Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Imeta ; 3(1): e154, 2024 Feb.
Article En | MEDLINE | ID: mdl-38868520

Structural variations (SVs) are a major source of domestication and improvement traits. We present the first duck pan-genome constructed using five genome assemblies capturing ∼40.98 Mb new sequences. This pan-genome together with high-depth sequencing data (∼46.5×) identified 101,041 SVs, of which substantial proportions were derived from transposable element (TE) activity. Many TE-derived SVs anchoring in a gene body or regulatory region are linked to duck's domestication and improvement. By combining quantitative genetics with molecular experiments, we, for the first time, unraveled a 6945 bp Gypsy insertion as a functional mutation of the major gene IGF2BP1 associated with duck bodyweight. This Gypsy insertion, to our knowledge, explains the largest effect on bodyweight among avian species (27.61% of phenotypic variation). In addition, we also examined another 6634 bp Gypsy insertion in MITF intron, which triggers a novel transcript of MITF, thereby contributing to the development of white plumage. Our findings highlight the importance of using a pan-genome as a reference in genomics studies and illuminate the impact of transposons in trait formation and livestock breeding.

2.
Nat Biomed Eng ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831042

The applicability of cytosine base editors is hindered by their dependence on sequence context and by off-target effects. Here, by using AlphaFold2 to predict the three-dimensional structure of 1,483 cytidine deaminases and by experimentally characterizing representative deaminases (selected from each structural cluster after categorizing them via partitional clustering), we report the discovery of a few deaminases with high editing efficiencies, diverse editing windows and increased ratios of on-target to off-target effects. Specifically, several deaminases induced C-to-T conversions with comparable efficiency at AC/TC/CC/GC sites, the deaminases could introduce stop codons in single-copy and multi-copy genes in mammalian cells without double-strand breaks, and some residue conversions at predicted DNA-interacting sites reduced off-target effects. Structure-based generative machine learning could be further leveraged to expand the applicability of base editors in gene therapies.

3.
Cell Mol Biol Lett ; 29(1): 76, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762740

BACKGROUND: The role of the scavenger receptor CD36 in cell metabolism and the immune response has been investigated mainly in macrophages, dendritic cells, and T cells. However, its involvement in B cells has not been comprehensively examined. METHODS: To investigate the function of CD36 in B cells, we exposed Cd36fl/flMB1cre mice, which lack CD36 specifically in B cells, to apoptotic cells to trigger an autoimmune response. To validate the proteins that interact with CD36 in primary B cells, we conducted mass spectrometry analysis following anti-CD36 immunoprecipitation. Immunofluorescence and co-immunoprecipitation were used to confirm the protein interactions. RESULTS: The data revealed that mice lacking CD36 in B cells exhibited a reduction in germinal center B cells and anti-DNA antibodies in vivo. Mass spectrometry analysis identified 30 potential candidates that potentially interact with CD36. Furthermore, the interaction between CD36 and the inhibitory Fc receptor FcγRIIb was first discovered by mass spectrometry and confirmed through immunofluorescence and co-immunoprecipitation techniques. Finally, deletion of FcγRIIb in mice led to decreased expression of CD36 in marginal zone B cells, germinal center B cells, and plasma cells. CONCLUSIONS: Our data indicate that CD36 in B cells is a critical regulator of autoimmunity. The interaction of CD36-FcγRIIb has the potential to serve as a therapeutic target for the treatment of autoimmune disorders.


Autoimmune Diseases , B-Lymphocytes , CD36 Antigens , Receptors, IgG , Animals , Mice , Autoimmune Diseases/metabolism , Autoimmune Diseases/immunology , Autoimmunity , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , CD36 Antigens/metabolism , CD36 Antigens/genetics , Germinal Center/metabolism , Germinal Center/immunology , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Receptors, IgG/metabolism , Receptors, IgG/genetics
4.
Gene ; 918: 148479, 2024 Aug 05.
Article En | MEDLINE | ID: mdl-38636815

