Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Int J Biol Markers ; 39(1): 31-39, 2024 Mar.
Article En | MEDLINE | ID: mdl-38128926

BACKGROUND: Cancer screening and early detection greatly increase the chances of successful treatment. However, most cancer types lack effective early screening biomarkers. In recent years, natural language processing (NLP)-based text-mining methods have proven effective in searching the scientific literature and identifying promising associations between potential biomarkers and disease, but unfortunately few are widely used. METHODS: In this study, we used an NLP-enabled text-mining system, MarkerGenie, to identify potential stool bacterial markers for early detection and screening of colorectal cancer. After filtering markers based on text-mining results, we validated bacterial markers using multiplex digital droplet polymerase chain reaction (ddPCR). Classifiers were built based on ddPCR results, and sensitivity, specificity, and area under the curve (AUC) were used to evaluate the performance. RESULTS: A total of 7 of the 14 bacterial markers showed significantly increased abundance in the stools of colorectal cancer patients. A five-bacteria classifier for colorectal cancer diagnosis was built, and achieved an AUC of 0.852, with a sensitivity of 0.692 and specificity of 0.935. When combined with the fecal immunochemical test (FIT), our classifier achieved an AUC of 0.959 and increased the sensitivity of FIT (0.929 vs. 0.872) at a specificity of 0.900. CONCLUSIONS: Our study provides a valuable case example of the use of NLP-based marker mining for biomarker identification.


Colorectal Neoplasms , Natural Language Processing , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Polymerase Chain Reaction , Early Detection of Cancer/methods , Feces/chemistry , Colorectal Neoplasms/diagnosis
2.
Environ Sci Technol ; 57(50): 21416-21427, 2023 Dec 19.
Article En | MEDLINE | ID: mdl-38064647

Accurately controlling catalytic activity and mechanism as well as identifying structure-activity-selectivity correlations in Fenton-like chemistry is essential for designing high-performance catalysts for sustainable water decontamination. Herein, active center size-dependent catalysts with single cobalt atoms (CoSA), atomic clusters (CoAC), and nanoparticles (CoNP) were fabricated to realize the changeover of catalytic activity and mechanism in peroxymonosulfate (PMS)-based Fenton-like chemistry. Catalytic activity and durability vary with the change in metal active center sizes. Besides, reducing the metal size from nanoparticles to single atoms significantly modulates contributions of radical and nonradical mechanisms, thus achieving selective/nonselective degradation. Density functional theory calculations reveal evolutions in catalytic mechanisms of size-dependent catalytic systems over different Gibbs free energies for reactive oxygen species generation. Single-atom site contact with PMS is preferred to induce nonradical mechanisms, while PMS dissociates and generates radicals on clusters and nanoparticles. Differences originating from reaction mechanisms endow developed systems with size-dependent selectivity and mineralization for treating actual hospital wastewater in column reactors. This work brings an in-depth understanding of metal size effects in Fenton-like chemistry and guides the design of intelligent catalysts to fulfill the demand of specific scenes for water purification.


Cobalt , Decontamination , Catalysis , Water
3.
Environ Sci Technol ; 57(41): 15667-15679, 2023 10 17.
Article En | MEDLINE | ID: mdl-37801403

The nanoconfinement effect in Fenton-like reactions shows great potential in environmental remediation, but the construction of confinement structure and the corresponding mechanism are rarely elucidated systematically. Herein, we proposed a novel peroxymonosulfate (PMS) activation system employing the single Fe atom supported on mesoporous N-doped carbon (FeSA-MNC, specific surface area = 1520.9 m2/g), which could accelerate the catalytic oxidation process via the surface-confinement effect. The degradation activity of the confined system was remarkably increased by 34.6 times compared to its analogue unconfined system. The generation of almost 100% high-valent iron-oxo species was identified via 18O isotope-labeled experiments, quenching tests, and probe methods. The density functional theory illustrated that the surface-confinement effect narrows the gap between the d-band center and Fermi level of the single Fe atom, which strengthens the charge transfer rate at the reaction interface and reduces the free energy barrier for PMS activation. The surface-confinement system exhibited excellent pollutant degradation efficiency, robust resistance to coexisting matter, and adaptation of a wide pH range (3.0-11.0) and various temperature environments (5-40 °C). Finally, the FeSA-MNC/PMS system could achieve 100% sulfamethoxazole removal without significant performance decline after 10,000-bed volumes. This work provides novel and significant insights into the surface-confinement effect in Fenton-like chemistry and guides the design of superior oxidation systems for environmental remediation.


