Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51
1.
Elife ; 132024 Apr 04.
Article En | MEDLINE | ID: mdl-38573820

Thrombocytopenia caused by long-term radiotherapy and chemotherapy exists in cancer treatment. Previous research demonstrates that 5-Hydroxtrayptamine (5-HT) and its receptors induce the formation of megakaryocytes (MKs) and platelets. However, the relationships between 5-HT1A receptor (5-HTR1A) and MKs is unclear so far. We screened and investigated the mechanism of vilazodone as a 5-HTR1A partial agonist in promoting MK differentiation and evaluated its therapeutic effect in thrombocytopenia. We employed a drug screening model based on machine learning (ML) to screen the megakaryocytopoiesis activity of Vilazodone (VLZ). The effects of VLZ on megakaryocytopoiesis were verified in HEL and Meg-01 cells. Tg (itga2b: eGFP) zebrafish was performed to analyze the alterations in thrombopoiesis. Moreover, we established a thrombocytopenia mice model to investigate how VLZ administration accelerates platelet recovery and function. We carried out network pharmacology, Western blot, and immunofluorescence to demonstrate the potential targets and pathway of VLZ. VLZ has been predicted to have a potential biological action. Meanwhile, VLZ administration promotes MK differentiation and thrombopoiesis in cells and zebrafish models. Progressive experiments showed that VLZ has a potential therapeutic effect on radiation-induced thrombocytopenia in vivo. The network pharmacology and associated mechanism study indicated that SRC and MAPK signaling are both involved in the processes of megakaryopoiesis facilitated by VLZ. Furthermore, the expression of 5-HTR1A during megakaryocyte differentiation is closely related to the activation of SRC and MAPK. Our findings demonstrated that the expression of 5-HTR1A on MK, VLZ could bind to the 5-HTR1A receptor and further regulate the SRC/MAPK signaling pathway to facilitate megakaryocyte differentiation and platelet production, which provides new insights into the alternative therapeutic options for thrombocytopenia.


Thrombocytopenia , Vilazodone Hydrochloride , Mice , Animals , Vilazodone Hydrochloride/adverse effects , Vilazodone Hydrochloride/metabolism , Zebrafish , Receptor, Serotonin, 5-HT1A/metabolism , Blood Platelets/metabolism , Thrombocytopenia/drug therapy , Thrombocytopenia/metabolism , Megakaryocytes/metabolism , Thrombopoiesis
2.
Int J Biol Sci ; 20(6): 2236-2260, 2024.
Article En | MEDLINE | ID: mdl-38617546

Thrombocytopenia, a prevalent hematologic challenge, correlates directly with the mortality of numerous ailments. Current therapeutic avenues for thrombocytopenia are not without limitations. Here, we identify genistin, an estrogen analogue, as a promising candidate for thrombocytopenia intervention, discovered through AI-driven compound library screening. While estrogen's involvement in diverse biological processes is recognized, its role in thrombopoiesis remains underexplored. Our findings elucidate genistin's ability to enhance megakaryocyte differentiation, thereby augmenting platelet formation and production. In vivo assessments further underscore genistin's remedial potential against radiation-induced thrombocytopenia. Mechanistically, genistin's efficacy is attributed to its direct interaction with estrogen receptor ß (ERß), with subsequent activation of both ERK1/2 and the Akt signaling pathways membrane ERß. Collectively, our study positions genistin as a prospective therapeutic strategy for thrombocytopenia, shedding light on novel interplays between platelet production and ERß.


Isoflavones , Thrombocytopenia , Humans , Estrogen Receptor beta/genetics , Thrombocytopenia/drug therapy , Small Molecule Libraries
3.
Heliyon ; 10(3): e24336, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38318072