The GHRL, LEAP2, and GHSR system have recently been identified as important regulators of feed intake in mammals and chickens. However, the complete cloning of the quail GHRL (qGHRL) and quail LEAP2 (qLEAP2) genes, as well as their association with feed intake, remains unclear. This study cloned the entire qGHRL and qLEAP2 cDNA sequence in Chinese yellow quail (Coturnix japonica), including the 5' and 3' untranslated regions. Sanger sequencing analysis revealed no missense mutations in the coding region of qGHRL and qLEAP2. Subsequently, phylogenetic analysis and protein homology alignment were conducted on the qGHRL and qLEAP2 in major poultry species. The findings of this research indicated that the qGHRL and qLEAP2 sequences exhibit a high degree of similarity with those of chicken and turkey. Specifically, the N-terminal 6 amino acids of GHRL mature peptides and all the mature peptide sequence of LEAP2 exhibited consistent patterns across all species examined. The analysis of tissue gene expression profiles indicated that qGHRL was primarily expressed in the proventriculus and brain tissue, whereas qLEAP2 exhibited higher expression levels in the intestinal tissue, kidney, and liver tissue, differing slightly from previous studies conducted on chicken. It is necessary to investigate the significance of elevated expression of qGHRL in brain and qLEAP2 in kidney in the future. Further research has shown that the expression of qLEAP2 can quickly respond to changes in different energy states, whereas qGHRL does not exhibit the same capability. Overall, this study successfully cloned the complete cDNA sequences of qGHRL and qLEAP2, and conducted a comprehensive examination of their tissue expression profiles and gene expression levels in the main expressing organs across different energy states. Our current findings suggested that qLEAP2 is highly expressed in the liver, intestine, and kidney, and its expression level is regulated by feed intake.


Cloning, Molecular , Phylogeny , Animals , Ghrelin/genetics , Ghrelin/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism , Eating/genetics , Amino Acid Sequence , Gene Expression Profiling/methods , Coturnix/genetics , Coturnix/metabolism , Chickens/genetics , Chickens/metabolism , Quail/genetics , Polymorphism, Genetic
5.
BMC Genomics ; 25(1): 70, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38233814

BACKGROUND: Dorper and Tan sheep are renowned for their rapid growth and exceptional meat quality, respectively. Previous research has provided evidence of the impact of gut microbiota on breed characteristics. The precise correlation between the gastrointestinal tract and peripheral organs in each breed is still unclear. Investigating the metabolic network of the intestinal organ has the potential to improve animal growth performance and enhance economic benefits through the regulation of intestinal metabolites. RESULTS: In this study, we identified the growth advantage of Dorper sheep and the high fat content of Tan sheep. A transcriptome study of the brain, liver, skeletal muscle, and intestinal tissues of both breeds revealed 3,750 differentially expressed genes (DEGs). The genes PPARGC1A, LPL, and PHGDH were found to be highly expressed in Doper, resulting in the up-regulation of pathways related to lipid oxidation, glycerophospholipid metabolism, and amino acid anabolism. Tan sheep highly express the BSEP, LDLR, and ACHE genes, which up-regulate the pathways involved in bile transport and cholesterol homeostasis. Hindgut content analysis identified 200 differentially accumulated metabolites (DAMs). Purines, pyrimidines, bile acids, and fatty acid substances were more abundant in Dorper sheep. Based on combined gene and metabolite analyses, we have identified glycine, serine, and threonine metabolism, tryptophan metabolism, bile secretion, cholesterol metabolism, and neuroactive ligand-receptor interaction as key factors contributing to the differences among the breeds. CONCLUSIONS: This study indicates that different breeds of sheep exhibit unique breed characteristics through various physiological regulatory methods. Dorper sheep upregulate metabolic signals related to glycine, serine, and threonine, resulting in an increase in purine and pyrimidine substances. This, in turn, promotes the synthesis of amino acids and facilitates body development, resulting in a faster rate of weight gain. Tan sheep accelerate bile transport, reduce bile accumulation in the intestine, and upregulate cholesterol homeostasis signals in skeletal muscles. This promotes the accumulation of peripheral and intramuscular fat, resulting in improved meat quality. This work adopts a joint analysis method of multi-tissue transcriptome and gut metabolome, providing a successful case for analyzing the mechanisms underlying the formation of various traits.