Iron , Peroxides , Iron/chemistry , Peroxides/chemistry , Oxidation-Reduction , Carbon
4.
Environ Sci Technol ; 57(37): 14071-14081, 2023 09 19.
Article En | MEDLINE | ID: mdl-37681682

Currently, the lack of model catalysts limits the understanding of the catalytic essence. Herein, we report the functional group modification of model single atom catalysts (SACs) with an accurately regulated electronic structure for accelerating the sluggish kinetics of the Fenton-like reaction. The amino-modified cobalt phthalocyanine anchored on graphene (CoPc/G-NH2) shows superior catalytic performance in the peroxymonosulfate (PMS) based Fenton-like reaction with Co mass-normalized pseudo-first-order reaction rate constants (kobs, 0.2935 min-1), which is increased by 4 and 163 times compared to those of CoPc/G (0.0737 min-1) and Co3O4/G (0.0018 min-1). Density functional theory (DFT) calculations demonstrate that the modification of the -NH2 group narrows the gap between the d-band center and the Fermi level of a single Co atom, which strengthens the charge transfer rate at the reaction interface and reduces the free energy barrier for the activation of PMS. Moreover, the scale-up experiment realizes 100% phenol removal at 7200-bed volumes during 240 h continuous operation without obvious decline in catalytic performance. This work provides in-depth insight into the catalytic mechanism of Fenton-like reactions and demonstrates the electronic engineering of SACs as an effective strategy for improving the Fenton-like activity to achieve the goal of practical application.


Electronics , Environmental Pollutants , Catalysis , Cobalt
5.
Environ Sci Technol ; 57(37): 14046-14057, 2023 09 19.
Article En | MEDLINE | ID: mdl-37658810

Precisely identifying the atomic structures in single-atom sites and establishing authentic structure-activity relationships for single-atom catalyst (SAC) coordination are significant challenges. Here, theoretical calculations first predicted the underlying catalytic activity of Fe-NxC4-x sites with diverse first-shell coordination environments. Substituting N with C to coordinate with the central Fe atom induces an inferior Fenton-like catalytic efficiency. Then, Fe-SACs carrying three configurations (Fe-N2C2, Fe-N3C1, and Fe-N4) fabricate facilely and demonstrate that optimized coordination environments of Fe-NxC4-x significantly promote the Fenton-like catalytic activity. Specifically, the reaction rate constant increases from 0.064 to 0.318 min-1 as the coordination number of Fe-N increases from 2 to 4, slightly influencing the nonradical reaction mechanism dominated by 1O2. In-depth theoretical calculations unveil that the modulated coordination environments of Fe-SACs from Fe-N2C2 to Fe-N4 optimize the d-band electronic structures and regulate the binding strength of peroxymonosulfate on Fe-NxC4-x sites, resulting in a reduced energy barrier and enhanced Fenton-like catalytic activity. The catalytic stability and the actual hospital sewage treatment capacity also showed strong coordination dependency. This strategy of local coordination engineering offers a vivid example of modulating SACs with well-regulated coordination environments, ultimately maximizing their catalytic efficiency.