Background: Qing-Jin-Hua-Tan decoction (QJHTD) is a classic traditional Chinese medicine (TCM) prescription that first appeared in the ancient book Yi-Xue-Tong-Zhi. QJHTD has shown effectiveness for treating chronic obstructive pulmonary disease (COPD), although its mechanisms of action are still perplexing. The molecular mechanisms underlying the curative effects of QJHTD on COPD is worth exploring. Methods: In vitro antiapoptotic and antiinflammatory activities of QJHTD were evaluated using cell viability, proliferation, apoptosis rate, and expression of IL-1ß and TNF-α in BEAS-2B and RAW264.7 cells challenged with cigarette smoke (CS) extract (CSE) and lipopolysaccharide (LPS). In vivo therapeutic activities of QJHTD were evaluated using respiratory parameters (peak inspiratory flow (PIFb) and peak expiratory flow (PEFb) values), histopathology (mean linear intercept, MLI), and proinflammatory cytokine (IL-1ß and TNF-α) and cleaved caspase-3 (c-Casp3) levels in the lung tissue of CS-LPS-exposed BALB/c mice. Network pharmacology-based prediction, transcriptomic analysis, and metabolic profiling were employed to investigate the signaling molecules and metabolites pertinent to the anti-COPD action of QJHTD. Results: Increased cell viability and proliferation with decreased apoptosis rate and proinflammatory cytokine expression were noted after QJHTD intervention. QJHTD administration elevated PEFb and PIFb values, reduced MLI, and inhibited IL-1ß, TNF-α, and c-Casp3 expression in vivo. Integrated network pharmacology-transcriptomics revealed that suppressing inflammatory signals (IL-1ß, IL-6, TNF, IκB-NF-κB, TLR, and MAPK) and apoptosis contributed to the anti-COPD property of QJHTD. Metabolomic profiling unveiled prominent roles for the suppression of apoptosis and sphingolipid (SL) metabolism and the promotion of choline (Ch) metabolism in the anti-COPD effect of QJHTD. Integrative transcriptomics-metabolomics unraveled the correlation between SL metabolism and apoptosis. In silico molecular docking revealed that acacetin, as an active compound in QJHTD, could bind with high affinity to MEK1, MEK2, ERK1, ERK2, Bcl2, NF-κB, and alCDase target proteins. Conclusion: The therapeutic effect of QJHTD on COPD is dependent on regulating inflammatory signals and apoptosis-directed SL metabolism. These findings provide deeper insights into the molecular mechanism of action of QJHTD against COPD and justify its theoretical promise in novel pharmacotherapy for this multifactorial disease.

4.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 13.
Article En | MEDLINE | ID: mdl-38256942

Interleukins, a diverse family of cytokines produced by various cells, play crucial roles in immune responses, immunoregulation, and a wide range of physiological and pathological processes. In the context of megakaryopoiesis, thrombopoiesis, and platelet function, interleukins have emerged as key regulators, exerting significant influence on the development, maturation, and activity of megakaryocytes (MKs) and platelets. While the therapeutic potential of interleukins in platelet-related diseases has been recognized for decades, their clinical application has been hindered by limitations in basic research and challenges in drug development. Recent advancements in understanding the molecular mechanisms of interleukins and their interactions with MKs and platelets, coupled with breakthroughs in cytokine engineering, have revitalized the field of interleukin-based therapeutics. These breakthroughs have paved the way for the development of more effective and specific interleukin-based therapies for the treatment of platelet disorders. This review provides a comprehensive overview of the effects of interleukins on megakaryopoiesis, thrombopoiesis, and platelet function. It highlights the potential clinical applications of interleukins in regulating megakaryopoiesis and platelet function and discusses the latest bioengineering technologies that could improve the pharmacokinetic properties of interleukins. By synthesizing the current knowledge in this field, this review aims to provide valuable insights for future research into the clinical application of interleukins in platelet-related diseases.

5.
Nano Lett ; 24(4): 1415-1422, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38232178

Charge and spin are two intrinsic attributes of carriers governing almost all of the physical processes and operation principles in materials. Here, we demonstrate the manipulation of electronic and spin states in designed Co-quantum dot/WS2 (Co-QDs/WS2) heterostructures by employing a metal-dielectric composite substrate and via scanning tunneling microscope. By repeatedly scanning under a unipolar bias, switching the bias polarity, or applying a pulse through nonmagnetic or magnetic tips, the Co-QDs morphologies exhibit a regular and reproducible transformation between bright and dark dots. First-principles calculations reveal that these tunable characters are attributed to the variation of density of states and the transition of magnetic anisotropy energy induced by carrier accumulation. It also suggests that the metal-dielectric composite substrate is successful in creating the interfacial potential for carrier accumulation and realizes the electrically controllable modulations. These results will promote the exploration of electron-matter interactions in quantum systems and provide an innovative way to facilitate the development of spintronics.