Plant Breeding , Transcriptome , Sheep/genetics , Animals , Metabolome , Glycine , Serine , Threonine , Cholesterol
6.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article En | MEDLINE | ID: mdl-38139460

Alopecia areata is an autoimmune disease characterized by the immune system attacking self hair follicles, mainly in the scalp. There is no complete cure, and the pathogenesis is still not fully understood. Here, sequencing of skin tissues collected from 1-month-old coarse- and fine-wool lambs identified miR-199a-3p as the only small RNA significantly overexpressed in the fine-wool group, suggesting a role in hair follicle development. MiR-199a-3p expression was concentrated in the dermal papillae cells of sheep hair follicles, along with enhanced ß-catenin expression and the inhibition of PTPRF protein expression. We also successfully constructed a mouse model of alopecia areata by intracutaneous injection with an miR-199a-3p antagomir. Injection of the miR-199a-3p agomir resulted in hair growth and earlier anagen entry. Conversely, local injection with the miR-199a-3p antagomir resulted in suppressed hair growth at the injection site, upregulation of immune system-related genes, and downregulation of hair follicle development-related genes. In vivo and in vitro analyses demonstrated that miR-199a-3p regulates hair follicle development through the PTPRF/ß-catenin axis. In conclusion, a mouse model of alopecia areata was successfully established by downregulation of a small RNA, suggesting the potential value of miR-199a-3p in the study of alopecia diseases. The regulatory role of miR-199a-3p in the PTPRF/ß-catenin axis was confirmed, further demonstrating the link between alopecia areata and the Wnt-signaling pathway.


Alopecia Areata , MicroRNAs , Animals , Mice , Antagomirs , beta Catenin/genetics , Disease Models, Animal , Hair Follicle/pathology , MicroRNAs/genetics , Sheep
7.
Cell Biosci ; 13(1): 190, 2023 Oct 13.
Article En | MEDLINE | ID: mdl-37828606

BACKGROUND: It is not uncommon for some individuals to retain certain primitive characteristics even after domestication or long-term intensive selection. Wild ancestors or original varieties of animals typically possess strong adaptability to environmental preservation, a trait that is often lacking in highly artificially selected populations. In the case of the Merino population, a world-renowned fine wool sheep breed, a phenotype with primitive coarse wool characteristic has re-emerged. It is currently unclear whether this characteristic is detrimental to the production of fine wool or whether it is linked to the adaptability of sheep. The underlying genetic/epigenetic mechanisms behind this trait are also poorly understood. RESULTS: This study identified lambs with an ancestral-like coarse (ALC) wool type that emerged during the purebred breeding of Merino fine wool sheep. The presence of this primitive sheep characteristic resulted in better environmental adaptability in lambs, as well as improved fine wool yield in adulthood. Reciprocal cross experiments revealed that the ALC phenotype exhibited maternal genetic characteristics. Transcriptomic SNP analysis indicated that the ALC phenotype was localized to the imprinted Gtl2-miRNAs locus, and a significant correlation was found between the ALC wool type and a newly identified short Interstitial Telomeric Sequences (s-ITSs) at this locus. We further confirmed that a novel 38-nt small RNA transcribed from these s-ITSs, in combination with the previously reported 22-nt small RNAs cluster from the Gtl2-miRNAs locus, synergistically inhibited PI3K/AKT/Metabolic/Oxidative stress and subsequent apoptotic pathways in wool follicle stem cells, resulting in the ALC wool type. The necessity of Gtl2-miRNAs in controlling primary hair follicle morphogenesis, as well as the wool follicle type for ALC wool lambs, was verified using intergenic differentially methylated region-knockout mice. CONCLUSION: The ALC wool type of Merino sheep, which does not reduce wool quality but increases yield and adaptability, is regulated by epigenetic mechanisms in the imprinted Gtl2-miRNAs region on sheep chromosome 18, with the maternally expressed imprinted gene responsible for the ALC phenotype. This study highlights the significance of epigenetic regulation during embryonic and juvenile stages and emphasizes the advantages of early adaptation breeding for maternal parents in enhancing the overall performance of their offspring.

