Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Water Res ; 241: 120151, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37269626

Heterogeneous Fenton reaction has a great application potential in water purification, but efficient catalysts are still lacking. Iron phosphide (FeP) has a higher activity than the conventional Fe-based catalysts for Fenton reactions, but its ability as a Fenton catalyst to directly activate H2O2 remains unreported. Herein, we demonstrate that the fabricated FeP has a lower electron transfer resistance than the typical conventional Fe-based catalysts, i.e., Fe2O3, Fe3O4, and FeOOH, and thus could active H2O2 to produce hydroxyl radicals more efficiently. In the heterogeneous Fenton reactions for sodium benzoate degradation, the FeP catalyst presents a superior activity with a reaction rate constant more than 20 times those of the other catalysts (i.e., Fe2O3, Fe3O4, and FeOOH). Moreover, it also exhibits a great catalytic activity in the treatment of real water samples and has a good stability in the cycling tests. Furthermore, the FeP could be loaded onto a centimeter-sized porous carbon support and the prepared macro-sized catalyst exhibits an excellent water treatment performance and can be well recycled. This work reveals a great potential of FeP as a catalyst for heterogeneous Fenton reactions and may inspire further development and practical application of highly efficient catalysts for water purification.


Iron , Water Purification , Hydrogen Peroxide , Carbon , Catalysis
2.
Proc Natl Acad Sci U S A ; 120(20): e2302407120, 2023 May 16.
Article En | MEDLINE | ID: mdl-37155859

Clarifying the reaction pathways at the solid-water interface and in bulk water solution is of great significance for the design of heterogeneous catalysts for selective oxidation of organic pollutants. However, achieving this goal is daunting because of the intricate interfacial reactions at the catalyst surface. Herein, we unravel the origin of the organic oxidation reactions with metal oxide catalysts, revealing that the radical-based advanced oxidation processes (AOPs) prevail in bulk water but not on the solid catalyst surfaces. We show that such differing reaction pathways widely exist in various chemical oxidation (e.g., high-valent Mn3+ and MnOX) and Fenton and Fenton-like catalytic oxidation (e.g., Fe2+ and FeOCl catalyzing H2O2, Co2+ and Co3O4 catalyzing persulfate) systems. Compared with the radical-based degradation and polymerization pathways of one-electron indirect AOP in homogeneous reactions, the heterogeneous catalysts provide unique surface properties to trigger surface-dependent coupling and polymerization pathways of a two-electron direct oxidative transfer process. These findings provide a fundamental understanding of catalytic organic oxidation processes at the solid-water interface, which could guide the design of heterogeneous nanocatalysts.

3.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article En | MEDLINE | ID: mdl-36142343

S-RNase plays vital roles in the process of self-incompatibility (SI) in Rutaceae plants. Data have shown that the rejection phenomenon during self-pollination is due to the degradation of pollen tube RNA by S-RNase. The cytoskeleton microfilaments of pollen tubes are destroyed, and other components cannot extend downwards from the stigma and, ultimately, cannot reach the ovary to complete fertilisation. In this study, four S-RNase gene sequences were identified from the 'XiangShui' lemon genome and ubiquitome. Sequence analysis revealed that the conserved RNase T2 domains within S-RNases in 'XiangShui' lemon are the same as those within other species. Expression pattern analysis revealed that S3-RNase and S4-RNase are specifically expressed in the pistils, and spatiotemporal expression analysis showed that the S3-RNase expression levels in the stigmas, styles and ovaries were significantly higher after self-pollination than after cross-pollination. Subcellular localisation analysis showed that the S1-RNase, S2-RNase, S3-RNase and S4-RNase were found to be expressed in the nucleus according to laser confocal microscopy. In addition, yeast two-hybrid (Y2H) assays showed that S3-RNase interacted with F-box, Bifunctional fucokinase/fucose pyrophosphorylase (FKGP), aspartic proteinase A1, RRP46, pectinesterase/pectinesterase inhibitor 51 (PME51), phospholipid:diacylglycerol acyltransferase 1 (PDAT1), gibberellin receptor GID1B, GDT1-like protein 4, putative invertase inhibitor, tRNA ligase, PAP15, PAE8, TIM14-2, PGIP1 and p24beta2. Moreover, S3-RNase interacted with TOPP4. Therefore, S3-RNase may play an important role in the SI of 'XiangShui' lemon.