6.
J Inflamm Res ; 16: 5915-5936, 2023.
Article En | MEDLINE | ID: mdl-38084105

Objective: The mechanism of ankylosing spondylitis (AS) remains unclear, and clinical diagnosis still pose challenges. This study aims to explore potential regulatory mechanisms underlying AS and develop a novel diagnostic model. Methods: Interspinous ligament (ISL) tissues were collected from control samples and ankylosing spondylitis with kyphotic deformity (AS-KD) samples during surgery, followed by high-throughput sequencing. By integrating gene expression profiles from publicly available AS peripheral blood (PB) samples, differentially expressed immune genes (DEIRGs) were identified. Through gene set enrichment analysis(GSEA), gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, the regulatory mechanisms of the immune gene family in AS were explored. A diagnostic model for AS were constructed and validated it externally. Additionally, a competing endogenous RNA(ceRNA)-protein regulatory network was built for key immune genes. Results: Adrenergic receptor beta 2 (ADRB2) was downregulated in both ISL and PB samples. It was enriched in common pathways, including natural killer cell-mediated cytotoxicity, B cell receptor signaling pathway, Th1 and Th2 cell differentiation. Using the LASSO algorithm, 12 DEIRGs were identified, including the downregulated ADRB2. Based on the DEIRGs family, a novel diagnostic model was constructed with an AUC of 0.87 for the validation set and 0.7 for the test set. The AUC for ADRB2 alone was 0.75. Subgrouping AS based on these immune genes revealed a close association with neutrophils. GSEA and KEGG analysis of ISL, PB, and subgrouping of AS showed that ADRB2 may be involved in regulating the T cell receptor signaling pathway. Immune infiltration analysis indicated a decrease in CD8+ T cell infiltration, which was positively correlated with ADRB2. ADRB2 in AS-KD was regulated by multiple ceRNA-protein (lncRNA-[hsa-miR-513a-5p]-mRNA-protein). Conclusion: The immune gene family, especially ADRB2, participates in the mechanism and contributes to the diagnosis of AS.

7.
World J Orthop ; 14(8): 641-650, 2023 Aug 18.
Article En | MEDLINE | ID: mdl-37662667

BACKGROUND: East Asia is the most dynamic region in the world and includes three major countries: Japan, South Korea and China. Due to rapid economic growth, orthopedics research in East Asia has achieved great advances during the past 10 years. However, the current status of orthopedic research in Japan, South Korea and China is still unclear. AIM: To understand the current status of orthopedic research in Japan, South Korea, and China. METHODS: Journals listed in the ''Orthopedics'' category of Science Citation Index Expanded subject categories were included. The PubMed and Web of Knowledge electronic databases were searched to identify scientific publications from the selected journals written by researchers from Japan, South Korea and China. A systematic analysis was conducted to analyze orthopedic research articles published in the three countries based on the number of articles, study design, impact factors (IFs) and citations. Furthermore, we also ranked the top 10 countries worldwide with the highest publications in the past 10 years. Additionally, we ranked the top 10 countries with the highest number of publications in the world in the past 10 years. Statistical analyses were performed using SPSS 20.0 software (SPSS Inc., Chicago, IL, United States), and statistical results are given in Tables and Figures. The Kruskal-Wallis test and the Mann-Whitney test were used to detect differences between countries. The tendency regarding the number of articles was analyzed by curvilinear regression. A two-tailed P < 0.05 was considered significant. RESULTS: From 2012-2021, a total of 144518 articles were published in the 86 selected orthopedic journals. During this period, the number of worldwide published orthopedic articles has shown an annual increasing trend. A total of 27164 orthopedic research articles were published by Japan, South Korea and China during the past 10 years; 44.32% were from China, 32.98% were from Japan, and 22.70% were from South Korea. From 2012 to 2021, the annual number of articles markedly increased in each of the three countries. Over time, the worldwide share of articles increased substantially in South Korea (3.37% to 6.53%, P < 0.001) and China (5.29% to 9.61%, P < 0.001). However, the worldwide share of articles significantly decreased in Japan (5.22% to 3.80%, P < 0.001). The annual total IFs of articles from China were well above those of articles from Japan and South Korea (36597.69 vs 27244.48 vs 20657.83, P < 0.05). There was no significant difference among the articles in the top 10 high-IF orthopedics journals published from those three countries [South Korea (800) > China (787) > Japan (646), P > 0.05]. CONCLUSION: Over the past 10 years, China's scientific publications in orthopedic journals have shown an increasing trend. Considering the relative scale of the populations, Japan and South Korea have outpaced China with respect to quality.

8.
Adv Sci (Weinh) ; 10(28): e2302813, 2023 Oct.
Article En | MEDLINE | ID: mdl-37530215

Memristors with nonvolatile storage performance and simulated synaptic functions are regarded as one of the critical devices to overcome the bottleneck in traditional von Neumann computer architecture. 2D van der Waals heterostructures have paved a new way for the development of advanced memristors by integrating the intriguing features of different materials and offering additional controllability over their optoelectronic properties. Herein, planar memristors with both electrical and optical tunability based on ReS2 /WS2 van der Waals heterostructure are demonstrated. The devices show unique unipolar nonvolatile behavior with high Roff /Ron ratio of up to 106 , desirable endurance, and retention, which are superior to pure ReS2 and WS2 devices. When decreasing the channel length, the set voltage can be notably reduced while the high Roff /Ron ratios are retained. By introducing electrostatic doping through the gate control, the set voltage can be tailored in a wide range from 4.50 to 0.40 V. Furthermore, biological synaptic functions and plasticity, including spike rate-dependent plasticity and paired-pulse facilitation, are successfully realized. By employing optical illumination, resistive switching can also be modulated, which is dependent on the illumination energy and power. A mechanism related to the interlayer charge transfer controlled by optical excitation is revealed.