Electronics , Hospitals , Catalysis , Iron , Sewage
6.
Environ Sci Technol ; 57(29): 10804-10815, 2023 07 25.
Article En | MEDLINE | ID: mdl-37431633

Carbon nanotubes (CNTs) and their derivatives have been widely exploited to activate various oxidants for environmental remediation. However, the intrinsic mechanism of CNTs-driven periodate (PI) activation remains ambiguous, which significantly impedes their scientific progress toward practical application. Here, we found that CNTs can strongly boost PI activation for the oxidation of various phenols. Reactive oxygen species analysis, in situ Raman characterization, galvanic oxidation process experiments, and electrochemical tests revealed that CNTs could activate PI to form high-potential metastable intermediates (CNTs-PI*) rather than produce free radicals and 1O2, thereby facilitating direct electron transfer from the pollutants to PI. Additionally, we analyzed quantitative structure-activity relationships between rate constants of phenols oxidation and double descriptors (e.g., Hammett constants and logarithm of the octanol-water partition coefficient). The adsorption of phenols on CNT surfaces and their electronic properties are critical factors affecting the oxidation process. Besides, in the CNTs/PI system, phenol adsorbed the CNT surfaces was oxidized by the CNTs-PI* complexes, and products were mainly generated via the coupling reaction of phenoxyl radical. Most of the products adsorbed and accumulated on the CNT surfaces realized phenol removal from the bulk solution. Such a unique non-mineralization removal process achieved an extremely high apparent electron utilization efficiency of 378%. The activity evaluation and theoretical calculations of CNT derivatives confirmed that the carbonyl/ketonic functional groups and double-vacancy defects of the CNTs were the primary active sites, where high-oxidation-potential CNTs-PI* were formed. Further, the PI species could achieve a stoichiometric decomposition into iodate, a safe sink of iodine species, without the generation of typical iodinated byproducts. Our discovery provides new mechanistic insight into CNTs-driven PI activation for the green future of environmental remediation.


Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Phenol , Oxidation-Reduction , Phenols
7.
Environ Sci Technol ; 57(8): 3334-3344, 2023 02 28.
Article En | MEDLINE | ID: mdl-36734031

Accelerating the rate-limiting Fe3+/Fe2+ circulation in Fenton reactions through the addition of reducing agents (or co-catalysts) stands out as one of the most promising technologies for rapid water decontamination. However, conventional reducing agents such as hydroxylamine and metal sulfides are greatly restricted by three intractable challenges: (1) self-quenching effects, (2) heavy metal dissolution, and (3) irreversible capacity decline. To this end, we, for the first time, introduced redox-active polymers as electron shuttles to expedite the Fe3+/Fe2+ cycle and promote H2O2 activation. The reduction of Fe3+ mainly took place at active N-H or O-H bonds through a proton-coupled electron transfer process. As electron carriers, H atoms at the solid phase could effectively inhibit radical quenching, avoid metal dissolution, and maintain long-term reducing capacity via facile regeneration. Experimental and density functional theory (DFT) calculation results indicated that the activity of different polymers shows a volcano curve trend as a function of the energy barrier, highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap, and vertical ionization potential. Thanks to the appropriate redox ability, polyaniline outperforms other redox-active polymers (e.g., poypyrrole, hydroquinone resin, poly(2,6-diaminopyridine), and hexaazatrinaphthalene framework) with a highest iron reduction capacity up to 5.5 mmol/g, which corresponds to the state transformation from leucoemeraldine to emeraldine. Moreover, the proposed system exhibited high pollutant removal efficiency in a flow-through reactor for 8000 bed volumes without an obvious decline in performance. Overall, this work established a green and sustainable oxidation system, which offers great potential for practical organic wastewater remediation.


Hydrogen Peroxide , Iron , Iron/chemistry , Hydrogen Peroxide/chemistry , Reducing Agents , Electrons , Oxidation-Reduction
8.
Nanomaterials (Basel) ; 13(1)2023 Jan 03.
Article En | MEDLINE | ID: mdl-36616123