Aspartic Acid Proteases , Citrus , Self-Incompatibility in Flowering Plants , Citrus/metabolism , Diacylglycerol O-Acyltransferase , Endoribonucleases , Fucose , Gibberellins , Phospholipids , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , RNA , RNA Ligase (ATP) , Ribonucleases/genetics , Ribonucleases/metabolism , Self-Incompatibility in Flowering Plants/genetics , beta-Fructofuranosidase
4.
Nat Commun ; 13(1): 3005, 2022 05 30.
Article En | MEDLINE | ID: mdl-35637224

Removal of organic micropollutants from water through advanced oxidation processes (AOPs) is hampered by the excessive input of energy and/or chemicals as well as the large amounts of residuals resulting from incomplete mineralization. Herein, we report a new water purification paradigm, the direct oxidative transfer process (DOTP), which enables complete, highly efficient decontamination at very low dosage of oxidants. DOTP differs fundamentally from AOPs and adsorption in its pollutant removal behavior and mechanisms. In DOTP, the nanocatalyst can interact with persulfate to activate the pollutants by lowering their reductive potential energy, which triggers a non-decomposing oxidative transfer of pollutants from the bulk solution to the nanocatalyst surface. By leveraging the activation, stabilization, and accumulation functions of the heterogeneous catalyst, the DOTP can occur spontaneously on the nanocatalyst surface to enable complete removal of pollutants. The process is found to occur for diverse pollutants, oxidants, and nanocatalysts, including various low-cost catalysts. Significantly, DOTP requires no external energy input, has low oxidant consumption, produces no residual byproducts, and performs robustly in real environmental matrices. These favorable features render DOTP an extremely promising nanotechnology platform for water purification.


Environmental Pollutants , Water Pollutants, Chemical , Decontamination , Oxidants , Water
5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article En | MEDLINE | ID: mdl-35165185

Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N4 sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electron-depleted Cu-N4/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N4 single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N4/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N4 sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts.

6.
Adv Mater ; 33(43): e2103130, 2021 Oct.
Article En | MEDLINE | ID: mdl-34510574

Precise synthesis of porous materials is essential for their applications. Self-assembly is a widely used strategy for synthesizing porous materials, but quantitative control of the assembly process still remains a great challenge. Here, a quantitative coassembly approach is developed for synthesizing resin/silica composite and its derived porous spheres. The assembly behaviors of the carbon and silica precursors are regulated without surfactants and the growth kinetics of the composite spheres are quantitatively controlled. This assembly approach enables the precise control of the size and pore structures of the derived carbon spheres. These carbon spheres provide a good platform to explore the structure-performance relationships of porous materials, and demonstrate their pore structure-dependent performance in catalytic water decontamination. This work provides a simple and robust approach for precise synthesis of porous spheres and brings insights into function-oriented design of porous materials.

7.
Environ Sci Technol ; 55(10): 7063-7071, 2021 05 18.
Article En | MEDLINE | ID: mdl-33961405

As one of the extensively used feed additives in livestock and poultry breeding, p-arsanilic acid (p-ASA) has become an organoarsenic pollutant with great concern. For the efficient removal of p-ASA from water, the combination of chemical oxidation and adsorption is recognized as a promising process. Herein, hollow/porous Mn-Fe-mixed oxide (MnFeO) nanocubes were synthesized and used in coupling with peroxymonosulfate (PMS) to oxidize p-ASA and remove the total arsenic (As). Under acidic conditions, both p-ASA and total As could be completely removed in the PMS/MnFeO process and the overall performance was substantially better than that of the Mn/Fe monometallic system. More importantly, an interface-promoted direct oxidation mechanism was found in the p-ASA-involved PMS/MnFeO system. Rather than activate PMS to generate reactive oxygen species (i.e., SO4·-, ·OH, and 1O2), the MnFeO nanocubes first adsorbed p-ASA to form a ligand-oxide interface, which improved the oxidation of the adsorbed p-ASA by PMS and ultimately enhanced the removal of the total As. Such a direct oxidation process achieved selective oxidation of p-ASA and avoidance of severe interference from the commonly present constituents in real water samples. After facile elution with dilute alkali solution, the used MnFeO nanocubes exhibited superior recyclability in the repeated p-ASA removal experiments. Therefore, this work provides a promising approach for efficient abatement of phenylarsenical-caused water pollution based on the PMS/MnFeO oxidation process.