8.
J Anim Sci Biotechnol ; 14(1): 88, 2023 Jul 08.
Article En | MEDLINE | ID: mdl-37420295

BACKGROUND: Wool fibers are valuable materials for textile industry. Typical wool fibers are divided into medullated and non-medullated types, with the former generated from primary wool follicles and the latter by either primary or secondary wool follicles. The medullated wool is a common wool type in the ancestors of fine wool sheep before breeding. The fine wool sheep have a non-medullated coat. However, the critical period determining the type of wool follicles is the embryonic stage, which limits the phenotypic observation and variant contrast, making both selection and studies of wool type variation fairly difficult. RESULTS: During the breeding of a modern fine (MF) wool sheep population with multiple-ovulation and embryo transfer technique, we serendipitously discovered lambs with ancestral-like coarse (ALC) wool. Whole-genome resequencing confirmed ALC wool lambs as a variant type from the MF wool population. We mapped the significantly associated methylation locus on chromosome 4 by using whole genome bisulfite sequencing signals, and in turn identified the SOSTDC1 gene as exons hypermethylated in ALC wool lambs compare to their half/full sibling MF wool lambs. Transcriptome sequencing found that SOSTDC1 was expressed dozens of times more in ALC wool lamb skin than that of MF and was at the top of all differentially expressed genes. An analogy with the transcriptome of coarse/fine wool breeds revealed that differentially expressed genes and enriched pathways at postnatal lamb stage in ALC/MF were highly similar to those at the embryonic stage in the former. Further experiments validated that the SOSTDC1 gene was specifically highly expressed in the nucleus of the dermal papilla of primary wool follicles. CONCLUSION: In this study, we conducted genome-wide differential methylation site association analysis on differential wool type trait, and located the only CpG locus that strongly associated with primary wool follicle development. Combined with transcriptome analysis, SOSTDC1 was identified as the only gene at this locus that was specifically overexpressed in the primary wool follicle stem cells of ALC wool lamb skin. The discovery of this key gene and its epigenetic regulation contributes to understanding the domestication and breeding of fine wool sheep.

9.
Sci Rep ; 13(1): 10213, 2023 06 23.
Article En | MEDLINE | ID: mdl-37353550

Novel small RNAs derived from tRNAs are continuously identified, however, their biological functions are rarely reported. Here, we accidentally found the reads peak at 32nt during statistical analysis on the miRNA-seq data of lamb skin tissue, and found that it was related to the wool type of lambs. This 32nt peak was composed of small tRNA fragments. The main component sequence of this peak was a novel small tRNA derived from Glycyl tRNA (tRNAGly), the expression level of tRNAGly-derived tRNA fragments (tRFGly) was 5.77 folds higher in the coarse wool lambs than that in the fine wool lambs. However, in contrast, the expression of tRNAGly in the skin of fine wool lambs is 6.28 folds more than that in coarse wool lambs. tRNAGly promoted the synthesis of high glycine protein including KAP6 in fine wool lamb skin. These proteins were reported as the major genes for fine curly wool. Integrative analysis of target gene prediction, proteomics and metabolomics results revealed that tRFGly reduced the level of reactive oxygen species (ROS) in the skin of coarse wool lambs by targeted inhibition of the Metabolic signal and the corresponding Glutathione metabolic pathway, on the contrary, the level of oxidative stress in the skin of fine wool lambs was significantly higher. This study revealed for the first time the relationship between tRNAGly and its derived tRFGly and animal traits. tRFGly has the function of targeting and regulating protein synthesis. At the same time, tRFGly can reduce the expression of its resource complete tRNA, thereby reducing its ability to transport specific amino acid and affecting the expression of corresponding proteins.


RNA, Transfer, Gly , Wool , Sheep/genetics , Animals , Wool/metabolism , RNA, Transfer, Gly/metabolism , RNA, Transfer/metabolism , Sheep, Domestic/genetics , Sheep, Domestic/metabolism , Oxidative Stress/genetics
10.
Front Microbiol ; 13: 1047744, 2022.
Article En | MEDLINE | ID: mdl-36519177