Even after decades of development, the widespread application of electrochromic windows (ECW) is still seriously restricted by their high price and inadequate performance associated with structural/fabrication complexity and electrochemical instability. Herein, a simple hybrid electrochromic system based on PFSA (perfluorosulfonic acid)-coated Prussian blue (PB, Fe4III [FeII(CN)6]3) film and Ferricyanide-Ferrocyanide ([Fe(CN)6]4-/[Fe(CN)6]3-)-containing hybrid electrolyte is reported. The PB film and the [Fe(CN)6]4-/[Fe(CN)6]3- couple show near redox potentials well inside the electrochemical window of water, resulting in a low driven voltage (0.4 V for coloring and -0.6 V for bleaching) and a relatively long lifespan (300 cycles with 76.9% transmittance contrast retained). The PFSA layer, as a cation-exchange structure, significantly improves the transmittance modulation amplitude (ΔT: 23.3% vs. 71.9% at a wavelength of 633 nm) and optical memory abilities (ΔT retention: 10.1% vs. 67.0% after 300 s open-circuit rest increases) of the device, by means of preventing the direct contact and charge transfer between the PB film and the [Fe(CN)6]4-/[Fe(CN)6]3- couple. This "hybrid electrolyte + electron barrier layer" design provides an effective way for the construction of simple structured electrochromic devices.

9.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article En | MEDLINE | ID: mdl-36361808

Heterozygous variants in the hepatocyte nuclear factor 1a (HNF1a) cause MODY3 (maturity-onset diabetes of the young, type 3). In this study, we found a case of novel HNF1a p.Gln125* (HNF1a-Q125ter) variant clinically. However, the molecular mechanism linking the new HNF1a variant to impaired islet ß-cell function remains unclear. Firstly, a similar HNF1a-Q125ter variant in zebrafish (hnf1a+/-) was generated by CRISPR/Cas9. We further crossed hnf1a+/- with several zebrafish reporter lines to investigate pancreatic ß-cell function. Next, we introduced HNF1a-Q125ter and HNF1a shRNA plasmids into the Ins-1 cell line and elucidated the molecular mechanism. hnf1a+/- zebrafish significantly decreased the ß-cell number, insulin expression, and secretion. Moreover, ß cells in hnf1a+/- dilated ER lumen and increased the levels of ER stress markers. Similar ER-stress phenomena were observed in an HNF1a-Q125ter-transfected Ins-1 cell. Follow-up investigations demonstrated that HNF1a-Q125ter induced ER stress through activating the PERK/eIF2a/ATF4 signaling pathway. Our study found a novel loss-of-function HNF1a-Q125ter variant which induced ß-cell dysfunction by activating ER stress via the PERK/eIF2a/ATF4 signaling pathway.


Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Animals , Endoplasmic Reticulum Stress/genetics , Zebrafish/genetics , Zebrafish/metabolism , Insulin-Secreting Cells/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism
10.
Diabetol Metab Syndr ; 14(1): 180, 2022 Nov 28.
Article En | MEDLINE | ID: mdl-36443872

BACKGROUND: Patients with diabetes are prone to asymptomatic hypoglycemia (AH) due to diminished ability to perceive the onset of hypoglycemia. However, the actual prevalence and influencing factors of AH in outpatients with type 2 diabetes (T2DM) have not been well investigated. METHODS: A total of 351 outpatients with T2DM underwent glucose monitoring by continuous glucose monitoring system (CGMS) for consecutive 72 h without changing their lifestyle and treatment regimens. Hypoglycemia is defined as a blood glucose level less than 3.9 mmol/L, which was further divided into Level 1 hypoglycemia (blood glucose 3.0-3.9 mmol/L) and Level 2 hypoglycemia (blood glucose < 3.0 mmol/L). Univariate and multivariate logistic regression analyses were used to determine the possible risk factors of AH. RESULTS: In all 351 subjects studied, 137 outpatients (39.0%) were captured AH events, in which Level 1 AH and Level 2 AH accounted for 61.3% and 38.7%, respectively. 85 (62.0%) of the AH patients experienced nocturnal asymptomatic hypoglycemia (NAH) and 25 (18.2%) exclusively NAH. Multivariate logistic regression analysis demonstrated that patients with younger age, lower hemoglobin A1c (HbA1c), and higher systolic blood pressure (SBP) levels were associated with increased risk of AH. While after further grading of AH, male sex and Dipeptidylpeptidase-4 inhibitors (DPP4i) regime were shown to be associated with lower risk of Level 2 AH. CONCLUSIONS: Hypoglycemia unawareness could be frequently observed at either daytime or nighttime, although NAH was more common, in outpatients with T2DM. Relative relax HbA1c targets should be considered for patients who are prone to AH.

