Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 75
2.
Free Radic Biol Med ; 220: 222-235, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38735540

Studies have highlighted oxidative damage in the inner ear as a critical pathological basis for sensorineural hearing loss, especially the presbycusis. Poly(ADP-ribose) polymerase-1 (PARP1) activation responds to oxidative stress-induced DNA damage with pro-repair and pro-death effects resembling two sides of the same coin. PARP1-related cell death, known as parthanatos, whose underlying mechanisms are attractive research hotspots but remain to be clarified. In this study, we observed that aged rats showed stria vascularis degeneration and oxidative damage, and PARP1-dependent cell death was prominent in age-related cochlear disorganization and dysfunction. Based on oxidative stress model of primary cultured stria marginal cells (MCs), we revealed that upregulated PARP1 and PAR (Poly(ADP-ribose)) polymers are responsible for MCs oxidative death with high mitochondrial permeability transition pore (mPTP) opening and mitochondrial membrane potential (MMP) collapse, while inhibition of PARP1 ameliorated the adverse outcomes. Importantly, the PARylation of apoptosis-inducing factor (AIF) is essential for its conformational change and translocation, which subsequently causes DNA break and cell death. Concretely, the interaction of PAR and truncated AIF (tAIF) is the mainstream in the parthanatos pathway. We also found that the effects of AIF cleavage and release were achieved through calpain activity and mPTP opening, both of which could be regulated by PARP1 via mediation of mitochondria Ca2+ concentration. In conclusion, the PAR-Ca2+-tAIF signaling pathway in parthanatos contributes to the oxidative stress damage observed in MCs. Targeting PAR-Ca2+-tAIF might be a potential therapeutic strategy for the early intervention of presbycusis and other oxidative stress-associated sensorineural deafness.


Apoptosis Inducing Factor , Calcium , Oxidative Stress , Poly (ADP-Ribose) Polymerase-1 , Presbycusis , Animals , Apoptosis Inducing Factor/metabolism , Apoptosis Inducing Factor/genetics , Rats , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Calcium/metabolism , Presbycusis/metabolism , Presbycusis/pathology , Presbycusis/genetics , Parthanatos/genetics , Membrane Potential, Mitochondrial , Stria Vascularis/metabolism , Stria Vascularis/pathology , Apoptosis , Mitochondrial Permeability Transition Pore/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Rats, Sprague-Dawley , DNA Damage , Aging/metabolism , Aging/pathology , Cochlea/metabolism , Cochlea/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Male , Humans , Cells, Cultured
3.
Article Zh | MEDLINE | ID: mdl-38686477

Objective:To explore strategies for preserving facial nerve function during surgeries for rare tumors of the internal auditory canal. Methods:A total of 235 cases of internal auditory canal tumors treated between 2010 and 2023 were included, encompassing vestibular schwannomas, cavernous hemangiomas, meningiomas, and other rare tumors. Various data, including clinical presentations, imaging classifications, and treatment processes, were meticulously analyzed to delineate the characteristics of rare tumors and assess pre-and postoperative facial nerve function. Results:Among all internal auditory canal tumors, vestibular schwannomas accounted for 91.9%. In rare tumors, facial nerve schwannomas constituted 5.3%, cavernous hemangiomas 26.3%, meningiomas 15.8%, and arterial aneurysms 10.5%. Significantly, patients with cavernous hemangiomas displayed pronounced invasion of the facial nerve by the tumor, in contrast to other tumor types where clear boundaries with the facial nerve were maintained. During surgery, individualized approaches and strategies for facial nerve protection were implemented for different tumor types, involving intraoperative dissection, tumor excision, and facial nerve reconstruction. Conclusion:Preservation of the facial nerve is crucial in the surgical management of rare tumors of the internal auditory canal. Accurate preoperative diagnosis, appropriate timing of surgery, selective surgical approaches, and meticulous intraoperative techniques can maximize the protection of facial nerve function. Personalized treatment plans and strategies for facial nerve functional reconstruction are anticipated to enhance surgical success rates, reduce the risk of postoperative facial nerve dysfunction, and ultimately improve the quality of life for patients.


