Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 355: 141835, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552799

RESUMEN

This study provides insights regarding the selective metal leaching of brass in various tap water conditions, which benefits water utilities to predict the potential of metal released from brass water meters. The long-term time-dependent selective metal dissolution of brass with various ß phase fractions have not previously been investigated. In this study, a 201-d immersion experiment was carried out in low and high conductivity tap water (LCTW and HCTW, respectively). Three commercialized brass samples in different ß phase fractions (ß = 51%, ß = 43%, ß = 39%), named brass 51, brass 43, and brass 39, respectively, were used. The results showed that brass 51 had the most negative corrosion potential (-0.17 V) and the lowest polarization resistance (8.5 kΩ) compared to brass 43 and brass 39 (-0.04 V and 10.1-14.7 kΩ, respectively) in LCTW. This trend was verified by the 201-d immersion experiment in which brass 51 exhibited the highest zinc leaching rate (21-30 µg L-1 cm-2 d-1), followed by brass 43 and brass 39 (16-23 µg L-1 cm-2 d-1) in both waters. The leaching amounts of lead and copper were extremely low compared to zinc. In LCTW, the uniform corrosion (UC) mechanism dominated from day 1 to day 120. Afterwards, UC was replaced by the galvanic corrosion (GC) mechanism, with the selective leaching coefficient of Zn over Cu (SZn/Cu) increasing from 10 to 25 to 40-80. In HCTW, however, the SZn/Cu reached 300-1000, and the transition of UC to GC occurred earlier on day 30 due to the rapid formation of the ZnO layer on the brass surface that hindered the ion attack.


Asunto(s)
Cobre , Agua , Plomo , Zinc
2.
Sci Total Environ ; 872: 162254, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36801318

RESUMEN

Nanoplastics (NPs) discharged from wastewater could pose a major threat to organisms in aquatic environments. Effective removal of NPs by the current conventional coagulation-sedimentation process is not yet satisfactory. This study aimed to investigate the destabilization mechanism of polystyrene NPs (PS-NPs) with different surface properties and sizes (i.e., 90 nm, 200 nm, and 500 nm) by Fe electrocoagulation (EC). Two types of PS-NPs were prepared by a nanoprecipitation method using sodium dodecyl sulfate and cetrimonium bromide solutions to produce negatively-charged SDS-NPs and positively-charged CTAB-NPs. For both NPs, obvious floc aggregation from 7 µm to 14 µm was observed only at pH 7 with particulate Fe accounted for >90 %. At pH 7, Fe EC removed 85.3 %, 82.8 %, and 74.7 % of the negatively-charged SDS-NPs at small-, mid-, and large-sizes from 90 nm, 200 nm, to 500 nm, respectively. Small-size SDS-NPs(90 nm) were destabilized through physical adsorption on the surface of Fe flocs, while the main removal mechanism of mid- and large-SDS-NPs(200 nm and 500 nm) involved the enmeshment of large Fe flocs. Compared to SDS-NPs(200 nm and 500 nm), Fe EC performed similar destabilization behavior to two CTAB-NPs(200 nm and 500 nm), but it resulted in much lower removal rates of 54.8 % - 77.9 %. The Fe EC also exhibited no removal (<1 %) ability toward the small-size and positively-charged CTAB-NPs(90 nm) due to insufficient formation of effective Fe flocs. Our results provide insight into the destabilization of PS in nano-scale with different sizes and surface properties, which clarifies the behavior of complex NPs in a Fe EC-system.

3.
Ecotoxicol Environ Saf ; 225: 112759, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34500387

RESUMEN

This study aimed to investigate the transformation of copper oxide nanoparticles (CuO NPs) in aquatic environments under different ionic strength and further examine its effects on copper toxicity and bioaccumulation by monitoring the responses and uptake behaviours of zebrafish embryo. Ionic strength (IS) was simulated according to surface water (1.5 mM), groundwater (15 mM), and wastewater (54 mM), representing low-, mid-, and high-IS water, respectively. At the highest exposure of 10 mg CuO/L, zebrafish larvae mortality was increased from 21.3% to 33.3%, when IS decreased from 54 to 1.5 mM. Low-IS solution also caused the highest numbers of delayed hatching embryo (81.3%) and opaque yolk deformation (36.3%). Copper bioaccumulation markedly increased when larvae were exposed to low-IS water (35%) relative to high-IS water (15%). Exposing to low-IS particularly enhanced copper uptake (~15 ng Cu/g inside embryo), facilitating the copper accumulation in the heart of larvae, whereas aggregated CuO NPs (>500 nm) in mid- and high-IS water were blocked from the embryo and found abundantly in the body axis and tail. Results indicate that CuO NPs in low-IS solutions rapidly form the relatively small CuO NP aggregates with a high copper dissolution, which would pose great concern for aquatic organisms.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Contaminantes Químicos del Agua , Animales , Bioacumulación , Cobre/toxicidad , Nanopartículas del Metal/toxicidad , Concentración Osmolar , Óxidos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
4.
Sci Total Environ ; 795: 148772, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34247079