Arsenic , Water Pollutants, Chemical , Arsanilic Acid , Oxidation-Reduction , Oxides , Peroxides
8.
Water Res ; 173: 115559, 2020 Apr 15.
Article En | MEDLINE | ID: mdl-32028250

Peroxymonosulfate (PMS) is extensively used as an oxidant to develop the sulfate radical-based advanced oxidation processes in the decontamination of organic pollutants and various PMS activation methods have been explored. Visible-light-assisted PMS activation to construct a Fenton-like process has shown a great potential for pollution control. In our work, BiVO4 nanosheets were prepared using a hydrothermal process and used to activate PMS under visible light. A rapid degradation of ciprofloxacin (CIP) was achieved by dosing PMS (0.96 g/L), BiVO4 (0.32 g/L) under visible light with a reaction rate constant of 77.72-fold higher than that in the BiVO4/visible light process. The electron spin resonance and free radical quenching experiments indicate that reactive species of •O2-, h+, •OH and SO4•- all worked, where h+, •OH and SO4•- were found as the dominant contributors to the CIP degradation. The spectroscopic analyses further demonstrate that the photoinduced electrons were directly involved in the PMS activation process. The generated •O2- was partially utilized to activate PMS and more •OH was produced because of the chain reactions between SO4•- and H2O/OH-. In this process, PMS acted as an electron acceptor to transfer the photo-induced charges from the conduction band of BiVO4 and PMS was successfully activated to yield the high-powered oxidative species. From the degradation intermediates of CIP detected by a liquid-chromatography-mass spectrometer, the possible degradation pathways were proposed. The substantially decreased toxicity of CIP after the reaction was also observed. This work might provide new insights into the visible-light-assisted PMS activation mechanisms and is useful to construct environmentally-friendly catalytic processes for the efficient degradation of organic pollutants.


Ciprofloxacin , Peroxides , Catalysis , Light
9.
J Hazard Mater ; 382: 121090, 2020 01 15.
Article En | MEDLINE | ID: mdl-31476718

Fenton reaction is widely used for hazardous pollutant degradation. Reducing agents (RAs) have been proven to be efficient in promoting the generation of HO• in Fenton reaction by accelerating the redox cycle of Fe3+/Fe2+. However, the roles of different RAs in Fenton reaction remain unrevealed. In this work, the catalytic activity of three RAs, i.e., hydroxylamine (NH2OH), ascorbic acid (AA) and cysteine (Cys), on the degradation of benzoic acid (BA) and the hydroxyl radical formation in the Fenton-RAs system were investigated. Results show the catalytic performance of RAs in BA degradation by Fenton reaction followed an order of NH2OH > AA > Cys. Compared with the conventional Fenton system, the effective pH range in the Fenton-NH2OH system extended from 3.0 to 5.0, while the optimal pH in the Fenton-AA and Fenton-Cys systems ranged from 3.0 to 4.0. The Fenton-AA system exhibited a two-stage reaction toward BA degradation, which was different from the Fenton-NH2OH and Fenton-Cys systems. Furthermore, the dosing manner of AA was found to be a key factor governing its role in the Fenton-AA system. This observation suggests the different mechanisms behind the enhancement of the three RAs in Fenton system. Different from NH2OH and Cys, AA would inhibit the generation of HO•, especially at the fast stage of degradation process, where Fe3+ has not accumulated yet. In addition, the economic analysis using the electrical energy per order indicates Fenton-NH2OH system was economically feasible with the lowest energy input, compared to Fenton-AA and Fenton-Cys systems. These results are useful to better understand the roles of RAs in Fenton system, and also provide guidance about the selection and dosing manner of suitable RAs in the advanced oxidation processes.