Facial Nerve , Humans , Female , Male , Facial Nerve/surgery , Middle Aged , Adult , Aged , Neuroma, Acoustic/surgery , Meningioma/surgery , Ear, Inner/surgery , Hemangioma, Cavernous/surgery , Ear Neoplasms/surgery , Young Adult , Adolescent , Meningeal Neoplasms/surgery
4.
Autophagy ; 20(2): 329-348, 2024 02.
Article En | MEDLINE | ID: mdl-37776538

Chemotherapeutic resistance is one of the most common reasons for poor prognosis of patients with nasopharyngeal carcinoma (NPC). We found that CENPN can promote the growth, proliferation and apoptosis resistance of NPC cells, but its relationship with chemotherapeutic resistance in NPC is unclear. Here we verified that the CENPN expression level in NPC patients was positively correlated with the degree of paclitaxel (PTX) resistance and a poor prognosis through analysis of clinical cases. VAMP8 expression was significantly increased after knockdown of CENPN by transcriptome sequencing. We found in cell experiments that CENPN inhibited macroautophagy/autophagy and VAMP8 expression and significantly increased PTX resistance. Overexpression of CENPN reduced the inhibitory effects of PTX on survival, cell proliferation, cell cycle progression and apoptosis resistance in NPC cells by inhibiting autophagy. In turn, knockdown of CENPN can affect the phenotype of NPC cells by increasing autophagy to achieve PTX sensitization. Sequential knockdown of CENPN and VAMP8 reversed the PTX-sensitizing effect of CENPN knockdown alone. Experiments in nude mice confirmed that knockdown of CENPN can increase VAMP8 expression, enhance autophagy and increase the sensitivity of NPC cells to PTX. Mechanistic studies showed that CENPN inhibited the translocation of p-CREB into the nucleus of NPC cells, resulting in the decreased binding of p-CREB to the VAMP8 promoter, thereby inhibiting the transcription of VAMP8. These results demonstrate that CENPN may be a marker for predicting chemotherapeutic efficacy and a potential target for inducing chemosensitization to agents such as PTX.Abbreviations: 3-MA: 3-methyladenine; ATG5: autophagy related 5; CENPN: centromere protein N; CQ: chloroquine; CREB: cAMP responsive element binding protein; ChIP: chromatin immunoprecipitation assay; IC50: half-maximal inhibitory concentration; LAMP2A: lysosomal associated membrane protein 2A; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NPC: nasopharyngeal carcinoma; NPG: nasopharyngitis; oeCENPN: overexpressed CENPN; PTX: paclitaxel; RAPA: rapamycin; RNA-seq: transcriptome sequencing; shCENPN: small hairpin RNA expression vector targeting the human CENPN gene; shCENPN-shVAMP8: sequential knockdown targeting the human CENPN gene and VAMP8 gene; shVAMP8: small hairpin RNA expression vector targeting the human VAMP8 gene; TEM: transmission electron microscopy; TIR: tumor inhibitory rate; VAMP8: vesicle associated membrane protein 8.


Nasopharyngeal Neoplasms , Paclitaxel , Animals , Mice , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Mice, Nude , Autophagy/genetics , Cell Line, Tumor , RNA, Small Interfering/pharmacology , R-SNARE Proteins/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/pharmacology
5.
Int Arch Allergy Immunol ; 185(2): 124-132, 2024.
Article En | MEDLINE | ID: mdl-37913762

INTRODUCTION: The incidence of allergic rhinitis (AR) is increasing year by year, and the pathogenesis is complex, in which diet may play an important role. The role of polyunsaturated fatty acids (PUFAs) in AR is still controversial. Previous studies have looked at the effects of PUFA during pregnancy, childhood, and adolescence. In this study, we aimed to determine the association between dietary intake of PUFA and AR in adults. METHODS: We used the NHANES database from 2005 to 2006 to include a total of 4,211 adult subjects. We collected dietary PUFA intake data and information on AR. Logistic regression and restricted cubic spline models were constructed to examine the association between PUFA intake and AR in adults. The t test was used to compare daily PUFA intakes in patients with and without AR. RESULTS: In the fully adjusted model (OR: 1.016; 95% CI: 1.003; 1.028), PUFA intake was positively correlated with allergic symptoms, hay fever, and AR in adults (p < 0.05). In addition, daily PUFA intake was significantly higher in people with allergic symptoms, hay fever, and AR than in people without the disease (p < 0.01). CONCLUSIONS: Our results suggest a positive association between dietary PUFA intake and AR in adults to a certain extent. Future studies on dietary PUFA dose will provide new strategies for the prevention and treatment of allergic diseases such as AR related to non-pharmaceutical interventions.