9.
Phytother Res ; 37(10): 4639-4654, 2023 Oct.
Article En | MEDLINE | ID: mdl-37394882

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder without an effective cure. Natural products, while showing promise as potential therapeutics for AD, remain underexplored. AIMS: This study was conducted with the goal of identifying potential anti-AD candidates from natural sources using Caenorhabditis elegans (C. elegans) AD-like models and exploring their mechanisms of action. MATERIALS & METHODS: Our laboratory's in-house herbal extract library was utilized to screen for potential anti-AD candidates using the C. elegans AD-like model CL4176. The neuroprotective effects of the candidates were evaluated in multiple C. elegans AD-like models, specifically targeting Aß- and Tau-induced pathology. In vitro validation was conducted using PC-12 cells. To investigate the role of autophagy in mediating the anti-AD effects of the candidates, RNAi bacteria and autophagy inhibitors were employed. RESULTS: The ethanol extract of air-dried fruits of Luffa cylindrica (LCE), a medicine-food homology species, was found to inhibit Aß- and Tau-induced pathology (paralysis, ROS production, neurotoxicity, and Aß and pTau deposition) in C. elegans AD-like models. LCE was non-toxic and enhanced C. elegans' health. It was shown that LCE activates autophagy and its anti-AD efficacy is weakened with the RNAi knockdown of autophagy-related genes. Additionally, LCE induced mTOR-mediated autophagy, reduced the expression of AD-associated proteins, and decreased cell death in PC-12 cells, which was reversed by autophagy inhibitors (bafilomycin A1 and 3-methyladenine). DISCUSSION: LCE, identified from our natural product library, emerged as a valuable autophagy enhancer that effectively protects against neurodegeneration in multiple AD-like models. RNAi knockdown of autophagy-related genes and cotreatment with autophagy inhibitors weakened its anti-AD efficacy, implying a critical role of autophagy in mediating the neuroprotective effects of LCE. CONCLUSION: Our findings highlight the potential of LCE as a functional food or drug for targeting AD pathology and promoting human health.


Alzheimer Disease , Caenorhabditis elegans Proteins , Luffa , Neuroprotective Agents , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Luffa/metabolism , Amyloid beta-Peptides/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Fruit/metabolism , Autophagy , Disease Models, Animal , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/pharmacology
10.
J Orthop Surg (Hong Kong) ; 31(2): 10225536231177102, 2023.
Article En | MEDLINE | ID: mdl-37288764

BACKGROUND: Metastasis is one of the most significant prognostic factors in osteosarcoma (OS). The goal of this study was to construct a clinical prediction model for OS patients in a population cohort and to evaluate the factors influencing the occurrence of pulmonary metastasis. METHODS: We collected data from 612 patients with osteosarcoma (OS), and 103 clinical indicators were collected. After the data were filtered, the patients were randomly divided into training and validation cohorts by using random sampling. The training cohort included 191 patients with pulmonary metastasis in OS and 126 patients with non-pulmonary metastasis, and the validation cohort included 50 patients with pulmonary metastasis in OS and 57 patients with non-pulmonary metastasis. Univariate logistics regression analysis, LASSO regression analysis and multivariate logistic regression analysis were performed to identify potential risk factors for pulmonary metastasis in patients with osteosarcoma. A nomogram was developed that included risk influencing variables selected by multivariable analysis, and used the concordance index (C-index) and calibration curve to validate the model. Receiver operating characteristic curve (ROC), decision analysis curve (DCA) and clinical impact curve (CIC) were employed to assess the model. In addition, we used a predictive model on the validation cohort. RESULTS: Logistic regression analysis was used to identify independent predictors [N Stage + Alkaline phosphatase (ALP)+Thyroid stimulating hormone (TSH)+Free triiodothyronine (FT3)]. A nomogram was constructed to predict the risk of pulmonary metastasis in patients with osteosarcoma. The performance was evaluated by the concordance index (C-index) and calibration curve. The ROC curve provides the predictive power of the nomogram (AUC = 0.701 in the training cohort, AUC = 0.786 in the training cohort). Decision curve analysis (DCA) and clinical impact curve (CIC) demonstrated the clinical value of the nomogram and higher overall net benefits. CONCLUSIONS: Our study can help clinicians effectively predict the risk of lung metastases in osteosarcoma with more readily available clinical indicators, provide more personalized diagnosis and treatment guidance, and improve the prognosis of patients. MINI ABSTRACT: A new risk model was constructed to predict the pulmonary metastasis in patients with osteosarcoma based on multiple machine learning.


