Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Sci Rep ; 14(1): 6517, 2024 03 18.
Article En | MEDLINE | ID: mdl-38499612

Minichromosome Maintenance Complex Component 4 (MCM4) is a vital component of the mini-chromosome maintenance complex family, crucial for initiating the replication of eukaryotic genomes. Recently, there has been a growing interest in investigating the significance of MCM4 in different types of cancer. Despite the existing research on this topic, a comprehensive analysis of MCM4 across various cancer types has been lacking. This study aims to bridge this knowledge gap by presenting a thorough pan-cancer analysis of MCM4, shedding light on its functional implications and potential clinical applications. The study utilized multi-omics samples from various databases. Bioinformatic tools were employed to explore the expression profiles, genetic alterations, phosphorylation states, immune cell infiltration patterns, immune subtypes, functional enrichment, disease prognosis, as well as the diagnostic potential of MCM4 and its responsiveness to drugs in a range of cancers. Our research demonstrates that MCM4 is closely associated with the oncogenesis, prognosis and diagnosis of various tumors and proposes that MCM4 may function as a potential biomarker in pan-cancer, providing a deeper understanding of its potential role in cancer development and treatment.


Cell Cycle Proteins , Neoplasms , Humans , Minichromosome Maintenance Complex Component 4/genetics , Minichromosome Maintenance Complex Component 4/metabolism , Prognosis , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Multiomics , Minichromosome Maintenance Complex Component 6/metabolism , Neoplasms/diagnosis , Neoplasms/genetics
2.
RSC Adv ; 13(20): 13892-13901, 2023 May 02.
Article En | MEDLINE | ID: mdl-37181520

A novel sheet-on-sheet architecture with abundant sulfur vacancies (Vs) is designed by in situ growth of flake-like ZnIn2S4 on the reduced graphene oxide (Vs-ZIS@RGO) surface, which serves as a functional layer on the separators for high-performance lithium-sulfur batteries (LSBs). Benefiting from the sheet-on-sheet architecture, the separators exhibit rapid ionic/electronic transfer, which is capable of supporting fast redox reactions. The vertically ordered ZnIn2S4 shortens the diffusion pathways of lithium-ions and the irregularly curved nanosheets expose more active sites to effectively anchor lithium polysulfides (LiPSs). More importantly, the introduction of Vs adjusts the surface or interface electronic structure of ZnIn2S4, enhancing the chemical affinity to LiPSs while accelerating conversion reaction kinetics of LiPSs. As expected, the batteries with Vs-ZIS@RGO modified separators exhibit an initial discharge capacity of 1067 mA h g-1 at 0.5C. Even at 1C, the excellent long cycle stability (710 mA h g-1 over 500 cycles) with an ultra-low decay rate of 0.055% per cycle is also attained. This work proposes a strategy of designing the sheet-on-sheet structure with rich sulfur vacancies, which provides a new perspective to rationally devise durable and efficient LSBs.

3.
Front Bioeng Biotechnol ; 8: 573938, 2020.
Article En | MEDLINE | ID: mdl-33163480

AIMS: To investigate the impact of subchondral bone cysts (SBCs) in stress-induced osseous and articular variations in cystic and non-cystic knee models using finite element analysis. MATERIALS AND METHODS: 3D knee joint models were reconstructed from computed tomography (CT) and magnetic resonance imaging (MRI). Duplicate 3D models were also created with a 3D sphere mimicking SBCs in medial tibia. Models were divided into three groups. In group A, a non-cystic knee model was used, whereas in groups B and C, SBCs of 4 and 12 mm size were simulated, respectively. Cyst groups were further divided into three sub-groups. Each of sub-group 1 was composed of a solitary SBC in the anterior half of tibia adjacent to joint line. In sub-group 2, a solitary cyst was modeled at a lower-joint location, and in sub-group 3, two SBCs were used. All models were vertically loaded with weights representing double- and single-leg stances. RESULTS: During single-leg stance, increase in subchondral bone stress in sub-groups B-1 and B-3 were significant (p = 0.044, p = 0.026). However, in sub-group B-2, a slight increase was observed than non-cystic knee model (9.93 ± 1.94 vs. 9.35 ± 1.85; p = 0.254). All the sub-groups in group C showed significantly increased articular stress (p < 0.001). Conversely, a prominent increase in peri-cystic cancellous bone stress was produced by SBCs in groups B and C (p < 0.001). Mean cartilage shear stress in sub-groups B-1 and B-2 (0.66 ± 0.56, 0.58 ± 0.54) was non-significant (p = 0.374, p = 0.590) as compared to non-cystic model (0.47 ± 0.67). But paired cysts of the same size (B-3) produced a mean stress of 0.98 ± 0.49 in affected cartilage (p = 0.011). Models containing 12 mm SBCs experienced a significant increase in cartilage stress (p = 0.001, p = 0.006, p < 0.001) in sub-groups C-1, C-2, and C-3 (1.25 ± 0.69, 1.01 ± 0.54, and 1.26 ± 0.59), respectively. CONCLUSION: The presence of large-sized SBCs produced an increased focal stress effect in articular cartilage. Multiple cysts further deteriorate the condition by increased osseous stress effect and high tendency of peripheral cyst expansion in simulated cystic knee models than non-cystic knee models.