11.
BMC Neurosci ; 23(1): 50, 2022 08 09.
Article En | MEDLINE | ID: mdl-35945502

BACKGROUND: Evidences indicate that inflammasome compounds participate in amyotrophic lateral sclerosis (ALS), a fatal progressive motoneuron degenerative disease. Researchers have observed the expressions of nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) related inflammasome components in specific regions of the central nervous system in different ALS models, but the cellular spatiotemporal evolution of this canonical inflammasome pathway and pyroptosis during ALS progression are unclear. METHODS: The spinal cords of hSOD1G93A mice (ALS mice) and age-matched littermates (CON mice) were dissected at pre-symptomatic stage (60 d), early- symptomatic stage (95 d), symptomatic stage (108 d) and late-symptomatic stage (122 d) of the disease. By using Nissl staining, double immunofluorescence labelling, qRT-PCR or western blot, we detected morphology change and the expression, cellular location of GSDMD, NLRP3, caspase-1 and IL-1ß in the ventral horn of lumbar spinal cords over the course of disease. RESULTS: Neural morphology changes and GSDMD+/NeuN+ double positive cells were observed in ventral horn from ALS mice even at 60 d of age, even though there were no changes of GSDMD mRNA and protein expressions at this stage compared with CON mice. With disease progression, compared with age-matched CON mice, increased expressions of GSDMD, NLRP3, activated caspase-1 and IL-1ß were detected. Double immunofluorescence labeling revealed that NLRP3, caspase-1, IL-1ß positive signals mainly localized in ventral horn neurons at pre- and early-symptomatic stages. From symptomatic stage to late-symptomatic stage, robust positive signals were co-expressed in reactive astrocytes and microglia. CONCLUSIONS: Early activation of the canonical NLRP3 inflammasome induced pyroptosis in ventral horn neurons, which may participate in motor neuron degeneration and initiate neuroinflammatory processes during ALS progression.


Amyotrophic Lateral Sclerosis , Inflammasomes , Amyotrophic Lateral Sclerosis/genetics , Animals , Caspases , Disease Models, Animal , Inflammasomes/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Superoxide Dismutase , Superoxide Dismutase-1/genetics
12.
Environ Int ; 168: 107453, 2022 Oct.
Article En | MEDLINE | ID: mdl-35961271

Herein, a highly efficient electro-peroxone (E-peroxone) process with graphite felt as ozone diffusion electrode (ODE) was developed for the synchronous removal of pharmaceutical contaminants and inactivation of pathogenic microorganisms in real hospital wastewater. Under optimal conditions, the total organic carbon (TOC) removal rate of real hospital wastewater could reach 93.9%. Importantly, 126 pharmaceutical compounds (antibiotics, antivirals, analgesics, antiepileptics, hormones, and others) were determined in hospital wastewater by using ultra performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS). 110 pharmaceutical compounds could be efficiently degraded in E-peroxone system. Concurrently, the microbial community analysis through high-throughput sequencing showed that E-peroxone process exhibited an excellent disinfection effect in real hospital wastewater. Escherichia coli as a bacterial indicator could be completely inactivated in E-peroxone process·H2O2 and hydroxyl radical (OH) were found in E-peroxone system based on the results of chemical probe experiments and electron paramagnetic resonance (EPR) analysis. The in-situ generation of H2O2 from cathodic oxygen reduction in ODE can react with ozone to produce OH, and realize high efficiencies for the elimination of pharmaceutical and sterilization. This work established a green and effective way without extra addition of chemical reagents for high-efficiency treatment of real hospital wastewater.