Bone Neoplasms , Lung Neoplasms , Osteosarcoma , Humans , Prognosis , Models, Statistical , Machine Learning
11.
Phytother Res ; 37(9): 4265-4281, 2023 Sep.
Article En | MEDLINE | ID: mdl-37260161

Sanguisorba officinalis L., a traditional Chinese medicine, is frequently used to treat burns and scalds. But even so, it is unknown whether S. officinalis L. can accelerate diabetic wounds (DW) healing. Here, to bridge the gap, we employed in vivo and in vitro evaluations to assess the positive effect of S. officinalis L. ethanol extract (ESO) on DW. Results demonstrated that ESO dramatically improved the DW healing rate. With ESO treatment, the inappropriately elevated levels of IL6, IL1ß and TNFα in DW were reduced, while the expression of IL10 was increased, indicating that the abnormal inflammation in DW was also under control. Moreover, the abnormally elevated expression of CD86 was significantly inhibited and the expression of CD206 was significantly up-regulated following treatment with ESO. The global level of NF-κB protein was not affected by ESO treatment, but it suppressed the expression of phosphorylated NF-κB and prevented its nuclear entry. In addition, in RAW264.7 cells activated with lipopolysaccharide (LPS), the expression of NLRP3, Caspase1 and IL1ß were significantly diminished following ESO treatment. In conclusion, ESO was proved to be a promising treatment for DW healing due to its potential to accelerate the healing process by suppressing the inflammatory response. This was achieved by increasing the ratio of M2 to M1 polarization through blocking the NF-κB/NLRP3 signaling pathway.


Burns , Diabetes Mellitus , Sanguisorba , Rats , Animals , NF-kappa B/metabolism , Sanguisorba/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Wound Healing , Macrophages , Inflammation/metabolism , Lipopolysaccharides/pharmacology
12.
J Org Chem ; 88(11): 6729-6735, 2023 Jun 02.
Article En | MEDLINE | ID: mdl-37155411

A CuBr2-catalyzed cascade reaction of amidines with exocyclic α,ß-unsaturated cycloketones was developed, affording a large variety of spiroimidazolines in moderate to excellent yields. The reaction process involved the Michael addition and copper(II)-catalyzed aerobic oxidative coupling, in which O2 from air acted as the oxidant and H2O was the sole byproduct.

13.
Biomed Pharmacother ; 163: 114811, 2023 Jul.
Article En | MEDLINE | ID: mdl-37156117

BACKGROUND: Thrombocytopenia is a common hematological disease caused by many factors. It usually complicates critical diseases and increases morbidity and mortality. The treatment of thrombocytopenia remains a great challenge in clinical practice, however, its treatment options are limited. In this study, the active monomer xanthotoxin (XAT) was screened out to explore its medicinal value and provide novel therapeutic strategies for the clinical treatment of thrombocytopenia. METHODS: The effects of XAT on megakaryocyte differentiation and maturation were detected by flow cytometry, Giemsa and phalloidin staining. RNA-seq identified differentially expressed genes and enriched pathways. The signaling pathway and transcription factors were verified through WB and immunofluorescence staining. Tg (cd41: eGFP) transgenic zebrafish and mice with thrombocytopenia were used to evaluate the biological activity of XAT on platelet formation and the related hematopoietic organ index in vivo. RESULTS: XAT promoted the differentiation and maturation of Meg-01 cells in vitro. Meanwhile, XAT could stimulate platelet formation in transgenic zebrafish and recover platelet production and function in irradiation-induced thrombocytopenia mice. Further RNA-seq prediction and WB verification revealed that XAT activates the IL-1R1 target and MEK/ERK signaling pathway, and upregulates the expression of transcription factors related to the hematopoietic lineage to promote megakaryocyte differentiation and platelet formation. CONCLUSION: XAT accelerates megakaryocyte differentiation and maturation to promote platelet production and recovery through triggering IL-1R1 and activating the MEK/ERK signaling pathway, providing a new pharmacotherapy strategy for thrombocytopenia.