Rhinitis, Allergic, Seasonal , Rhinitis, Allergic , Adult , Pregnancy , Female , Adolescent , Humans , Child , Cross-Sectional Studies , Nutrition Surveys , Diet , Rhinitis, Allergic/epidemiology , Fatty Acids, Unsaturated
6.
Hear Res ; 440: 108913, 2023 Dec.
Article En | MEDLINE | ID: mdl-37939412

Aging is an inevitable phase in mammals that leads to health impairments, including hearing loss. Age-related hearing loss (AHL) leads to psychosocial problems and cognitive decline in the elderly. In this study, mean thresholds of auditory brainstem responses (ABR) and distortion-product otoacoustic emissions (DPOAE) increased at multiple frequencies in aged rats (14 months old) compared to young rats (2 months old). Using untargeted ultra-high performance liquid chromatography-mass spectroscopy (LC-MS), we quantified molecular metabolic markers in the cochlea of aged rats with hearing loss. A total of 137 different metabolites were identified in two groups, highlighting several prominent metabolic pathways related to purine metabolism; glycine, serine, and threonine metabolism; arginine and proline metabolism; and pyrimidine metabolism. In addition, the beneficial effects of purine supplementation were demonstrated in a mimetic model of senescent marginal cells (MCs). Overall, altered metabolic profiling is both the cause and manifestation of pathology, and our results suggest that cellular senescence and dysfunctional cochlear metabolism may contribute to the progression of AHL. These findings are seminal in elucidating the pathophysiological mechanisms underlying AHL and serve as a basis for future clinical predictions and interventions in AHL.


Otoacoustic Emissions, Spontaneous , Presbycusis , Humans , Aged , Rats , Animals , Infant , Otoacoustic Emissions, Spontaneous/physiology , Cochlea/physiology , Aging/physiology , Evoked Potentials, Auditory, Brain Stem , Biomarkers , Purines , Auditory Threshold/physiology , Mammals
7.
Aging (Albany NY) ; 15(21): 12476-12496, 2023 11 08.
Article En | MEDLINE | ID: mdl-37944249

Hypopharyngeal carcinoma is the most malignant type of head and neck squamous cell carcinoma, and lncRNAs play an important role in its formation and progression. However, the related specific mechanisms are rarely studied. lncRNAs closely associated with hypopharyngeal cancer were examined by lncRNA sequencing for in-depth exploration of the relationship between HOXC-AS2 and hypopharyngeal cancer pathogenesis. The mRNA expression of HOXC-AS2 and related genes was measured by qRT-PCR, and the biological function of HOXC-AS2 in hypopharyngeal carcinoma was demonstrated by gain- and loss-of-function experiments. RNA pulldown, RNA immunoprecipitation (RIP) and gene body truncation experiments and transcriptome sequencing were used to investigate the potential mechanism of HOXC-AS2 and its downstream genes, including P62, NF-KB and HMOX1. Finally, the biological function of HOXC-AS2 was confirmed in animal experiments. HOXC-AS2 and P62 expression was significantly upregulated in hypopharyngeal cancer tissues compared with normal hypopharyngeal tissues, while HMOX1 expression was decreased. Functionally, HOXC-AS2 overexpression can promote the viability, proliferation, migration and invasion of hypopharyngeal cancer cells and facilitate hypopharyngeal cancer progression. It was confirmed that HOXC-AS2 can bind to the P62 protein and activate the NF-KB signaling pathway, thereby affecting HMOX1 expression and regulating autophagy in hypopharyngeal cancer cells, ultimately regulating the formation and progression of hypopharyngeal cancer. In conclusion, our findings suggest that HOXC-AS2 regulates the progression of hypopharyngeal cancer by regulating autophagy and is abnormally highly expressed in hypopharyngeal cancer tissues. HOXC-AS2 may become a new target for the diagnosis and treatment of hypopharyngeal cancer.