Background: Livestock is an excellent source of high nutritional value protein for humans; breeding livestock is focused on improving meat productivity and quality. Dorper sheep is a distinguished breed with an excellent growth performance, while Tan sheep is a Chinese local breed famous for its delicious meat. Several studies have demonstrated that the composition of gut microbiome and metabolome modulate host phenotype. Methods: In the present study, we performed 16S amplicon sequencing and metabolomic analyses of the rumen and hindgut microbiome of 8-month-old Dorper and Tan sheep, raised under identical feeding and management conditions, to explore the potential effects of gut microbiome and its metabolites on growth performance and meat quality. Results: Our study identified Lactobacillus, a marker genus in the rumen, to be significantly associated with the levels of fumaric acid, nicotinic acid, and 2-deoxyadenosine (P-value < 0.05). Statistical analysis showed that nicotinic acid was significantly negatively correlated with body weight (P-value < 0.01), while 2-deoxyadenosine was significantly positively correlated with fatty acids content (P-value < 0.05). There was a biologically significant negative correlation between Phascolarctobacterium and deoxycytidine levels in the hindgut. Deoxycytidine was significantly positively correlated with body weight, protein, and amino acid content. Differences in rumen fermentation patterns that are distinctive among breeds were identified. Tan sheep mainly used Lactobacillus and fumaric acid-mediated pyruvic acid for energy supply, while Dorper sheep utilize glycogenic amino acids. The difference of iron metabolism in the hindgut of Dorper sheep affects lipid production, while Phascolarctobacterium in Tan sheep is related to roughage tolerance. The accumulation of nucleosides promotes the growth performance of Dorper sheep. Conclusion: These findings provide insights into how the microbiome-metabolome-dependent mechanisms contribute to growth rate and fat contents in different breeds. This fundamental research is vital to identifying the dominant traits of breeds, improving growth rate and meat quality, and establishing principles for precision feeding.

11.
Biology (Basel) ; 11(11)2022 Nov 09.
Article En | MEDLINE | ID: mdl-36358338

In our study, a set of lambs with coarse wool type all over their bodies were discovered within a full-sib family during an embryo transfer experiment of merino fine wool sheep. The difference between coarse and fine wool traits were studied from the perspective of RNA modification-N6-methyladenosine. A total of 31,153 peaks were collected, including 15,968 peaks in coarse skin samples and 15,185 peaks in fine skin samples. In addition, 7208 genes were differentially m6A methylated, including 4167 upregulated and 3041 downregulated in coarse skin samples. Four key genes (EDAR, FGF5, TCHH, KRT2) were obtained by comprehensive analysis of the MeRIP-seq and RNA sequence, which are closely related to primary wool follicle morphogenesis and development. The PI3K/AKT pathway was enriched through different m6A-related genes. These results provided new insights to understand the role of epigenetics in wool sheep domestication and breeding.

12.
Front Microbiol ; 13: 874536, 2022.
Article En | MEDLINE | ID: mdl-35572716

The microbial community performs vital functions in the intestinal system of animals. Modulation of the gut microbiota structure can indirectly or directly affect gut health and host metabolism. Aohan fine-wool sheep grow in semi-desert grasslands in China and show excellent stress tolerance. In this study, we amplified 16S rRNA gene to investigate the dynamic distribution and adaptability of the gut microbiome in the duodenum, jejunum, ileum, cecum, colon, and rectum of seven Aohan fine-wool sheep at 12 months. The results showed that the microbial composition and diversity of the ileum and the large intestine (collectively termed the hindgut) were close together, and the genetic distance and functional projections between them were similar. Meanwhile, the diversity index results revealed that the bacterial richness and diversity of the hindgut were significantly higher than those of the foregut. We found that from the foregut to the hindgut, the dominant bacteria changed from Proteobacteria to Bacteroidetes. In LEfSe analysis, Succiniclasticum was found to be significantly abundant bacteria in the foregut and was involved in succinic acid metabolism. Ruminococcaceae and Caldicoprobacteraceae were significantly abundant in hindgut, which can degrade cellulose polysaccharides in the large intestine and produce beneficial metabolites. Moreover, Coriobacteriaceae and Eggthellaceae are involved in flavonoid metabolism and polyphenol production. Interestingly, these unique bacteria have not been reported in Mongolian sheep or other sheep breeds. Collectively, the gut microbiota of Aohan fine-wool sheep is one of the keys to adapting to the semi-desert grassland environment. Our results provide new insights into the role of gut microbiota in improving stress tolerance and gut health in sheep.

