Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7550, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985658

RESUMEN

Recent studies of secondary electron (SE) emission in scanning transmission electron microscopes suggest that material's properties such as electrical conductivity, connectivity, and work function can be probed with atomic scale resolution using a technique known as secondary electron e-beam-induced current (SEEBIC). Here, we apply the SEEBIC imaging technique to a stacked 2D heterostructure device to reveal the spatially resolved electron density of an encapsulated WSe2 layer. We find that the double Se lattice site shows higher emission than the W site, which is at odds with first-principles modelling of valence ionization of an isolated WSe2 cluster. These results illustrate that atomic level SEEBIC contrast within a single material is possible and that an enhanced understanding of atomic scale SE emission is required to account for the observed contrast. In turn, this suggests that, in the future, subtle information about interlayer bonding and the effect on electron orbitals could be directly revealed with this technique.

2.
Nano Lett ; 21(21): 9180-9186, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34724786

RESUMEN

van der Waals (vdW) magnets have emerged as a tunable platform for exploring a variety of layer-dependent magnetic phenomena. Here we probe the thickness-dependent magnetism of vanadium triiodide (VI3), a material known as a layered ferromagnetic Mott insulator in its bulk form, using magnetic circular dichroism microscopy. Robust ferromagnetism is observed in all thin layers, down to the monolayer limit with large coercive fields. In contrast to known vdW magnets, the Curie temperature shows an anomalous increase as the layer number decreases, reaching a maximum of 60 K in monolayers. Second harmonic generation measurements reveal broken inversion symmetry in exfoliated flakes, down to trilayers. This observation demonstrates that the exfoliated flakes take a layer stacking arrangement that differed from the inversion-symmetric parent bulk counterpart. Our results suggest a coupling effect between magnetic and structural degrees of freedom in VI3 and its potential for engineering layer and twist angle-dependent magnetic phenomena.


Asunto(s)
Imanes , Temperatura
3.
Nat Mater ; 20(6): 818-825, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33649563

RESUMEN

The discovery of intrinsic ferromagnetism in ultrathin two-dimensional van der Waals crystals opens up exciting prospects for exploring magnetism in the ultimate two-dimensional limit. Here, we show that environmentally stable CrSe2 nanosheets can be readily grown on a dangling-bond-free WSe2 substrate with systematically tunable thickness down to the monolayer limit. These CrSe2/WSe2 heterostructures display high-quality van der Waals interfaces with well-resolved moiré superlattices and ferromagnetic behaviour. We find no apparent change in surface roughness or magnetic properties after months of exposure in air. Our calculations suggest that charge transfer from the WSe2 substrate and interlayer coupling within CrSe2 play a critical role in the magnetic order in few-layer CrSe2 nanosheets. The highly controllable growth of environmentally stable CrSe2 nanosheets with tunable thickness defines a robust two-dimensional magnet for fundamental studies and potential applications in magnetoelectronic and spintronic devices.

4.
Nat Mater ; 19(12): 1276-1289, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32948831

RESUMEN

Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin-orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications.

5.
Nat Nanotechnol ; 15(3): 212-216, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31907441

RESUMEN

The coupling between spin and charge degrees of freedom in a crystal gives rise to magneto-optical effects with applications in the sensitive detection of local magnetic order, optical modulation and data storage. In two-dimensional magnets these effects manifest themselves in the large magneto-optical Kerr effect1,2, spontaneous helical light emission3,4 from ferromagnetic (FM) monolayers and electric-field induced Kerr rotation5-7 and giant second-order non-reciprocal optical effects8 in antiferromagnetic (AFM) bilayers. Here we demonstrate the tuning of inelastically scattered light through symmetry control in atomically thin chromium triiodide (CrI3). In monolayers, we found an extraordinarily large magneto-optical Raman effect from an A1g phonon mode due to the emergence of FM order. The linearly polarized, inelastically scattered light rotates by ~40°, more than two orders of magnitude larger than the rotation from the magneto-optical Kerr effect under the same experimental conditions. In CrI3 bilayers, the same phonon mode becomes Davydov-split into two modes of opposite parity, which exhibit divergent selection rules that depend on inversion symmetry and the underlying magnetic order. We demonstrate the magneto-electrical control over these selection rules by activating or suppressing Raman activity for the odd-parity phonon mode and the magneto-optical rotation of scattered light from the even-parity phonon mode. Our work underlines the unique opportunities provided by two-dimensional magnets to control the combined time-reversal and inversion symmetries to manipulate Raman optical selection rules and for exploring emergent magneto-optical effects and spin-phonon coupled physics.

6.
Nature ; 572(7770): 497-501, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31367036

RESUMEN

Layered antiferromagnetism is the spatial arrangement of ferromagnetic layers with antiferromagnetic interlayer coupling. The van der Waals magnet chromium triiodide (CrI3) has been shown to be a layered antiferromagnetic insulator in its few-layer form1, opening up opportunities for various functionalities2-7 in electronic and optical devices. Here we report an emergent nonreciprocal second-order nonlinear optical effect in bilayer CrI3. The observed second-harmonic generation (SHG; a nonlinear optical process that converts two photons of the same frequency into one photon of twice the fundamental frequency) is several orders of magnitude larger than known magnetization-induced SHG8-11 and comparable to the SHG of the best (in terms of nonlinear susceptibility) two-dimensional nonlinear optical materials studied so far12,13 (for example, molybdenum disulfide). We show that although the parent lattice of bilayer CrI3 is centrosymmetric, and thus does not contribute to the SHG signal, the observed giant nonreciprocal SHG originates only from the layered antiferromagnetic order, which breaks both the spatial-inversion symmetry and the time-reversal symmetry. Furthermore, polarization-resolved measurements reveal underlying C2h crystallographic symmetry-and thus monoclinic stacking order-in bilayer CrI3, providing key structural information for the microscopic origin of layered antiferromagnetism14-18. Our results indicate that SHG is a highly sensitive probe of subtle magnetic orders and open up possibilities for the use of two-dimensional magnets in nonlinear and nonreciprocal optical devices.