Head and Neck Neoplasms , Hypopharyngeal Neoplasms , MicroRNAs , RNA, Long Noncoding , Animals , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Hypopharyngeal Neoplasms/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Head and Neck Neoplasms/genetics , Autophagy/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics
8.
J Transl Med ; 21(1): 792, 2023 11 08.
Article En | MEDLINE | ID: mdl-37940975

OBJECTIVE: Investigating the impact of centromere protein N (CENP-N) on radiosensitivity of nasopharyngeal carcinoma (NPC) cells. METHODS: Using immunohistochemistry and immunofluorescence to detect CENP-N expression in tissues from 35 patients with radiosensitive or radioresistant NPC. Assessing the effect of combined CENP-N knockdown and radiotherapy on various cellular processes by CCK-8, colony formation, flow cytometry, and Western blotting. Establishing a NPC xenograft model. When the tumor volume reached 100 mm3, a irradiation dose of 6 Gy was given, and the effects of the combined treatment were evaluated in vivo using immunofluorescence and Western blotting techniques. RESULTS: The level of CENP-N was significantly reduced in radiosensitive tissues of NPC (p < 0.05). Knockdown of CENP-N enhanced NPC radiosensitivity, resulting in sensitizing enhancement ratios (SER) of 1.44 (5-8 F) and 1.16 (CNE-2Z). The combined treatment showed significantly higher levels of proliferation suppression, apoptosis, and G2/M phase arrest (p < 0.01) compared to either CENP-N knockdown alone or radiotherapy alone. The combined treatment group showed the highest increase in Bax and γH2AX protein levels, whereas the protein Cyclin D1 exhibited the greatest decrease (p < 0.01). However, the above changes were reversed after treatment with AKT activator SC79. In vivo, the mean volume and weight of tumors in the radiotherapy group were 182 ± 54 mm3 and 0.16 ± 0.03 g. The mean tumor volume and weight in the combined treatment group were 84 ± 42 mm3 and 0.04 ± 0.01 g. CONCLUSION: Knockdown of CENP-N can enhance NPC radiosensitivity by inhibiting AKT/mTOR.


Nasopharyngeal Neoplasms , Proto-Oncogene Proteins c-akt , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/radiotherapy , Proto-Oncogene Proteins c-akt/metabolism , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/radiotherapy , Cell Line, Tumor , Radiation Tolerance/genetics , TOR Serine-Threonine Kinases , Cell Proliferation/radiation effects , Apoptosis/genetics
9.
Curr Pharm Des ; 29(41): 3266-3273, 2023.
Article En | MEDLINE | ID: mdl-37990430

The cochlear structure is highly complex and specific, and its development is regulated by multiple signaling pathways. Abnormalities in cochlear development can lead to different degrees of loss of function. Hair cells (HCs), which are difficult to regenerate in the mature mammalian cochlea, are susceptible to damage from noise and ototoxic drugs, and damage to HCs can cause hearing loss to varying degrees. Notch, a classical developmental signaling molecule, has been shown to be closely associated with embryonic cochlear development and plays an important role in HC regeneration in mammals, suggesting that the Notch signaling pathway may be a potential therapeutic target for cochlear development and hearing impairment due to HC damage. In recent years, the important role of the Notch signaling pathway in the cochlea has received increasing attention. In this paper, we review the role of Notch signaling in cochlear development and HC regeneration, with the aim of providing new research ideas for the prevention and treatment of related diseases.