4.
Sci Rep ; 10(1): 18639, 2020 10 29.
Article En | MEDLINE | ID: mdl-33122787

Different fixation modalities are available for fixation of posterior malleolar fractures (PMFs), but the best method is still unclear. The purpose of this study was to carry out a comparative biomechanical analysis of three commonly used fixation constructs for PMFs using experimental and finite element analysis (FEA). 15 human cadaveric ankle specimens were randomly divided into three groups. Specimens in group-A were fixed with two anteroposterior (AP) lag screws, group-B with two posteroanterior (PA) lag screws, and for group-C, a posterior plate was used. Each model was subjected to axial load. Outcomes included loads for 0.5 mm, 1 mm, 1.5 mm, and 2 mm vertical displacements of posterior fragments were noted. 3D FE models were reconstructed from computed tomography (CT) images and subjected to vertical loads. The model's stress, fracture step-off, and resultant strains in implants were also studied in 3D FE models. Significantly higher amounts of mean compressive loads were observed to cause the same amount of vertical displacements in plate group (265 ± 60.21 N, 796 ± 57.27 N, 901.18 ± 8.88 N, 977.26 ± 13.04 N) than AP (102.7 ± 16.78 N, 169.5 ± 19.91 N, 225.32 ± 15.92 N, 269.32 ± 17.29 N) and PA (199.88 ± 31.43 N, 362.80 ± 28.46 N, 431.3 ± 28.12 N, 541.86 ± 36.05 N) lag screws respectively (P < 0.05). Simulated micro-motion analysis demonstrated that fracture step-off values in plate group (0.03 ± 0.001 mm, 0.06 ± 0.003 mm and 0.13 ± 0.010 mm) were the lowest among the three groups (P < 0.001). The cancellous bone showed the highest amount of stress in AP and PA lag groups respectively, whereas the lowest stress was noted in the plate-group. This biomechanical study concluded that posterior plating is biomechanically the most stable fixation construct for PMFs fixation. AP and PA lag screws with higher bone stress and fracture step-off values have a high tendency of bone cut-through and loss of fixation respectively.


Ankle Fractures/surgery , Cadaver , Fracture Fixation, Internal/methods , Ankle Fractures/diagnostic imaging , Biomechanical Phenomena , Finite Element Analysis , Humans , Tomography, X-Ray Computed/methods
5.
Rev Sci Instrum ; 89(5): 054903, 2018 May.
Article En | MEDLINE | ID: mdl-29864847

An experimental apparatus has been designed for measuring the emissivity of a steel surface in both vacuum and oxidation atmosphere. The sample is heated with the method of electromagnetic induction in order to ensure the temperature uniformity. The radiance emitted from a sample is measured using a fiber-optic Fourier transform infrared spectrometer. Using this unique apparatus, we investigated the spectral (2-6 µm) and directional (0°-86°) emissivity of stainless steel 304 with different degrees of surface oxidation at temperatures ranging from 800 to 1100 °C. The experimental results show that the emissivity increases slightly with increasing temperature, which accords with the Hagen-Rubens relation. The emissivity increases rapidly at the initial stage of oxidation, but gradually reaches to a constant value after 20 min. In addition, the directional emissivity has a maximum value at the measuring angle of about 75°. The maximum uncertainty of emissivity is only 3.0% over all the measuring ranges, indicating that this experimental apparatus has a high reliability. In order to measure the surface temperature of casting billets based on multi-wavelength thermometry, the bivariate emissivity function with the two variables, wavelength and temperature, is determined. Temperature measurement results based on our technique are compared with those from common dual-wavelength radiation thermometry. Our approach reduces the measured temperature fluctuation from ±20.7 °C to ±2.8 °C and reflects the temperature variation with the changes of production parameters in real time.

6.
Rev Sci Instrum ; 84(9): 096106, 2013 Sep.
Article En | MEDLINE | ID: mdl-24089881

A method for calibration of vignetting coefficient is proposed in this paper to solve the distortion of temperature measurement using a CCD-based pyrometer. On this basis, a hybrid temperature measurement system, which comprises of an array CCD camera with high resolution and a single spot colorimetric thermometer, is introduced to eliminate the influences of surface striped iron oxide scale, dust, and emissivity on temperature measurement for casting billets. Currently, the system has been successfully applied and verified in some continuous casting production lines. The vignetting estimation error of 0.052 and the maximum temperature measurement fluctuation of 5 °C were achieved in these measurements.

7.
Rev Sci Instrum ; 84(6): 064904, 2013 Jun.
Article En | MEDLINE | ID: mdl-23822369

This paper presents a radiometric high-temperature field measurement model based on a charge-coupled-device (CCD). According to the model, an intelligent CCD pyrometer with a digital signal processor as the core is developed and its non-uniformity correction algorithm for reducing the differences in accuracy between individual pixel sensors is established. By means of self-adaptive adjustment for the light-integration time, the dynamic range of the CCD is extended and its accuracy in low-temperature range is improved. The non-uniformity correction algorithm effectively reduces the accuracy differences between different pixel sensors. The performance of the system is evaluated through a blackbody furnace and an integrating sphere, the results of which show that the dynamic range of 400 K is obtained and the accuracy in low temperature range is increased by 7 times compared with the traditional method based on the fixed light-integration time. In addition, the differences of accuracy between the on-axis pixel and the most peripheral pixels are decreased from 19.1 K to 2.8 K. Therefore, this CCD pyrometer ensures that the measuring results of all pixels tend to be equal-accuracy distribution across the entire measuring ranges. This pyrometric system has been successfully applied to the temperature field measurements in continuous casting billets.

...