RESUMEN

Due to the negative impact of climate change and anthropogenic activities, bromide intrusion into algae-impacted freshwater becomes a new challenge for safe drinking water supply worldwide, as bromide and algal organic matter are important disinfection byproduct (DBP) precursors. However, the influences of this phenomenon on algal precursor dynamic and their derived DBPs have to date received little attention. This study examined the effects of bromide intrusion on algal intra- (IOM) and extra-cellular (EOM) precursors during the growth of two freshwater algae Chlorella sp. and Microcystis aeruginosa. Both algae were well-adapted to Br-intrusion, and no significant effect on their growth and their IOM and EOM precursor characteristics was statistically found (p > 0.05). Notwithstanding, this phenomenon apparently added bromide ions into the algal-EOM solution, which resulted in a linear uptake of bromide by IOM. Under Br-intrusion from 0-4 mg/L (Br0-Br4), 15-60% (on average) of the initial bromide additions remained in the algal EOM. By contrast, only an average of ~1.5-2.4% of the additional bromide was taken up by the IOM, resulting in an elevation of brominated DBPs (Br-DBPs) upon chlorination, especially for those samples collected in the late exponential and declined growth phases. When Br0 shifted to Br4, the %Br-DBP yields from both IOM and EOM increased by more than 75%, with a corresponding increasing the total DBP yield of ~30%. The toxic potencies of all chlorinated Br-containing IOM/EOM were thus magnified, by over one order magnitude greater than the non-Br IOM/EOM at Br0. These results are highly significant for understanding the potential risks of Br-intrusion and algal blooming in raw water quality prior to chlorination.


Asunto(s)
Chlorella , Desinfectantes , Microcystis , Contaminantes Químicos del Agua , Purificación del Agua , Bromuros , Desinfectantes/toxicidad , Desinfección , Halogenación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
Environ Sci Technol ; 55(3): 1790-1799, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33492937

RESUMEN

The covalent modifications resulting from chlorine reactions with peptide-bound amino acids contribute to pathogen inactivation and disinfection byproduct (DBP) formation. Previous research suggested that histidine is the third most reactive of the seven chlorine-reactive amino acids, leading to the formation of 2-chlorohistidine, 2-oxohistidine, or low-molecular-weight byproducts such as trihalomethanes. This study demonstrates that histidine is less reactive toward formation of chlorine transformation products (transformation time scale of hours to days) than five of the seven chlorine-reactive amino acids, including tyrosine (transformation time scale of minutes). Chlorine targeted tyrosine in preference to histidine within peptides, indicating that chlorine reactions with tyrosine and other more reactive amino acids could contribute more to the structural modifications to proteins over the short time scales relevant to pathogen inactivation. Over the longer time scales relevant to disinfection byproduct formation in treatment plants or distribution systems, this study identified ß-cyanoalanine as the dominant transformation product of chlorine reactions with peptide-bound histidine, with molar yields of ∼50% after 1 day. While a chlorinated histidine intermediate was observed at lower yields (maximum ∼5%), the cumulative concentration of the conventional low-molecular-weight DBPs (e.g., trihalomethanes) was ≤7%. These findings support the need to identify the high-yield initial transformation products of chlorine reactions with important precursor structures to facilitate the identification of unknown DBPs.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Desinfección , Halogenación , Histidina , Péptidos , Trihalometanos , Contaminantes Químicos del Agua/análisis
6.
Sci Total Environ ; 727: 138638, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32498213

RESUMEN

Disinfection by-products (DBPs) formed upon water treatment is an emerging issue worldwide. While monitoring of DBP precursors can easily be achieved for high specific UV absorbance (SUVA) organic (>6 L/mg·m), low and extremely low SUVA precursors (<2 L/mg·m) are difficult to monitor or even to predict their DBP formation behaviour. This study investigated the relationships among NOM characteristics, such as molecular weight (MW), fluorescence, and chemical composition, with DBP formation resulting from the chlorination of relatively high and low SUVA precursors. High SUVA precursors were formed by C-rich substances (82-85% of total mass) corresponding with high C/N and C/O (>100 and >5, respectively). Such precursors exhibited the fluorescence of long-wavelength humic-like signal and occurred at a high MW range (>30 kDa). By contrast, low SUVA precursors were either N-rich and/or O-rich substances, associated with much lower carbon content (40-70%). Low SUVA, N-rich precursors particularly also occurred at a high MW region (>100 kDa) and produced a strong protein-like fluorescence signal. When SUVA values of O-rich precursors were extremely low (<1 L/mg·m) they were accompanyied by short-wavelength humic-like fluorescence. During DBP tests, high SUVA produced only high yields of carbonaceous DBPs (e.g trichloromethane, haloacetic acids, haloketones), whereas low SUVA N-rich precursors yielded high levels of both C and NDBPs (e.g. haloacetonenitrile, chloropicrin). By contrast, extremely low SUVA precursors produced significantly low levels of both C and NDBPs (total < 30 µg/mgC). Furthermore, 19 of 20 regression models of DBP formation using log-transformed MW gave R2 = 0.50-0.97. The strong regressions and correlations of NOM characteristics with DBPs in this study provide a better understanding of the influence of precursors characteristics on DBP monitoring, especially for low SUVA NOM.