Cochlea , Hair Cells, Auditory , Humans , Animals , Hair Cells, Auditory/metabolism , Signal Transduction , Regeneration , Noise , Mammals
10.
Cancers (Basel) ; 15(17)2023 Sep 01.
Article En | MEDLINE | ID: mdl-37686660

The ubiquitin-proteasome system is a pivotal intracellular proteolysis process in posttranslational modification. It regulates multiple cellular processes. Deubiquitinating enzymes (DUBs) are a stabilizer in proteins associated with tumor growth and metastasis. However, the link between DUBs and HNSCC remains incompletely understood. In this study, therefore, we identified USP14 as a tumor proliferation enhancer and a substantially hyperactive deubiquitinase in HNSCC samples, implying a poor prognosis prediction. Silencing USP14 in vitro conspicuously inhibited HNSCC cell proliferation and migration. Consistently, defective USP14 in vivo significantly diminished HNSCC tumor growth and lung metastasis compared to the control group. Luciferase assays indicated that HSF1 was downstream from USP14, and an evaluation of the cellular effects of HSF1 overexpression in USP14-dificient mice tumors showed that elevated HSF1 reversed HNSCC growth and metastasis predominantly through the HSF1-HSP pathway. Mechanistically, USP14 encouraged HSF1 expression by deubiquitinating and stabilizing HSF1, which subsequently orchestrated transcriptional activation in HSP60, HSP70, and HSP90, ultimately leading to HNSCC progression and metastasis. Collectively, we uncovered that hyperactive USP14 contributed to HNSCC tumor growth and lung metastasis by reinforcing HSF1-depedent HSP activation, and our findings provided the insight that targeting USP14 could be a promising prognostic and therapeutic strategy for HSNCC.

11.
Int Immunopharmacol ; 122: 110623, 2023 Sep.
Article En | MEDLINE | ID: mdl-37441810

OBJECTIVE: To analyze whether the ratio of total IgE level at week 16 to baseline could be used as an indicator to evaluate clinical efficacy of patients treated with omalizumab. METHODS: We retrospectively analyzed the clinical characteristics of 62 patients with moderate-to-severe allergic rhinitis treated with omalizumab, and compared the pre-and post-treatment nasal visual analog scale (n-VAS) scores, the Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ), Rhinitis Control Assessment Test (RCAT), improvement in nasal congestion, number of acute episodes of rhinitis, and total IgE levels in serum. The relationship between the efficacy of treatment with omalizumab and the change in total IgE levels before and after treatment was further analyzed. RESULTS: This study included 62 patients with moderate-to-severe allergic rhinitis, of which 48 demonstrated significant improvement after 16 weeks of omalizumab therapy; the results of 16 weeks' omalizumab treatment in 14 patients did not show significant improvements in allergic rhinitis symptoms based on RACT scores. After 16 weeks of omalizumab treatment, the RQLQ score decreased from (36.6 ± 13.7) at baseline level to (9.1 ± 12.6) after 16 weeks treatment.The ratio of total IgE at week 16 to total IgE levels at baseline was (2.9 ± 1.4) KU/L in 62 patients. And the ratio of total IgE levels at week 16 to total IgE levels at baseline was (3.3 ± 1.4) KU/L for responders and (1.6 ± 0.5) KU/L for non-responders. CONCLUSION: The ratio of total IgE level at week 16 to baseline significantly correlated with the clinical response to omalizumab in moderate to severe allergic rhinitis patients, when the ratio of total IgE level at week 16 to baseline was ≥2.0. Omalizumab effectively treated patients with moderate-to-severe allergic rhinitis, and improved their quality of life.


Rhinitis, Allergic , Rhinitis , Humans , Omalizumab/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Quality of Life , Retrospective Studies , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/chemically induced , Treatment Outcome , Immunoglobulin E
12.
J Pharm Pharmacol ; 75(9): 1177-1185, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37133348