13.
Front Genet ; 13: 1059913, 2022.
Article En | MEDLINE | ID: mdl-36685951

ß-catenin is a conserved molecule that plays an important role in hair follicle development. In this study, we generated skin-specific overexpression of ovine ß-catenin in transgenic mice by pronuclear microinjection. Results of polymerase chain reaction (PCR) testing and Southern blot showed that the ovine ß-catenin gene was successfully transferred into mice, and the exogenous ß-catenin gene was passed down from the first to sixth generations. Furthermore, real-time fluorescent quantitative PCR (qRT-PCR) and western blot analysis showed that ß-catenin mRNA was specifically expressed in the skin of transgenic mice. The analysis of F6 phenotypes showed that overexpression of ß-catenin could increase hair follicle density by prematurely promoting the catagen-to-anagen transition. The results showed that ovine ß-catenin could also promote hair follicle development in mice. We, therefore, demonstrate domestication traits in animals.

14.
Front Immunol ; 12: 750808, 2021.
Article En | MEDLINE | ID: mdl-34917075

Endometrial immune response is highly associated with the homeostatic balance of the uterus and embryo development; however, the underlying molecular regulatory mechanisms are not fully elucidated. Herein, the porcine endometrium showed significant variation in mucosal immunity in proliferative and secretory phases by single-cell RNA sequencing. The loose arrangement and high motility of the uterine epithelium in the proliferative phase gave opportunities for epithelial cells and dendritic cells to cross talk with colonizing microbial community, guiding lymphocyte migration into the mucosal and glandular epithelium. The migrating lymphocytes were primarily NK and CD8+ T cells, which were robustly modulated by the chemokine signaling. In the secretory phase, the significantly strengthened mechanical mucosal barrier and increased immunoglobulin A alleviated the migration of lymphocytes into the epithelium when the neuro-modulation, mineral uptake, and amino acid metabolism were strongly upregulated. The noticeably increased intraepithelial lymphocytes were positively modulated by the bacteria in the uterine cavity. Our findings illustrated that significant mucosal immunity variation in the endometrium in the proliferative and secretory phases was closely related to intraepithelial lymphocyte migration, which could be modulated by the colonizing bacteria after cross talk with epithelial cells with higher expressions of chemokine.


Endometrium/immunology , Endometrium/microbiology , Estrous Cycle/immunology , Immunity, Mucosal/physiology , Microbiota/immunology , Animals , Female , Mucous Membrane/immunology , Mucous Membrane/microbiology , Swine
15.
Poult Sci ; 100(12): 101498, 2021 Dec.
Article En | MEDLINE | ID: mdl-34695633

In black-boned chicken, melanocytes are widely distributed in their inner organs. However, the roles of these cells are not fully elucidated. In this study, we used 3-wk-old female Silky Fowl to investigate the functions of melanocytes under infection with infectious bursal disease virus (IBDV). We found the melanocytes in the bursa of Fabricius involved in IBDV infection shown as abundant melanin were transported into the nodule and lamina propria where obvious apoptotic cells and higher expression of BAX were detected. Genes related to the toll-like receptor (TLR) signaling pathway were highly detected by quantitative PCR, including TLR1, TLR3, TLR4, TLR15, myeloid differential protein-88, interferon-α, and interferon-ß. We then isolated and infected primary melanocytes with IBDV in vitro and found that higher expressions of immune genes were detected at 24 and 48 h after infection; the upregulated innate and adaptive immune genes were involved in the pathogenesis of IBDV infection, including TLR3, TLR7, interleukin 15 (IL15), IL18, IL1rap, CD7, BG2, ERAP1, and SLA2. These changes in gene expression were highly associated with microtubule-based movement, antigen processing and presentation, defense against viruses, and innate immune responses. Our results indicated that the widely distributed melanocytes in Silky Fowl could migrate to play important innate immune roles during virus infection.


Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Birnaviridae Infections/veterinary , Bursa of Fabricius , Chickens , Female , Melanocytes
16.
Anim Genet ; 52(5): 656-666, 2021 Oct.
Article En | MEDLINE | ID: mdl-34224160

Chicken plumage color, the genetic basis of which is often affected by epistasis, has long interested scientists. In the current study, a population of complex epistasis was constructed by crossing dominant White Leghorn chickens with recessive white feather chickens. Through a genome-wide association study, we identified single nucleotide polymorphisms and genes significantly associated with white and colored plumage in hens at different developmental stages. Interestingly, white plumage in adulthood was associated with the recessive white feather gene (TYR), whereas white feathers at birth stage were associated with the dominant white feather gene (PMEL), indicating age-related roles for these genes. TYR was shown to exert an epistatic effect on PMEL in adult hens. Additionally, TYR had an epistatic effect on barred plumage, while barred plumage had an epistatic effect on black plumage. TYR had no epistatic effect on the yellow plumage. We confirmed that the barred plumage gene is CDKN2A, as reported in previous studies. Golgb1 and REEP3, which play important roles in the Golgi network and affect the formation of feather pigments, are important candidate genes for yellow plumage. The candidate genes for black plumage are CAMKK1 and IFT22. Further research is warranted to elucidate the molecular mechanisms underlying these traits.