14.
Sci Rep ; 12(1): 4226, 2022 03 10.
Article En | MEDLINE | ID: mdl-35273323

Our aim was to assess effects of breast-feeding (BF) in the association between large-for-gestational age (LGA) and body mass index (BMI) trajectories on childhood overweight from 1 to 4 years old. A total of 1649 healthcare records of mother-child pairs had detailed records of feeding practices and were included in this retrospective cohort study. Data were available in Medical Birth Registry of Xiamen between January 2011 and March 2018. Linear and logistic regression models were used to access the difference between BF and no-BF group. For offspring were LGA and BF was significantly associated with a lower BMI Z-score from 1 to 4 years old after adjustment confounders in Model 1 to 3 [difference in BMI Z-score in Model 1: estimated ß: -0.07 [95%CI: -0.13 to -0.01]; Model 2: estimated ß: -0.07 (-0.13 to -0.004); Model 3: estimated ß: -0.06 (-0.12 to -0.001); P = 0.0221, 0.0371, 0.0471]. A significantly lower risk of childhood overweight was observed in Model 1 [odd ratio (OR): 0.85 (95%CI, 0.73 to 1.00)], P = 0.0475) with adjustment for maternal pre-pregnancy BMI. Furthermore, Model 2 and Model 3 showed LGA-BF infants had a lower risk for childhood overweight then LGA-no-BF infants [OR: 0.87 and 0.87 (95%CI, 0.73 to 1.03; 0.74 to 1.03)], however, there was no statistical significance (P = 0.1099, and 0.1125)]. BF is inversely related to BMI Z-score and risk for overweight in children were LGA from 1 to 4 years old. Adjustment for maternal pre-pregnancy BMI, the protective association between BF and childhood overweight was more significant.


Diabetes, Gestational , Infant, Newborn, Diseases , Pediatric Obesity , Birth Weight , Body Mass Index , Breast Feeding , Child, Preschool , Female , Gestational Age , Humans , Infant , Infant, Newborn , Overweight/epidemiology , Pediatric Obesity/epidemiology , Pregnancy , Retrospective Studies , Risk Factors , Weight Gain
15.
Water Res ; 215: 118243, 2022 May 15.
Article En | MEDLINE | ID: mdl-35248907

Current research focuses on introducing additional energy or reducing agents to directly accelerate the formation of Fe(IV) and Fe(V) from ferrate (Fe(VI)), thereby ameliorating the oxidation activity of Fe(VI). Interestingly, this study discovers that colloid manganese dioxide (cMnO2) can remarkably promote Fe(VI) to remove various contaminants via a novel surface-promoted pathway. Many lines of evidence suggest that high-valent Fe species are the primary active oxidants in the cMnO2-Fe(VI) system, however, the underlying activation mechanism for the direct reduction of Fe(VI) by cMnO2 to generate Fe(IV)/Fe(V) is eliminated. Further analysis found that Fe(VI) can combine with the vacancies in cMnO2 to form precursor complex (cMnO2-Fe(VI)*), which possesses a higher oxidation potential than Fe(VI). This makes cMnO2-Fe(VI)* is more vigorous to oxidize pollutants with electron-rich moieties through the electron transfer step than alone Fe(VI), resulting in producing Fe(V) and Fe(IV). The products of Fe(VI) decay (i.e., Fe(II), Fe(III), and H2O2) are revealed to play vital roles in further boosting the formation of Fe(IV) and Fe(V). Most importantly, the catalytic stability of cMnO2 in complicated waters is superior to popular reductants, suggesting its outstanding application potential. Taken together, this work provides a full-scale insight into the surface-promoted mechanism in Fe(VI) oxidation process, thus providing an efficient and green strategy for Fe(VI) activation.