OBJECTIVES: Regorafenib is an oral multi-kinase inhibitor approved for various metastatic/advanced cancers, and has been investigated in clinical trials in many other tumour entities. The purpose of this study was to evaluate the therapeutic potential of regorafenib for nasopharyngeal carcinoma (NPC). METHODS: Cellular proliferation, survival, apoptosis and colony formation assays were performed and combination index was determined. NPC xenograft tumour models were established. In vitro and In vivo angiogenesis assays were performed. KEY FINDINGS: Regorafenib is effective against a panel of NPC cell lines regardless of cellular origin and genetic profiling while sparing normal nasal epithelial cells. The predominant inhibitory effects of regorafenib in NPC are anchorage-dependent and anchorage-independent growth rather than survival. Apart from tumour cells, regorafenib potently inhibits angiogenesis. Mechanistically, regorafenib inhibits multiple oncogenic pathways including Raf/Erk/Mek and PI3K/Akt/mTOR. Regorafenib decreases Bcl-2 but not Mcl-1 level in NPC cells. The in vitro observations are evident in in vivo NPC xenograft mouse model. The combination of Mcl-1 inhibitor with regorafenib is synergistic in inhibiting NPC growth without causing systemic toxicity in mice. CONCLUSIONS: Our findings also support further clinical investigation of regorafenib and Mcl-1 inhibitor for NPC treatment.


Antineoplastic Agents , Nasopharyngeal Neoplasms , Humans , Animals , Mice , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Xenograft Model Antitumor Assays , Apoptosis
13.
Clin Med Insights Oncol ; 17: 11795549231169099, 2023.
Article En | MEDLINE | ID: mdl-37153904

The most frequent malignant tumor of the head and neck is head and neck squamous cell carcinoma (HNSCC), which has a high frequency, a poor prognosis in the late stages, and subpar therapeutic results. As a result, early HNSCC diagnosis and treatment are urgently needed; however, there are no good diagnostic biomarkers or efficient therapeutic targets at this time. The long-stranded non-coding RNA HOTAIR may be important in the pathogenesis of cancer, according to recent research. By interactions with DNA, RNA, and proteins, it has been demonstrated that HOTAIR, a >200 nucleotide RNA transcript, plays a role in the biological processes of many types of tumor cells, including proliferation, metastasis, and prognosis of HNSCC. Hence, this review discusses HOTAIR's function and molecular mechanisms in HNSCC.

14.
Cancers (Basel) ; 15(8)2023 Apr 20.
Article En | MEDLINE | ID: mdl-37190313

Metabolic reprogramming, which is considered a hallmark of cancer, can maintain the homeostasis of the tumor environment and promote the proliferation, survival, and metastasis of cancer cells. For instance, increased glucose uptake and high glucose consumption, known as the "Warburg effect," play an essential part in tumor metabolic reprogramming. In addition, fatty acids are harnessed to satisfy the increased requirement for the phospholipid components of biological membranes and energy. Moreover, the anabolism/catabolism of amino acids, such as glutamine, cystine, and serine, provides nitrogen donors for biosynthesis processes, development of the tumor inflammatory environment, and signal transduction. The ubiquitin-proteasome system (UPS) has been widely reported to be involved in various cellular biological activities. A potential role of UPS in the metabolic regulation of tumor cells has also been reported, but the specific regulatory mechanism has not been elucidated. Here, we review the role of ubiquitination and deubiquitination modification on major metabolic enzymes and important signaling pathways in tumor metabolism to inspire new strategies for the clinical treatment of cancer.

15.
Am J Transl Res ; 15(2): 1386-1402, 2023.
Article En | MEDLINE | ID: mdl-36915780

BACKGROUND: Efferocytosis refers to the physiological clearance process of apoptotic cells by specialized and non-phagocytes and it is essential in human health and disease. However, there is a lack of comprehensive and objective reports on the current status of efferocytosis research. Here, we visually analyzed the hotspots and trending issues of efferocytosis research with bibliometric analysis. METHODS: Relevant publications were obtained from the Web of Science Core Collection on February 18, 2022. We performed bibliometric and visual analysis using CiteSpace, VOSviewer, Microsoft Excel 2019, and the online Bibliometric platform. RESULTS: A total of 1007 publications on efferocytosis were retrieved. The number of efferocytosis studies increased rapidly from 2006 to 2021. The country that published the most efferocytosis related articles was the USA and the most productive institutions were Harvard University and Brigham and Women's Hospital. The most prolific and influential author was I. Tabas of Columbia University. Frontiers in Immunology published the most research papers on efferocytosis, the while Journal of Immunology had the highest co-citation frequency. The high-frequency keywords were "efferocytosis", "inflammation", "apoptotic cells", "macrophages", and "apoptosis". The analysis of keywords with the strongest citation bursts identified "cell" and "resolution" as emerging hotspots. CONCLUSION: Our results demonstrated that efferocytosis research increased steadily within the past decade. Current efferocytosis studies focus on three main aspects: mechanisms, basic biology, and potential role in disease. The research trends included the cellular players of the efferocytosis process and the role of efferocytosis in inflammation resolution. This bibliometric analysis presented a comprehensive overview of efferocytosis research and provided valuable references and ideas for scholars interested in this field.