7.
ACS Nano ; 13(4): 4436-4442, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30865426

RESUMEN

Two-dimensional materials with intrinsic functionality are becoming increasingly important in exploring fundamental condensed matter science and for developing advanced technologies. Bulk crystals that can be exfoliated are particularly relevant to these pursuits as they provide the opportunity to study the role of physical dimensionality and explore device physics in highly crystalline samples and designer heterostructures in a routine manner. Magnetism is a key element in these endeavors; however, relatively few cleavable materials are magnetic and none possess magnetic order at ambient conditions. Here, we introduce Fe5- xGeTe2 as a cleavable material with ferromagnetic behavior at room temperature. We established intrinsic magnetic order at room temperature in bulk crystals ([Formula: see text] = 310 K) through magnetization measurements and in exfoliated, thin flakes ([Formula: see text] ≈ 280 K) using the anomalous Hall effect. Our work reveals Fe5GeTe2 as a prime candidate for incorporating intrinsic magnetism into functional van der Waals heterostructures and devices near room temperature.

8.
Nat Mater ; 17(9): 778-782, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104669

RESUMEN

Discoveries of intrinsic two-dimensional (2D) ferromagnetism in van der Waals (vdW) crystals provide an interesting arena for studying fundamental 2D magnetism and devices that employ localized spins1-4. However, an exfoliable vdW material that exhibits intrinsic 2D itinerant magnetism remains elusive. Here we demonstrate that Fe3GeTe2 (FGT), an exfoliable vdW magnet, exhibits robust 2D ferromagnetism with strong perpendicular anisotropy when thinned down to a monolayer. Layer-number-dependent studies reveal a crossover from 3D to 2D Ising ferromagnetism for thicknesses less than 4 nm (five layers), accompanied by a fast drop of the Curie temperature (TC) from 207 K to 130 K in the monolayer. For FGT flakes thicker than ~15 nm, a distinct magnetic behaviour emerges in an intermediate temperature range, which we show is due to the formation of labyrinthine domain patterns. Our work introduces an atomically thin ferromagnetic metal that could be useful for the study of controllable 2D itinerant ferromagnetism and for engineering spintronic vdW heterostructures5.

9.
Science ; 360(6394): 1214-1218, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29724908

RESUMEN

Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance that is drastically enhanced with increasing CrI3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI3 Our work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.

10.
Nano Lett ; 18(6): 3823-3828, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29756784

RESUMEN

Monolayer valley semiconductors, such as tungsten diselenide (WSe2), possess valley pseudospin degrees of freedom that are optically addressable but degenerate in energy. Lifting the energy degeneracy by breaking time-reversal symmetry is vital for valley manipulation. This has been realized by directly applying magnetic fields or via pseudomagnetic fields generated by intense circularly polarized optical pulses. However, sweeping large magnetic fields is impractical for devices, and the pseudomagnetic fields are only effective in the presence of ultrafast laser pulses. The recent rise of two-dimensional (2D) magnets unlocks new approaches to controlling valley physics via van der Waals heterostructure engineering. Here, we demonstrate the wide continuous tuning of the valley polarization and valley Zeeman splitting with small changes in the laser-excitation power in heterostructures formed by monolayer WSe2 and 2D magnetic chromium triiodide (CrI3). The valley manipulation is realized via the optical control of the CrI3 magnetization, which tunes the magnetic exchange field over a range of 20 T. Our results reveal a convenient new path toward the optical control of valley pseudospins and van der Waals magnetic heterostructures.

11.
Nat Nanotechnol ; 13(7): 544-548, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29686292

RESUMEN

Controlling magnetism via electric fields addresses fundamental questions of magnetic phenomena and phase transitions1-3, and enables the development of electrically coupled spintronic devices, such as voltage-controlled magnetic memories with low operation energy4-6. Previous studies on dilute magnetic semiconductors such as (Ga,Mn)As and (In,Mn)Sb have demonstrated large modulations of the Curie temperatures and coercive fields by altering the magnetic anisotropy and exchange interaction2,4,7-9. Owing to their unique magnetic properties10-14, the recently reported two-dimensional magnets provide a new system for studying these features15-19. For instance, a bilayer of chromium triiodide (CrI3) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition15,16. Here, we demonstrate electrostatic gate control of magnetism in CrI3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states that exhibit spin-layer locking, leading to a linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results allow for the exploration of new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.

12.
Sci Adv ; 3(5): e1603113, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28580423

RESUMEN

The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI3 and a monolayer of WSe2. We observe unprecedented control of the spin and valley pseudospin in WSe2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe2 valley splitting and polarization via flipping of the CrI3 magnetization. The WSe2 photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe2 and the CrI3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.

13.
Nature ; 546(7657): 270-273, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28593970

RESUMEN

Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin-valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect, whereas in trilayer CrI3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering to produce interface phenomena.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...