Water Pollutants, Chemical , Water Purification , Colloids , Ferric Compounds , Hydrogen Peroxide , Iron , Manganese Compounds , Oxidation-Reduction , Oxides , Water Pollutants, Chemical/analysis , Water Purification/methods
16.
Nanomicro Lett ; 14(1): 82, 2022 Mar 25.
Article En | MEDLINE | ID: mdl-35334003

HIGHLIGHTS: High-performance Zn||I2 batteries were established by coating zeolite protecting layers. The Zn2+-conductive layer suppresses I3- shuttling, Zn corrosion/dendrite growth. The Zeolite-Zn||I2 batteries achieve long lifespan (91.92% capacity retention after 5600 cycles), high coulombic efficiencies (99.76% in average) and large capacity (203-196 mAh g-1 at 0.2 A g-1) simultaneously. The intrinsically safe Zn||I2 battery, one of the leading candidates aiming to replace traditional Pb-acid batteries, is still seriously suffering from short shelf and cycling lifespan, due to the uncontrolled I3--shuttling and dynamic parasitic reactions on Zn anodes. Considering the fact that almost all these detrimental processes terminate on the surfaces of Zn anodes, modifying Zn anodes' surface with protecting layers should be one of the most straightforward and thorough approaches to restrain these processes. Herein, a facile zeolite-based cation-exchange protecting layer is designed to comprehensively suppress the unfavored parasitic reactions on the Zn anodes. The negatively-charged cavities in the zeolite lattice provide highly accessible migration channels for Zn2+, while blocking anions and electrolyte from passing through. This low-cost cation-exchange protecting layer can simultaneously suppress self-discharge, anode corrosion/passivation, and Zn dendrite growth, awarding the Zn||I2 batteries with ultra-long cycle life (91.92% capacity retention after 5600 cycles at 2 A g-1), high coulombic efficiencies (99.76% in average) and large capacity (203-196 mAh g-1 at 0.2 A g-1). This work provides a highly affordable approach for the construction of high-performance Zn-I2 aqueous batteries.

17.
J Hazard Mater ; 424(Pt D): 127641, 2022 02 15.
Article En | MEDLINE | ID: mdl-34742611

Among all homogeneous catalysts, cobalt ions show the highest catalytic performance for the activation of peroxymonosulfate (PMS). Herein, we report a Co2+/PMS/H3BO3 system that can effectively generate reactive oxygen species (ROS) with ultra-low Co2+ dosage (5 µg/L). Co2+/PMS/H3BO3 system showed ultrafast reactivity and wide applicability for various pollutants. Sulfamethoxazole (SMX, 2 mg/L) could be completely removed within 5 min, and the corresponding kobs reached up to 1.1239 min-1. The introduction of H3BO3 significantly promoted the generation of ROS. The turnover frequency (TOF) calculated through dividing kobs by the cobalt ions concentration is as high as 224.78 min-1, which is much higher than most of the current research. Through a series of theoretical and experimental analyses, the complex of H2BO3--MS (HSO5B(OH)3-) was inferred to be the key substance that led to the excellent performance of the system. This work provides new insights into the Co2+/PMS system in the presence of borate buffer.


Borates , Cobalt , Peroxides , Sulfamethoxazole
18.
BMC Gastroenterol ; 21(1): 431, 2021 Nov 18.
Article En | MEDLINE | ID: mdl-34794374

PURPOSE: The aim of the study is to explore the independent association of free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH) with hepatic steatosis and insulin resistance. METHODS: A cross-sectional study of 88 overweight/obese adults who underwent anthropometric measurements [BMI, waist circumference (WC) and waist-to-height ratio (WHtR)], hepatic steatosis assessment (FibroScan) and thyroid-related hormones tests was conducted from 2018 to 2020 in Xiamen, China. RESULTS: Subjects with increasing tertiles of FT3 showed significantly higher levels of controlled attenuation parameter (CAP) ((295.4 ± 44.1, 290.1 ± 68.2 and 331.7 ± 43.6 (dB/m) for tertile 1-3, respectively, p = 0.007) and fatty liver index (FLI) score (47.7 (33.9-60.8), 61.5 (45.1-88.9) and 90.5 (84.5-94.8), respectively, p < 0.001). FT3 significantly and positively correlated with obesity index (BMI, WC, and WHtR), homeostatic model assessment of insulin resistance (HOMA-IR) and hepatic steatosis (CAP and FLI). Multivariable linear regression analyses with adjustment for potential confounding factors showed FT3 was independently associated with BMI (regression coefficient (ß (95%CI): 0.024 (0.004-0.043), p = 0.020), HOMA-IR (ß (95%CI): 0.091 (0.007-0.174), p = 0.034), CAP (ß (95%CI): 25.45 (2.59-48.31), p = 0.030) and FLI (ß (95%CI): 0.121 (0.049-0.194), p = 0.001). Neither FT4 nor TSH was significantly associated with any indicators of obesity, insulin resistance or hepatic steatosis. CONCLUSIONS: Increased FT3, but not FT4 or TSH, was independently associated with higher risks of hepatic steatosis and insulin resistance in euthyroid overweight/obese Chinese adults. Trial registration Registration is not applicable for our study.