16.
Ear Nose Throat J ; 102(4): NP161-NP168, 2023 Apr.
Article En | MEDLINE | ID: mdl-36576436

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a malignancy with a 2 per 100 000 incidence rate in the world. Overall survival (OS) of patients in stage I-II disease is around 80%, whereas OS of patients in stage III-IVB disease drops to 60%, implying the importance of diagnosis to reduce NPC mortality. However, more than 70% patients of NPC were diagnosed at advanced stages (stage III and IV) in clinics, and it definitely contributes to little substantial improvement in the 5-year survival rates although NPC is sensitive to radio-and chemotherapy. Hence, development of novel biomarkers and targetable genes in NPC is eagerly awaited. METHODS: We had analyzed the dataset GSE12452 and found hundreds of genes trans-activated in NPC. Among them, this study focused on PARP-1 binding protein (PARPBP) whose overexpression was also validated in GSE13597 and GSE53819 datasets. RESULTS: Knockdown of PARPBP significantly reduced cell viability in NPC and also identified hundreds of differentially expressed genes including 377 downregulated and 518 upregulated genes in HONE-1 cells with stably knockdown PARPBP. Furthermore, PARPBP might promote cell migration and invasion in NPC through positive regulation of ubiquitin-conjugating enzyme 2C (UBE2C). CONCLUSION: The results demonstrate the aberrant expression of PARPBP in NPC, and imply its importance in nasopharyngeal carcinogenesis which further opens up the possibility of PARPBP as a novel diagnostic biomarker for NPC therapy.


Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Poly(ADP-ribose) Polymerase Inhibitors , Carcinogenesis/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
17.
Front Immunol ; 13: 1045795, 2022.
Article En | MEDLINE | ID: mdl-36389800

Background: In recent decades, dramatic changes in modern environmental exposures and lifestyles have resulted in a steep rise in the prevalence of allergic diseases such as asthma, allergic rhinitis, atopic dermatitis and food allergies. Evidence is mounting that the microbiota plays a crucial role in allergic disorder development and evolution. Therefore, a better understanding of allergic diseases within the context of the microbiota is urgently needed. This work aimed to comprehensively outline general characteristics, research hotspots, evolution routes, and emerging trends in this area. Methods: Relevant publications from January 2002 to December 2021 were obtained from the Web of Science Core Collection on 5 August 2022. Bibliometric and visual analyses were performed using CiteSpace; VOSviewer; an online bibliometric platform; and Microsoft Excel 2019. Results: In total, 2535 documents met the requirements. The annual number of publications has shown rapid growth in the last two decades. The USA, University of California System, and Isolauri E of the University of Turku were the most productive and influential country, institution, and author, respectively. The Journal of Allergy and Clinical Immunology was the most prolific and most cocited journal. High-frequency keywords included "gut microbiota", "asthma", "atopic dermatitis", "children", and "probiotics". Recent studies have focused on "atopic dermatitis", "skin", "asthma", and "probiotics", according to the cocitation analysis of references. Burst detection analysis of keywords showed that "community", "skin microbiome", "microbiome", "Staphylococcus aureus", and "chain fatty acid" were emerging research frontiers, which currently have ongoing bursts. Conclusion: In the last 20 years, studies of the microbiota in allergic diseases have been flourishing, and the themes have been increasing in depth. These findings provide valuable references on the current research hotspots and gaps and development trends in the link between the microbiota and allergic diseases.