Thrombocytopenia , Thrombopoiesis , Mice , Animals , Blood Platelets , Megakaryocytes , Methoxsalen/pharmacology , Zebrafish/metabolism , Thrombocytopenia/drug therapy , Transcription Factors/metabolism , Signal Transduction , Mitogen-Activated Protein Kinase Kinases/metabolism
14.
Eur J Pharmacol ; 944: 175604, 2023 Apr 05.
Article En | MEDLINE | ID: mdl-36804544

Radiation-induced thrombocytopenia (RIT) occurs widely and causes high mortality and morbidity in cancer patients who receive radiotherapy. However, specific drugs for treating RIT remain woefully inadequate. Here, we first developed a drug screening model using naive Bayes, a machine learning (ML) algorithm, to virtually screen the active compounds promoting megakaryopoiesis and thrombopoiesis. A natural product library was screened by the model, and methylophiopogonanone A (MO-A) was identified as the most active compound. The activity of MO-A was then validated in vitro and showed that MO-A could markedly induce megakaryocyte (MK) differentiation of K562 and Meg-01 cells in a concentration-dependent manner. Furthermore, the therapeutic action of MO-A on RIT was evaluated, and MO-A significantly accelerated platelet level recovery, platelet activation, megakaryopoiesis, MK differentiation in RIT mice. Moreover, RNA-sequencing (RNA-seq) indicated that the PI3K cascade was closely related to MK differentiation induced by MO-A. Finally, experimental verification demonstrated that MO-A obviously induced the expression of FGF1 and FGFR1, and increased the phosphorylation of PI3K, Akt and NF-κB. Blocking FGFR1 with its inhibitor dovitinib suppressed MO-A-induced MK differentiation, and PI3K, Akt and NF-κB phosphorylation. Similarly, inhibition of PI3K-Akt signal pathway by its inhibitor LY294002 suppressed MK differentiation, and PI3K, Akt and NF-κB phosphorylation induced by MO-A. Taken together, our study provides an efficient drug discovery strategy for hematological diseases, and demonstrates that MO-A is a novel countermeasure for treating RIT through activation of the FGF1/FGFR1/PI3K/Akt/NF-κB signaling pathway.


NF-kappa B , Proto-Oncogene Proteins c-akt , Animals , Mice , Bayes Theorem , Fibroblast Growth Factor 1 , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Thrombopoiesis , Transcriptome
15.
BMC Neurol ; 23(1): 30, 2023 Jan 19.
Article En | MEDLINE | ID: mdl-36658518

BACKGROUND: Investigations on the risk factors for the prognosis of cerebral venous sinus thrombosis (CVST) are limited. This study aimed to explore whether specific inflammatory factors and coagulation indictors are associated with functional outcome in patients treated for CVST. METHODS: This retrospective study included 137 patients admitted to our hospital between January 2010 and October 2021. The functional outcome was assessed with the modified Rankin Scale (mRS) score at discharge. Patients were divided into two groups, 102 patients with favorable outcomes (mRS 0-1) and 35 patients with poor outcomes (mRS 2-6). The clinical indexes were compared between two groups. Multivariable logistic regression was performed to identify the independent influencing factors for poor outcomes of CVST patients. The prognostic indicators were analyzed using the receiver operating characteristic (ROC) curve. RESULTS: Compared with the favorable outcome group, the incidence of impaired consciousness and brain lesion, the levels of D-dimer, RDW, neutrophil count, neutrophil to lymphocyte ratio (NLR) and red blood cell distribution width to platelet ratio (%) on admission were significantly higher in the poor outcome group, while the level of lymphocyte count was significantly lower. After multivariable logistic regression analysis, baseline D-dimer level (odds ratio (OR), 1.180; 95% confidence interval (CI), 1.019-1.366, P = 0.027) and NLR (OR, 1.903; 95%CI, 1.232-2.938, P = 0.004) were significantly associated with unfavorable outcome at discharge. The ROC curve analysis showed that the areas under the curve of D-dimer, NLR and their combined detection for predicting worse outcome were 0.719, 0.707 and 0.786, respectively. CONCLUSIONS: Elevated D-dimer level and NLR on admission were associated with an increased risk of poor functional outcome in patients with CVST.


Neutrophils , Sinus Thrombosis, Intracranial , Humans , Retrospective Studies , Lymphocytes/pathology , Prognosis , ROC Curve
16.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article En | MEDLINE | ID: mdl-36674552

Platelets are the second most abundant blood component after red blood cells and can participate in a variety of physiological and pathological functions. Beyond its traditional role in hemostasis and thrombosis, it also plays an indispensable role in inflammatory diseases. However, thrombocytopenia is a common hematologic problem in the clinic, and it presents a proportional relationship with the fatality of many diseases. Therefore, the prevention and treatment of thrombocytopenia is of great importance. The expression of Toll-like receptors (TLRs) is one of the most relevant characteristics of thrombopoiesis and the platelet inflammatory function. We know that the TLR family is found on the surface or inside almost all cells, where they perform many immune functions. Of those, TLR2 and TLR4 are the main stress-inducing members and play an integral role in inflammatory diseases and platelet production and function. Therefore, the aim of this review is to present and discuss the relationship between platelets, inflammation and the TLR family and extend recent research on the influence of the TLR2 and TLR4 pathways and the regulation of platelet production and function. Reviewing the interaction between TLRs and platelets in inflammation may be a research direction or program for the treatment of thrombocytopenia-related and inflammatory-related diseases.