7.
Water Res ; 148: 231-238, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388524

RESUMEN

This study (i) examined the formation of two major carbonaceous disinfection by-products (C-DBPs), trihalomethanes (THMs) and haloacetic acids (HAAs), during the chlorination of intracellular algogenic organic matter (IOM) extracted from two commonly blooming algae M. aeruginosa (MA) and Chlorella sp. (CH), and (ii) investigated the roles and relationships of fluorescent and molecular weight (MW) properties on/with IOM-derived THMs and HAAs. The extracted IOM samples were separated into different MW fractions by centrifugal devices with membrane support with MW cut-offs of 100, 30, 10, 3, and 1 kDa. We observed an overall reduction of C-DBPs with a decrease of IOM-MW from >100 kDa to <1 kDa. Of six fractionated IOM, a large fraction (>100 kDa) contributed the largest amount to the MW distribution of IOM, accounting for 33 and 42% of the total dissolved organic carbon (DOC) of MA and CH, respectively. It also had the highest-yielding potential to produce significant levels of THMs and HAAs, and total C-DBPs over other small MW fractions. Although small MW fractions (>10 kDa) contributed around 50% of the total DOC, they made an insignificant contribution (>20%) to the THMs, HAAs, and overall C-DBPs. Furthermore, the decrease of IOM MW caused a shift from the domination of HAA formation to THM formation, especially when MW was <10 kDa. By canonical correspondent analysis, the relationship of IOM-derived THMs and HAAs with IOM properties was examined. In particular, large fractions of IOM, exhibiting aromatic protein- (AP) and soluble microbial product- (SMP) like fluorescence, are favorable for the formation of HAAs, whereas small MW fractions of IOM with HA- and FA-like fluorescence preferentially tends to form THMs. Our findings evidently show the strong dependence of IOM-derived THMs and HAAs on the fluorescent and MW properties. Therefore, the characterization of MW and fluorescent properties can provide the advantages in the control of algae-derived DBPs upon the chlorination of eutrophic water.


Asunto(s)
Chlorella , Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Halogenación , Peso Molecular , Trihalometanos
8.
Sci Total Environ ; 645: 71-78, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30015120

RESUMEN

High-performance size exclusion chromatography (HPSEC) coupled with peak-fitting technique was used to probe molecular weight (MW) properties of algogenic organic matter (AOM). The qualitative and quantitative MW information derived was used to predict AOM-derived disinfection by-product (DBP) formation. We resolved overlapping HPSEC chromatograms of all AOM samples into six major peaks with R2 > 0.996. This study gave significant insight into the HPSEC profiles of AOM, in which resolved peaks A and B (biopolymers) and peak C (humic substances) showed a strong correlation with the formation of carbonaceous-DBPs (C-DBPs). This likely resulted from the abundance of aromatic structures and conjugated CC double bonds in their chemical nature. Our results also indicated the importance of algal cells, including intra-cellular and cell-bound organic matter, over extra-cellular organic matter as precursors to C-DBP formation. The application of the information extracted from HPSEC profiles associated with the fluorescent components of AOM showed great improvements in the predictability of THMs, HAAs, and C-DBPs with R2 > 0.7 and p < 0.05. The outcome of this study will significantly benefit effective control of AOM-derived DBP formation by the chlorination of eutrophic waters.

9.
J Environ Sci (China) ; 63: 147-155, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29406099

RESUMEN

The cyanobacteria-bloom in raw waters frequently causes an unpredictable chemical dosing of preoxidation and coagulation for an effective removal of algal cells in water treatment plants. This study investigated the effects of preoxidation with NaOCl and ClO2 on the coagulation-flotation effectiveness in the removal of two commonly blooming cyanobacteria species, Microcystis aeruginosa (MA) and Cylindrospermopsis raciborskii (CR), and their corresponding trihalomethane (THM) formation potential. The results showed that dual dosing with NaOCl plus ClO2 was more effective in enhancing the deformation of cyanobacterial cells compared to single dosing with NaOCl, especially for CR-rich water. Both preoxidation approaches for CR-rich water effectively reduced the CR cell count with less remained dissolved organic carbon (DOC), which benefited subsequent coagulation-flotation. However, preoxidation led to an adverse release of algogenic organic matter (AOM) in the case of MA-rich water. The release of AOM resulted in a poor removal in MA cells and a large amount of THM formation after oxidation-assisted coagulation-flotation process. The reduction in THM formation potential of CR-rich waters is responsible for effective algae and DOC removal by alum coagulation. It is concluded that the species-specific characteristic of cyanobacteria and their AOM released during chlorination significantly influences the performance of coagulation-flotation for AOM removal and corresponding THM formation.