Asthma , Dermatitis, Atopic , Gastrointestinal Microbiome , Microbiota , Humans , Bibliometrics , Dermatitis, Atopic/epidemiology , Asthma/epidemiology
18.
Front Cell Neurosci ; 16: 966202, 2022.
Article En | MEDLINE | ID: mdl-36246522

Sensorineural hearing loss (SNHL) is currently a major health issue. As one of the most common neurodegenerative diseases, SNHL is associated with the degradation of hair cells (HCs), spiral ganglion neurons (SGNs), the stria vascularis, supporting cells and central auditory system cells. Autophagy is a highly integrated cellular system that eliminates impaired components and replenishes energy to benefit cellular homeostasis. Etiological links between autophagy alterations and neurodegenerative diseases, such as SNHL, have been established. The hearing pathway is complex and depends on the comprehensive functions of many types of tissues and cells in auditory system. In this review, we discuss the roles of autophagy in promoting and inhibiting hearing, paying particular attention to specific cells in the auditory system, as discerned through research. Hence, our review provides enlightening ideas for the role of autophagy in hearing development and impairment.

19.
J Clin Lab Anal ; 36(10): e24688, 2022 Oct.
Article En | MEDLINE | ID: mdl-36098040

BACKGROUND: Circular RNAs (circRNAs) are implicated in carcinogenesis, including papillary thyroid cancer (PTC). Despite of previous reports regarding the high expression of circPTPRM in PTC, the role and regulatory mechanism remain to be investigated. METHODS: CircPTPRM and miR-885-5p expression were examined, and the effects on cell proliferation, migration, and invasion were also measured. Immunoblotting was performed to evaluate DNA methyltransferase 3A (DNMT3A) and the epithelial-mesenchymal transition (EMT)-associated proteins. RESULTS: CircPTPRM was overexpressed in PTC tissues and cell lines, which predicted poor prognosis. CircPTPRM inhibition significantly alleviated the proliferation, migration, and invasion abilities. It was subsequently confirmed that circPTPRM competed with miR-885-5p for DNMT3A binding. CircPTPRM promoted PTC progression via miR-885-5p/DNMT3A signal axis. CONCLUSION: Our data elucidated that circPTPRM may play an oncogenic role in PTC through circPTPRM/miR-885-5p/DNMT3A axis.


MicroRNAs , Thyroid Neoplasms , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/pathology
20.
Int Immunopharmacol ; 112: 109261, 2022 Nov.
Article En | MEDLINE | ID: mdl-36155282

The aim of this study was to investigate the role and mechanism of Notch2-dependent GATA3+ Treg cells in allergic rhinitis (AR). Samples were collected from patients in the control and AR groups to detect differences in the numbers of GATA3+ Treg cells and their intracellular Notch2 levels. The effects of Notch2 on GATA3+ Treg cell differentiation and function in vitro were detected. AR mice were subjected to adoptive transfer of GATA3+ Treg cells to detect changes in the allergic inflammatory response and Th2 cells. Mice with Treg cell-specific knockout of Notch2 were constructed, and an AR model was established to detect the changes. The number of GATA3+ Treg cells and intracellular Notch2 expression in peripheral blood of the AR group were decreased compared with the controls (P < 0.05), and the number of GATA3+ Treg cells was significantly negatively correlated with the level of allergen-specific IgE (sIgE; P < 0.01). In vitro experiments showed that Notch2 promoted the differentiation and immunosuppressive function of GATA3+ Treg cells, and Notch2 directly promoted GATA3 transcription in Treg cells (P < 0.05). Animal experiments indicated that adoptive transfer of GATA3+ Treg cells reduced the allergic inflammatory response in AR mice (P < 0.05). The number of GATA3+ Treg cells was decreased in gene knockout mice (P < 0.05), and autoimmune inflammation was observed. After modeling, the allergic inflammatory response was further aggravated (P < 0.05). Overall, our findings indicate that Notch2 alleviates AR by specifically increasing GATA3+ Treg cell differentiation. Notch2 expressed in Treg cells is expected to be a new therapeutic target for AR.


Rhinitis, Allergic , Th2 Cells , Mice , Animals , T-Lymphocytes, Regulatory , Disease Models, Animal , Immunoglobulin E , Allergens , Th17 Cells , Mice, Inbred BALB C , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism
...