecule; however, the antibacterial properties of C3a, C4a, and C5a across vertebrates still require elucidation. In this article, we show that, unlike those in H. sapiens, Mus musculus C3a, C4a, and C5a all possess antibacterial activities, implying that the antibacterial properties of C3a, C4a, and C5a have evolved divergently in vertebrates. The extremely different net charge, a key factor determining the antibacterial activities of cationic antimicrobial peptides, of vertebrate C3a, C4a, and C5a supports this speculation. Moreover, the antibacterial activity of overlapping peptides covering vertebrate C3a, C4a, and C5a further strongly supports the speculation, because their activity is positively correlated with the net charge of source molecules. Notably, the structures of C3a, C4a, and C5a are conserved in vertebrates, and the inactive overlapping peptides can become antibacterial peptides if mutated to possess enough net positive charges, indicating that net charge is the only factor determining the antibacterial properties of vertebrate C3a, C4a, and C5a. More importantly, many vertebrate C3a-, C4a-, and C5a-derived peptides possess high antibacterial activities yet exhibit no hemolytic activities, suggesting the application potential in anti-infective therapy. Taken together, our findings reveal that vertebrate C3a, C4a, and C5a are all sources of antibacterial peptides that will facilitate the design of excellent peptide antibiotics.

6.
J Immunol ; 208(8): 2037-2053, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35365566

RESUMEN

In vertebrates, leukocyte-derived chemotaxin-2 (LECT2) is an important immunoregulator with conserved chemotactic and phagocytosis-stimulating activities to leukocytes during bacterial infection. However, whether LECT2 possesses direct antibacterial activity remains unknown. In this article, we show that, unlike tetrapods with a single LECT2 gene, two LECT2 genes exist in teleost fish, named LECT2-a and LECT2-b Using grass carp as a research model, we found that the expression pattern of grass carp LECT2-a (gcLECT2-a) is more similar to that of LECT2 in tetrapods, while gcLECT2-b has evolved to be highly expressed in mucosal immune organs, including the intestine and skin. Interestingly, we found that gcLECT2-b, with conserved chemotactic and phagocytosis-stimulating activities, can also kill Gram-negative and Gram-positive bacteria directly in a membrane-dependent and a non-membrane-dependent manner, respectively. Moreover, gcLECT2-b could prevent the adherence of bacteria to epithelial cells through agglutination by targeting peptidoglycan and lipoteichoic acid. Further study revealed that gcLECT2-b can protect grass carp from Aeromonas hydrophila infection in vivo, because it significantly reduces intestinal necrosis and tissue bacterial load. More importantly, we found that LECT2 from representative tetrapods, except human, also possesses direct antibacterial activities, indicating that the direct antibacterial property of LECT2 is generally conserved in vertebrates. Taken together, to our knowledge, our study discovered a novel function of LECT2 in the antibacterial immunity of vertebrates, especially teleost fish, greatly enhancing our knowledge of this important molecule.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Aeromonas hydrophila , Animales , Antibacterianos , Carpas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Inmunidad Innata , Leucocitos/metabolismo
7.
Front Immunol ; 13: 873982, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386704

RESUMEN

The complement system is an important part of the immune system of teleost fish. Besides, teleost B cells possess both phagocytic activity and adaptive humoral immune function, unlike mammalian B1 cells with phagocytic activity and B2 cells specific to adaptive humoral immunity. However, the cross talk between complement system and phagocytic B cells in teleost fish still requires elucidation. Here, we show that, unlike tetrapods with a single C3 gene, nine C3 genes were identified from the grass carp (Ctenopharyngodon idella) genome, named C3.1-C3.9. Expression analysis revealed that C3.1 is the dominant C3 molecule in grass carp, for its expression was significantly higher than that of the other C3 molecules both at the mRNA and protein levels. The C3a fragment of C3.1 (C3a.1) was determined after the conserved C3 convertase cleavage site. Structural analysis revealed that C3a.1 consists of four α-helixes, with the C-terminal region forming a long α-helix, which is the potential functional region. Interestingly, we found that the recombinant GST-C3a.1 protein and the C-terminal α-helix peptide of C3a.1 both could significantly enhance the phagocytic activity of IgM+ B cells. Further study revealed that the C3a receptor (C3aR) was highly expressed in grass carp IgM+ B cells, and the phagocytosis-stimulating activity of C3a.1 could be dramatically inhibited by the anti-C3aR antibodies, indicating that C3a.1 performed the stimulating function through C3aR on IgM+ B cells. Taken together, our study not only uncovered the novel phagocytosis-stimulating activity of C3a, but also increased our knowledge of the cross talk between complement system and phagocytic B cells in teleost fish.


Asunto(s)
Carpas , Complemento C3a , Animales , Carpas/genética , Carpas/metabolismo , Inmunoglobulina M , Fagocitosis
8.
Dev Comp Immunol ; 132: 104402, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35351471

RESUMEN

Mammalian cyclic GMP-AMP synthase (cGAS) is pivotal for cytosolic DNA-triggered interferon (IFN) response. However, the function of cGAS in fish IFN response remains unclear. Our recent study has reported that cGAS from crucian and grass carps downregulates the IFN response by attenuating the K63-linked ubiquitination of retinoic acid-inducible gene-I (RIG-I) and its interaction with mitochondrial antiviral signaling protein (MAVS). Here, the function of crucian carp cGAS was further investigated. We found that crucian carp cGAS directly binds to poly deoxyadenylic-deoxythymidylic acid (poly (dA:dT)) and exhibits mediator of IFN regulatory factor 3 (IRF3) activation (MITA)-dependent activation of the IFN response, indicating a conserved function of crucian carp cGAS in the MITA-mediated IFN signaling. However, crucian carp cGAS could suppress the IFN activation stimulated by polyinosinic: polycytidylic acid (poly (I:C)) in time- and dose-dependent manners. These data collectively suggest complicated functions of crucian carp cGAS in the IFN antiviral response.


Asunto(s)
Carpas , Animales , Antivirales , Carpas/metabolismo , Interferones/metabolismo , Mamíferos , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Poli I-C
9.
Carbohydr Polym ; 281: 119073, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074109

RESUMEN

Chitosan oligosaccharide (COS) is an attractive immunopotentiator capable of driving humoral immunity in vertebrates, but its cellular and molecular mechanisms still require elucidation. In this study, COS induced the proliferation and differentiation of splenic IgM+ B cells into IgMlo and IgMhi B cell subsets in grass carp (Ctenopharyngodon idella). The IgMlo B cells were further identified as short-lived plasmablasts that secreted natural IgM with binding-abilities to lipopolysaccharide (LPS) and peptidoglycan (PGN). Moreover, the mannose receptor (MR) and integrins were discovered and identified as the binding-receptors of COS on IgMlo plasmablasts. The MR synergized with integrins to trigger intracellular signal transduction to boost plasmablast generation and expansion. Notably, IgMlo plasmablasts originally generated in spleen but they migrated into blood to secrete natural IgM, which augmented the serum bactericidal activity. Taken together, this study revealed the cellular and molecular mechanisms of COS-triggered humoral immunity in fish.


Asunto(s)
Carpas , Quitosano , Animales , Quitosano/farmacología , Proteínas de Peces , Inmunidad Humoral , Inmunidad Innata , Inmunoglobulina M , Oligosacáridos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...