Thrombocytopenia , Thrombopoiesis , Humans , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptors , Thrombocytopenia/metabolism , Inflammation
17.
Phytomedicine ; 109: 154548, 2023 Jan.
Article En | MEDLINE | ID: mdl-36610154

BACKGROUND: Protein aggregates are considered key pathological features in neurodegenerative diseases (NDs). The induction of autophagy can effectively promote the clearance of ND-related misfolded proteins. OBJECTIVE: In this study, we aimed to screen natural autophagy enhancers from traditional Chinese medicines (TCMs) presenting potent neuroprotective potential in multiple ND models. METHODS: The autophagy enhancers were broadly screened in our established herbal extract library using the transgenic Caenorhabditis elegans (C. elegans) DA2123 strain. The neuroprotective effects of the identified autophagy enhancers were evaluated in multiple C. elegans ND models by measuring Aß-, Tau-, α-synuclein-, and polyQ40-induced pathologies. In addition, PC-12 cells and 3 × Tg-AD mice were employed to further validate the neuroprotective ability of the identified autophagy enhancers, both in vitro and in vivo. Furthermore, RNAi bacteria and autophagy inhibitors were used to evaluate whether the observed effects of the identified autophagy enhancers were mediated by the autophagy-activated pathway. RESULTS: The ethanol extract of Folium Hibisci Mutabilis (FHME) was found to significantly increase GFP::LGG-1-positive puncta in the DA2123 worms. FHME treatment markedly inhibited Aß, α-synuclein, and polyQ40, as well as prolonging the lifespan and improving the behaviors of C. elegans, while siRNA targeting four key autophagy genes partly abrogated the protective roles of FHME in C. elegans. Additionally, FHME decreased the expression of AD-related proteins and restored cell viability in PC-12 cells, which were canceled by cotreatment with 3-methyladenine (3-MA) or bafilomycin A1 (Baf). Moreover, FHME ameliorated AD-like cognitive impairment and pathology, as well as activating autophagy in 3 × Tg-AD mice. CONCLUSION: FHME was successfully screened from our natural product library as a potent autophagy enhancer that exhibits a neuroprotective effect in multiple ND models across species through the induction of autophagy. These findings offer a new and reliable strategy for screening autophagy inducers, as well as providing evidence that FHME may serve as a possible therapeutic agent for NDs.


Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Animals , Mice , alpha-Synuclein/metabolism , Caenorhabditis elegans , Neurodegenerative Diseases/drug therapy , Animals, Genetically Modified , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Autophagy , Alzheimer Disease/drug therapy
18.
Haematologica ; 108(5): 1394-1411, 2023 05 01.
Article En | MEDLINE | ID: mdl-36546424

Thrombocytopenia is a thrombopoietin (TPO)-related disorder with very limited treatment options, and can be lifethreatening. There are major problems with typical thrombopoietic agents targeting TPO signaling, so it is urgent to discover a novel TPO-independent mechanism involving thrombopoiesis and potential druggable targets. We developed a drug screening model by the multi-grained cascade forest (gcForest) algorithm and found that 3,8-di-O-methylellagic acid 2- O-glucoside (DMAG) (10, 20 and 40 µM) promoted megakaryocyte differentiation in vitro. Subsequent investigations revealed that DMAG (40 mM) activated ERK1/2, HIF-1b and NF-E2. Inhibition of ERK1/2 blocked megakaryocyte differentiation and attenuated the upregulation of HIF-1b and NF-E2 induced by DMAG. Megakaryocyte differentiation induced by DMAG was inhibited via knockdown of NF-E2. In vivo studies showed that DMAG (5 mg/kg) accelerated platelet recovery and megakaryocyte differentiation in mice with thrombocytopenia. The platelet count of the DMAG-treated group recovered to almost 72% and 96% of the count in the control group at day 10 and 14, respectively. The platelet counts in the DMAG-treated group were almost 1.5- and 1.3-fold higher compared with those of the irradiated group at day 10 and 14, respectively. Moreover, DMAG (10, 25 and 50 mM) stimulated thrombopoiesis in zebrafish. DMAG (5 mg/kg) could also increase platelet levels in c-MPL knockout (c-MPL-/-) mice. In summary, we established a drug screening model through gcForest and demonstrated that DMAG promotes megakaryocyte differentiation via the ERK/HIF1/NF-E2 pathway which, importantly, is independent of the classical TPO/c-MPL pathway. The present study may provide new insights into drug discovery for thrombopoiesis and TPO-independent regulation of thrombopoiesis, as well as a promising avenue for thrombocytopenia treatment.