Chickens/genetics , Epistasis, Genetic , Pigmentation/genetics , Animals , Feathers , Genes, Recessive , Genetic Association Studies/veterinary , Polymorphism, Single Nucleotide
17.
Sci Rep ; 11(1): 7571, 2021 04 07.
Article En | MEDLINE | ID: mdl-33828143

Solute carrier organic anion transporter 1B3 (SLCO1B3) is an important liver primarily highly expressed gene, its encoded protein (OATP1B3) involved in the transport of multi-specific endogenous and exogenous substances. We previously reported that an EAV-HP inserted mutation (IM+) in the 5' flanking region of SLCO1B3 was the causative mutation of chicken blue eggs, and a further research showed that IM+ significantly reduced the expression of SLCO1B3 in liver. Herein, we confirmed a cholate response element (IR-1) played an important role in activating SLCO1B3 and in vitro experiments showed that the activation of IR-1 can be significantly reduced by the EAV-HP IM+ . We performed transcriptome and proteomic analysis using the same set of IM+ and IM- liver tissues from Yimeng hens (a Chinese indigenous breed) to study the effect of SLCO1B3 and OATP1B3 expression reduction on chicken liver function. The results showed that common differential expression pathways were screened out from both transcriptome and proteome, in which fatty acid metabolism and drug metabolism-cytochrome P450 were significantly enriched in the KEGG analysis. The lipid-related metabolism was weakened in IM+ group, which was validated by serum biochemical assay. We unexpectedly found that EAV-HP fragment was highly expressed in the liver of the IM+ chickens. We cloned the EAV-HP full-length transcript and obtained the complete open reading frame. It is worth noting that there was some immune related differential expressed genes, such as NFKBIZ, NFKBIA, and IL1RL1, which were higher expressed in the IM+ group, which may due to the high expression of EAV-HP. Our study showed that EAV-HP IM+ reduced the expression of SLCO1B3 in liver, resulting in the decrease of fatty metabolism and exogenous substance transport capacity. The mutation itself also expressed in the liver and may be involved in the immune process. The mechanism needs further study.


Avian Proteins/genetics , Chickens/genetics , Chickens/metabolism , Liver/metabolism , Mutagenesis, Insertional , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Animals , Avian Proteins/metabolism , Egg Shell/metabolism , Endogenous Retroviruses/genetics , Female , Gene Expression Profiling , Male , Pigmentation/genetics , Promoter Regions, Genetic , Protein Interaction Maps , Proteome/metabolism , RNA-Seq , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism
18.
Poult Sci ; 99(12): 6371-6377, 2020 Dec.
Article En | MEDLINE | ID: mdl-33248552

We previously reported that blue eggshell color in chickens is associated with a partial endogenous retroviral (EAV-HP) insertion in the promoter region of the solute carrier organic anion transporter family member 1B3 (SLCO1B3) gene. The EAV-HP sequence includes numerous regulatory elements, which may modulate the expression of adjacent genes. To determine whether this insertion influences the expression of neighboring genes, we screened the expression of solute carrier organic anion transporter family members 1C1, 1B1 (SLCO1C1, SLCO1B1), and SLCO1B3 in 13 and 10 tissues from female and male Yimeng chickens, respectively. We observed that the insertion only significantly modulated the expression of SLCO1B3 and did not majorly affect that of SLCO1C1 and SLCO1B1. High expression of SLCO1B3 was detected in the shell gland, magnum, isthmus, and vagina of the oviduct in female blue-eggshell chickens. We also observed ectopic expression of SLCO1B3 in the testes of male chickens. SLCO1B3 is typically highly expressed in the liver; however, the EAV-HP insertion significantly reduces SLCO1B3 expression. As a liver-specific transporter, a reduction in the expression of SLCO1B3 may affect liver metabolism, particularly that of bile acids. We also detected higher ectopic expression of SLCO1B3 in the lungs of birds heterozygous for the EAV-HP insertion than in homozygous genotypes. In conclusion, we confirmed that the EAV-HP insertion modifies SLCO1B3 expression, and showed, for the first time, similar expression profile of this gene in all parts of the oviduct in females and testis in males. We also observed different levels of SLCO1B3 expression in the liver, which were associated with the EAV-HP insertion, and significantly higher expression in the lungs of birds with heterozygous genotype. The effects of these changes in the SLCO1B3 expression pattern on the function of the tissues warrant further investigation.