10.
ACS Appl Mater Interfaces ; 11(46): 43180-43187, 2019 Nov 20.
Article En | MEDLINE | ID: mdl-31660719

Carbon-based materials are recognized as promising candidates for pollutant degradation because of their environmental benignity. Massive and cost-effective production and efficient recovery of carbon-based catalysts are crucial to apply this technology. However, various nanostructured carbons with different dimensions are usually utilized as precursors while not considering their complex preparation procedures and the high costs of ingredients. Moreover, catalyst separation and recovery are not given sufficient attention. In this work, a calcium salt-assisted pyrolysis strategy is proposed to tune the catalytic site formation of carbon-based catalysts. Results show that blending equal amounts of Ca2+ (calcium chloride) and organic precursors could greatly improve the catalytic activity of the carbonated product to activate peroxymonosulfate for pollutant degradation. In addition, the proposed synthetic strategy is universal to most of the readily accessed and cost-effective organic precursors. Singlet oxygen is identified as the main reactive oxidant for pollutant removal in the catalytic reaction. By cross-linking calcium ions and alginate as a hydrogel to immobilize the catalyst, the carbon material could be readily recovered. Furthermore, a long-term continuous-flow reactor test is conducted to validate the effectiveness of applying the immobilized catalyst to treat a synthetic wastewater with 0.5 mM bisphenol A. As a result, a green synthesis and immobilization strategy for persulfate catalysts is successfully established, and the prepared catalyst might be applied for wastewater treatment through using calcium salt in two purposes.

11.
Anal Chem ; 90(24): 14439-14446, 2018 12 18.
Article En | MEDLINE | ID: mdl-30449093

Recently, peroxymonosulfate (PMS)-based advanced oxidation processes have exhibited broad application prospects in the environment field. Accordingly, a simple, rapid, and ultrasensitive method is highly desired for the specific recognition and accurate quantification of PMS in various aqueous solutions. In this work, SO4•--induced aromatic hydroxylation was explored, and based on that, for the first time, a novel fluorescence method was developed for the PMS determination using Co2+ as a PMS activator and benzoic acid (BA) as a chemical probe. Through a suite of spectral, chromatographic, and mass spectrometric analyses, SO4•- was proven to be the dominant radical species, and salicylic acid was identified as the fluorescent molecule. As a result, a whole radical chain reaction mechanism for the generation of salicylic acid in the BA/PMS/Co2+ system was proposed. This fluorescence method possessed a rapid reaction equilibrium (<1 min), an ultrahigh sensitivity (detection limit = 10 nM; quantification limit = 33 nM), an excellent specificity, and a wide detection range (0-100 µM). Moreover, it performed well in the presence of possible interfering substances, including two other peroxides (i.e., peroxydisulfate and hydrogen peroxide), some common ions, and organics. The detection results for real water samples further validated the practical utility of the developed fluorescence method. This work provides a new method for the specific recognition and sensitive determination of PMS in complex aqueous solutions.

12.
Environ Sci Technol ; 51(21): 12611-12618, 2017 Nov 07.
Article En | MEDLINE | ID: mdl-28985472

A high-efficient, low-cost, and eco-friendly catalyst is highly desired to activate peroxides for environmental remediation. Due to the potential synergistic effect between bimetallic oxides' two different metal cations, these oxides exhibit superior performance in the catalytic activation of peroxymonosulfate (PMS). In this work, novel Mn1.8Fe1.2O4 nanospheres were synthesized and used to activate PMS for the degradation of bisphenol A (BPA), a typical refractory pollutant. The catalytic performance of the Mn1.8Fe1.2O4 nanospheres was substantially greater than that of the Mn/Fe monometallic oxides and remained efficient in a wide pH range from 4 to 10. More importantly, a synergistic effect between solid-state Mn and Fe was identified in control experiments with Mn3O4 and Fe3O4. Mn was inferred to be the primary active site in the surface of the Mn1.8Fe1.2O4 nanospheres, while Fe(III) was found to play a key role in the synergism with Mn by acting as the main adsorption site for the reaction substrates. Both sulfate and hydroxyl radicals were generated in the PMS activation process. The intermediates of BPA degradation were identified and the degradation pathways were proposed. This work is expected to help to elucidate the rational design and efficient synthesis of bimetallic materials for PMS activation.