Anemia , Thrombocytopenia , Animals , Mice , Anemia/metabolism , Blood Platelets/metabolism , Megakaryocytes/metabolism , Thrombocytopenia/metabolism , Thrombopoiesis/physiology , Thrombopoietin/therapeutic use , Zebrafish/metabolism , Glucosides/therapeutic use
19.
Front Biosci (Landmark Ed) ; 27(11): 315, 2022 11 25.
Article En | MEDLINE | ID: mdl-36472113

BACKGROUND: The theory of free radical oxidative stress (ROS) is one of the leading theories of ageing, and antioxidants play an important role in antiaging. Dendrobium has always been popular as a natural antioxidant. METHODS: This study investigated the effects of various polarity fractions of ethanol extracts from Dendrobium nobile Lindl. (D. nobile) on D-galactose-induced aging mice. D. nobile stems were extracted by ethanol to form the crude extract (EA), which was sequentially extracted by trichloromethane, ethyl acetate, and n-butanol to yield the secondary extracts, named TCM, EAC, and NBA, respectively. EA, TCM, EAC and NBA were intragastrically administered at a dose of 200 mg/kg b.w. to the aging mice induced by D-galactose for 8 weeks. RESULTS: Compared with the aging control group (AC), D. nobile extracts reduced body weight and lipid accumulation and enhanced endurance and immunity by increasing the index of the spleens and thymus. Meanwhile, D. nobile extracts showed antioxidant properties by lowering Malondialdehyde (MDA) levels and increasing the activities of superoxide dismutase (SOD), catalase (CAT), and Glutathione peroxidase (GSH-Px) in the skin, blood, liver, and brain. Furthermore, D. nobile extracts had a good protective effect on the cell structure and function against lesions of the skin, liver, brain, kidney, and ovary of aging mice. In particular, EA and EAC had better antioxidant and antiaging effects, suggesting that the most effective components were flavonoids and polyphenols that existed in EAC. Both EA and EAC downregulated the expression of aging-related genes such as Il1a, Il1b, Il1rn, Ccl3, Ccl4, Fos and Gck in the brain at the transcriptome level. Both EA and EAC reversed the increase in the Firmicutes/Bacteroidota ratio in aging mice, increased the abundance of probiotic bacteria Lactobacillus and Muribaculum, and decreased the abundance of pathogenic bacteria such as Staphylococcus, Corynebacterium and Brevibacterium. CONCLUSIONS: The EA and EAC extracts of D. nobile have better effects on immunity improvement, antioxidation and antiaging by remodelling the intestinal microecosystem and downregulating the expression of age-promoting genes in the brain. D. nobile, especially EA and EAC extracts, could be used as an antiaging drug or functional food.


Antioxidants , Dendrobium , Female , Animals , Mice , Antioxidants/pharmacology , Galactose/pharmacology , Dendrobium/chemistry , Oxidative Stress , Aging , Ethanol
20.
Int J Mol Sci ; 23(22)2022 Nov 14.
Article En | MEDLINE | ID: mdl-36430509

Ulcerative colitis (UC) is a complex immune-mediated inflammatory disease. In recent years, the incidence of UC has increased rapidly, however, its exact etiology and mechanism are still unclear. Based on the definite anti-inflammatory and antibacterial activities of Sanguisorba officinalis L., we studied its monomer, methyl gallate (MG). In this study, we employed flow cytometry and detected nitric oxide production, finding MG regulated macrophage polarization and inhibited the expression of proinflammatory cytokines in vitro. MG also exhibited anti-inflammatory activity accompanying with ameliorating body weight loss, improving colon length and histological damage in dextran sulfate sodium-induced UC mice. Meanwhile, transcription sequencing and 16S rRNA sequencing analyzed the key signaling pathways and changes in the gut microbiota of MG for UC treatment, proving that MG could alleviate inflammation by regulating the TLR4/NF-κB pathway in vivo and in vitro. Additionally, MG altered the diversity and composition of the gut microbiota and changed the abundance of metabolic products. In conclusion, our results are the first to demonstrate that MG has obvious therapeutic effects against acute UC, which is related to macrophage polarization, improved intestinal flora dysbiosis and inhibition of TLR4/NF-κB signaling pathway, and MG may be a promising therapeutic agent for UC treatment.


Colitis, Ulcerative , Gastrointestinal Microbiome , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , NF-kappa B , Toll-Like Receptor 4 , RNA, Ribosomal, 16S
...