5' Flanking Region , Chickens , Egg Shell , Endogenous Retroviruses , Gene Expression , Organic Anion Transporters, Sodium-Independent , 5' Flanking Region/genetics , Animals , Chickens/genetics , Chickens/metabolism , Egg Shell/metabolism , Endogenous Retroviruses/genetics , Female , Male , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Ovum/metabolism , Pigmentation/genetics
19.
Front Genet ; 10: 612, 2019.
Article En | MEDLINE | ID: mdl-31316551

Artificial selection is often associated with numerous changes in seemingly unrelated phenotypic traits. The genetic mechanisms of correlated phenotypes probably involve pleiotropy or linkage of genes related to such phenotypes. Dongxiang blue-shelled chicken, an indigenous chicken breed of China, has segregated significantly for the dermal hyperpigmentation phenotype. Two lines of the chicken have been divergently selected with respect to comb color for over 20 generations. The red comb line chicken produces significantly higher number of eggs than the dark comb line chicken. The objective of this study was to explore potential mechanisms involved in the relationship between comb color and egg production among chickens. Based on the genome-wide association study results, we identified a genomic region on chromosome 20 involving EDN3 and BMP7, which is associated with hyperpigmentation of chicken comb. Further analyses by selection signatures in the two divergent lines revealed that several candidate genes, including EDN3, BMP7, BPIFB3, and PCK1, closely located on chromosome 20 are involved in the development of neural crest cell and reproductive system. The two genes EDN3 and BMP7 have known roles in regulating both ovarian function and melanogenesis, indicating the pleiotropic effect on hyperpigmentation and egg production in blue-shelled chickens. Association analysis for egg production confirmed the pleiotropic effect of selected loci identified by selection signatures. The study provides insights into phenotypic evolution due to genetic variation across the genome. The information might be useful in the current breeding efforts to develop improved breeds for egg production.

20.
Genes (Basel) ; 10(3)2019 03 21.
Article En | MEDLINE | ID: mdl-30901931

: The Jinjiang horse is a unique Chinese indigenous horse breed distributed in the southern coastal areas, but the ancestry of Jinjiang horses is not well understood. Here, we used Equine SNP70 Bead Array technology to genotype 301 horses representing 10 Chinese indigenous horse breeds, and we integrated the published genotyped data of 352 individuals from 14 foreign horse breeds to study the relationships between Jinjiang horses and horse breeds from around the world. Principal component analysis (PCA), linkage disequilibrium (LD), runs of homozygosity (ROH) analysis, and ancestry estimating methods were conducted to study the population relationships and the ancestral sources and genetic structure of Jinjiang horses. The results showed that there is no close relationship between foreign horse breeds and Jinjiang horses, and Jinjiang horses shared a similar genetic background with Baise horses. TreeMix analysis revealed that there was gene flow from Chakouyi horses to Jinjiang horses. The ancestry analysis showed that Baise horses and Chakouyi horses are the most closely related ancestors of Jinjiang horses. In conclusion, our results showed that Jinjiang horses have a native origin and that Baise horses and Chakouyi horses were key ancestral sources of Jinjiang horses. The study also suggested that ancient trade activities and the migration of human beings had important effects on indigenous horse breeds in China.


Horses/classification , Oligonucleotide Array Sequence Analysis/veterinary , Polymorphism, Single Nucleotide , Animals , Breeding , China , Evolution, Molecular , Gene Flow , Homozygote , Horses/genetics , Linkage Disequilibrium , Phylogeny , Principal Component Analysis
...