Benzhydryl Compounds , Nanospheres , Peroxides , Phenols , Ferric Compounds
13.
Sci Rep ; 6: 22800, 2016 Mar 07.
Article En | MEDLINE | ID: mdl-26948684

A series of BiOBrxI(1-x) solid solutions were explored as novel visible light-sensitive photocatalysts. These BiOBrxI(1-x) solid-solution photocatalysts grew into two-dimensional nanoplates with exposed (001) facets and possessed continuously modulated band gaps from 2.87 to 1.89 eV by decreasing the Br/I ratio. The photocatalytic activities of these samples were measured, and the samples exhibited visible light-driven activities for the degradation of Rhodamine B (RhB). In particular, BiOBr0.8I0.2 exhibited the highest activity for the degradation of RhB. This result could be attributed to the balance between the effective light absorption and adequate redox potential. Additionally, investigations into the photocatalytic mechanism showed that the photodegradation of RhB over BiOBr0.8I0.2 solid-solution photocatalysts involved direct holes oxidation, in which the reaction that dominated during photocatalysis was determined by the potential of the valence band. Furthermore, a high stability in the photocatalytic activity of BiOBr0.8I0.2 was demonstrated by the cycling photocatalytic experiment and long-term irradiation, which might offer opportunities for its practical application as a catalyst.

14.
Sex Plant Reprod ; 25(4): 337-45, 2012 Dec.
Article En | MEDLINE | ID: mdl-23114638

Seedlessness is an important economic trait of lemon. Understanding the cellular and molecular mechanisms of seedlessness in 'Xiangshui' lemon requires detailed data on pollen and embryo sac fertility, embryo development and compatibility mechanisms governing self- and cross-pollination. The results of the current study indicate that the fertility of pollen and mature embryo sac remains normal. When flowers were self- or cross-pollinated, pollen grains of 'Xiangshui' were able to germinate on the stigma. In the case of self-pollination, pollen tubes became twisted, tube tips enlarged and tubes ruptured in the bottom of stigma. Following cross-pollination, tubes were able to grow normally in the style and ovary and enter the embryo sac, where double fertilization took place. Embryonic development resulting from cross-pollination was normal. After cross-pollination, the zygote began to divide at 2 weeks post-pollination, with early globular embryos observed after 3 weeks, globular and heart-shaped embryos at 4 weeks, torpedo-shaped embryos at 5 weeks, cotyledonary embryos at 6 weeks and thereafter germinable seeds. After self-pollination, however, ovules began to abort at 2 weeks post-pollination, with ovules disappearing at 5 weeks, ultimately producing seedless fruits. Emasculated unpollinated flowers also developed into seedless fruits, indicating that seedlessness contributes to parthenocarpy. However, gametophytic self-incompatibility has a major role in seedlessness in 'Xiangshui' lemon by blocking fertilization at the bottom of the stigma.


Citrus/physiology , Pollen/physiology , Pollination/physiology , Self-Incompatibility in Flowering Plants/physiology , Cell Survival , Citrus/cytology , Citrus/embryology , Citrus/genetics , Crosses, Genetic , Flowers/cytology , Flowers/embryology , Flowers/genetics , Flowers/physiology , Fruit/cytology , Fruit/embryology , Fruit/genetics , Fruit/physiology , Meiosis , Ovule/cytology , Ovule/embryology , Ovule/genetics , Ovule/physiology , Pollen/cytology , Pollen/embryology , Pollen/genetics , Seeds/cytology , Seeds/embryology , Seeds/genetics , Seeds/physiology , Self-Fertilization
...