Fatty Liver , Insulin Resistance , Adult , China , Cross-Sectional Studies , Humans , Obesity/complications , Overweight/complications , Thyroid Gland , Thyroid Hormones , Thyrotropin , Thyroxine , Triiodothyronine
19.
ACS Appl Mater Interfaces ; 13(21): 24756-24764, 2021 Jun 02.
Article En | MEDLINE | ID: mdl-34004110

Zinc-iodine (Zn/I2) batteries are recognized as a kind of leading candidate for large-scale energy storage systems, owing to the high-capacity dissolution-deposition reactions on both electrodes. Nevertheless, the lifespan of Zn/I2 batteries is severely limited by the uncontrolled shuttling of triiodide ions (I3-) and unfavorable side reactions on Zn anodes. Herein, an alginate-based polyanionic hydrogel electrolyte is designed and synthesized by ion exchange and Zn2+-induced cross-linking. The immobile, negatively charged polyanionic chains on the hydrogel skeleton effectively block I3- from shuttling, while simultaneously transporting cations that are indispensable for battery chemistry. Moreover, this hydrogel can also enhance the cycling durability of Zn anodes by alleviating Zn's dendritic growth and corrosion reactions, due to the homogenized Zn2+ flux and reduced interfacial contact between free water and metallic Zn. Consequently, this alginate-based hydrogel electrolyte enables stable Zn plating/stripping for over 600 h at 2 mA cm-2 and 2 mAh cm-2 (corresponding to 10% depth of discharge). Serving as an electrolyte for Zn/I2 full batteries, this hydrogel helps the battery to achieve a high capacity of 183.4 mAh g-1 (capacity retention = 97.6%) after even 200 cycles at 0.2 A g-1, 77.4% higher than that of the traditional ZnSO4 aqueous counterpart (residual capacity = 41.5 mAh g-1). This work indicates the promising potential of electrolyte design on the performance improvement of aqueous Zn/I2 batteries.

20.
J Hazard Mater ; 416: 125809, 2021 08 15.
Article En | MEDLINE | ID: mdl-33865112

Recently, an increasing number of works have been reported about iron-based materials applied as catalysts in peroxide activation processes to degrade pollutants in water. Iron-based catalysts include synthetic and natural iron-based materials. However, some synthetic iron-based materials are difficult to scale up in the practical applications due to high cost and serious secondary environmental pollution. In contrast, natural iron-based minerals are more available and cheaper, and also hold a great promise in peroxide activation processes for pollutant degradation. In this review, we classify different natural iron-based materials into two categories: iron oxide minerals (e.g., magnetite, hematite, and goethite,), and iron sulfide minerals (e.g., pyrite and pyrrhotite,). Their overview applications in peroxide activation processes for pollutant degradation in wastewaters are systematically summarized for the first time. Moreover, the peroxide activation mechanisms induced by natural minerals, and the influences of reaction conditions in different systems are discussed. Finally, the application prospects and existing drawbacks of natural iron-based minerals in the peroxide activation processes for wastewater treatment are proposed. We believe this review can shed light on the application of natural iron-based minerals in peroxide activation processes and present better perspectives for future researches.


Hydrogen Peroxide , Peroxides , Iron , Minerals , Oxidation-Reduction
...