Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicology ; 31(1): 75-84, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34698974

RESUMEN

Additive metals are continuously released into the environment during the photo-degradation of plastics into microplastics, but this phenomenon has not been reported by many studies. Herein, we investigated the surface morphology changes along with the release of additive metals (Cr, Mn, Fe, Co, Cu, Zn, and Pb) during the degradation of three types of plastics, i.e., polypropylene (PP), polyethylene terephthalate (PET) and polyvinyl chloride (PVC), under UV light irradiation. FTIR results showed that 168 days of UV-irradiation led to the primary degradation of each plastic sample. The metal release could be found after 70 days UV-irradiation. The rate of metal release for the three plastics showed the following order: PP > PET ≈ PVC. In addition, the distribution and concentrations of the metals in the plastic could influence the release characteristics of each metal. Low release rate of Fe symbolized by the total metal release in the range of 4.28 ~10.27% as evident from the results of the primary degradation experiment, indicated the release of Fe occurring in the late stage of the plastic degradation or even in the microplastics-formation stage. As for the release of Co from PP, it was far lower than that of the other elements (0.35%), showing the same release characteristics as that of Fe. On the contrary, the release ratio of Pb from PP was 78.89% and was mainly concentrated in the early stage of the plastic degradation. The results help understanding the release behavior of the additive metals during the degradation of typical plastics under ultraviolet light irradiation.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Metales , Microplásticos , Cloruro de Polivinilo , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
2.
Materials (Basel) ; 7(1): 218-231, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-28788452

RESUMEN

A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS)-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...