Asunto(s)
Cianobacterias/fisiología , Microcystis/fisiología , Trihalometanos/metabolismo , Eliminación de Residuos Líquidos/métodos , Microalgas/fisiología , Oxidación-Reducción , Trihalometanos/análisis , Trihalometanos/química
10.
Sci Total Environ ; 621: 1467-1474, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29054642

RESUMEN

Algogenic organic matter (AOM) in eutrophic waters is a well-known precursor to disinfection by-product (DBP) formation in drinking water. This purpose of this study is (i) to characterize the optical properties of AOM origins, including intra- (IOM) and extra-cellular organic matter (EOM), derived from Chlorella sp. growth as precursors to two major carbonaceous DBPs (C-DBPs), trihalomethanes (THMs) and haloacetic acids (HAAs) and (ii) to correlate these optical properties with THM and HAA formation potential (FP) in order to predict DBP formation. The results show that both EOM and IOM had low UV254 and UV280 absorbance during their entire growth phase. While IOM chiefly comprised of aromatic proteins and soluble microbial products-like substances (80% of average fluorescent intensity-AFI), EOM spectra were rich in humic- and fulvic-like substances (60% AFI). However, its chemical nature likely differed from terrestrial humics. In DBPFP tests, IOM was a higher-yielding precursor of THMs and HAAs compared to EOM, regardless its growth status. Consequently, C-DBPFP of IOM was always higher than EOM during four growth phases. Results from DBP tests also showed insignificant variation of EOM-derived THMFP and HAAFP during the algal growth phase, while the algal growth status strongly influenced the yields of IOM-derived THMFP and HAAFP. From correlation analysis, our results showed no correlation between UV absorbance with THMFP and HAAFP. Conversely, the regional AFI showed a good correlation with HAAFP and C-DBPFP. Predicting models based on AFI for the formation of HAAs and C-DBPs consequently yielded great predictability for laboratory AOM-containing water samples, with a coefficient of determination R2=0.879, p<0.01 and R2=0.846, p<0.01. This study indicates a promising application of fluorescent spectra for predicting DBPs derived from algae-rich water sources.


Asunto(s)
Ácido Acético/análisis , Chlorella/química , Desinfectantes/análisis , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Chlorella/crecimiento & desarrollo
11.
Water Res ; 89: 261-9, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26689663

RESUMEN

Preoxidation is manipulated to improve performance of algae and soluble manganese (Mn) removal by coagulation-sedimentation for water treatment plants (WTPs) when large amount of soluble Mn presents in algae-laden waters. This study aimed to investigate the effects of preoxidation on the performance of coagulation-sedimentation for the simultaneous removal of algae and soluble Mn, including ionic and complexed Mn. NaOCl, ClO2, and KMnO4 were used to pretreat such algae-laden and Mn containing waters. The variation of algal cell viability, residual cell counts, and concentrations of Mn species prior to and after coagulation-sedimentation step were investigated. Results show that NaOCl dosing was effective in reducing the viability of algae, but precipitated little Mn. ClO2 dosing had a strongest ability to lower algae viability and oxidize ionic and complexed soluble Mn, where KMnO4 dosing oxidized ionic and complexed Mn instead of reducing the viability of cells. Preoxidation by NaOCl only improved the algae removal by sedimentation, whereas most of soluble Mn still remained. On the other hand, ClO2 preoxidation substantially improved the performance of coagulation-sedimentation for simultaneous removal of algae and soluble Mn. Furthermore, KMnO4 preoxidation did improve the removal of algae by sedimentation, but left significant residual Mn in the supernatant. Images from FlowCAM showed changes in aspect ratio (AR) and transparency of algae-Mn flocs during oxidation-assisted coagulation, and indicates that an effective oxidation can improve the removal of most compact algae-Mn flocs by sedimentation. It suggests that an effective preoxidation for reducing algal cell viability and the concentration of soluble Mn is a crucial step for upgrading the performance of coagulation-sedimentation.


Asunto(s)
Supervivencia Celular , Eucariontes/crecimiento & desarrollo , Manganeso/química , Oxidación-Reducción , Purificación del Agua/métodos , Compuestos de Cloro/química , Eutrofización , Óxidos/química , Permanganato de Potasio/química , Hipoclorito de Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...