Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 211
1.
J Pediatr (Rio J) ; 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38642590

OBJECTIVE: To examine the mental health status and related factors in children and adolescents, and to assess age groups and sexes differences in factors influencing mental health. METHODS: This cross-sectional study was performed on Chinese children aged 6-18 years from November 2021 to January 2022. Mental health difficulties were accessed by the Strengths and Difficulties Questionnaire. Multivariate logistic regression was used to analyze factors associated with mental health status. Multiple linear regression was used to evaluate factors associated with the scores of the Strengths and Difficulties Questionnaire. RESULTS: The prevalence of mental health difficulties was 12.98% (n =1348). Age (OR, 0.909, [95%CI, 0.830-0.996]), sex (OR, 1.424, [95%CI, 1.033-1.963]) and screen time on weekdays ("≥2" h/d vs "< 1" h/d: OR, 2.001, [95%CI, 1.300-3.080]) were related factors for mental health difficulties. For children (year ≤ 12), the strongest related factor for mental health difficulties was screen time on weekdays ("≥ 2" h/d vs "< 1" h/d: OR, 1.821 [95%CI, 1.203-2.755]). The risk of mental health difficulties in females with ≥ 2 h/d screen time on weekends was 3.420 times higher than those with < 1 h/d (OR, 3.420, [95%CI, 1.923-6.081]). CONCLUSION: The prevalence of mental health difficulties among children and adolescents was relatively high. The lower age, female sex and excessive screen time were associated with a higher risk of mental health difficulties. The factors influencing mental health varied by different age groups and sexes. Thus, specific measures for different age groups and sexes should be adopted to mitigate the impact.

2.
BMJ Open ; 14(4): e082957, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580360

INTRODUCTION: Cardiometabolic disease (CMD) is the leading cause of mortality in China. A healthy diet plays an essential role in the occurrence and development of CMD. Although the Chinese heart-healthy diet is the first diet with cardiovascular benefits, a healthy dietary pattern that fits Chinese food culture that can effectively reduce the risk of CMD has not been found. METHODS/DESIGN: The study is a single-centre, open-label, randomised controlled trial aimed at evaluating the effect of the Reducing Cardiometabolic Diseases Risk (RCMDR) dietary pattern in reducing the risk of CMDs in people with dyslipidaemia and providing a reference basis for constructing a dietary pattern suitable for the prevention of CMDs in the Chinese population. Participants are men and women aged 35-45 years with dyslipidaemia in Tianjin. The target sample size is 100. After the run-in period, the participants will be randomised to the RCMDR dietary pattern intervention group or the general health education control group with a 1:1 ratio. The intervention phases will last 12 weeks, with a dietary intervention of 5 working days per week for participants in the intervention group. The primary outcome variable is the cardiometabolic risk score. The secondary outcome variables are blood lipid, blood pressure, blood glucose, body composition indices, insulin resistance and 10-year risk of cardiovascular diseases. ETHICS AND DISSEMINATION: The study complies with the Measures for Ethical Review of Life Sciences and Medical Research Involving Human Beings and the Declaration of Helsinki. Signed informed consent will be obtained from all participants. The study has been approved by the Medical Ethics Committee of the Second Hospital of Tianjin Medical University (approval number: KY2023020). The results from the study will be disseminated through publications in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: Chinese Clinical Trial Registry (ChiCTR2300072472).


Cardiovascular Diseases , Dyslipidemias , Male , Humans , Female , Dietary Patterns , Blood Glucose , Risk Factors , Cardiovascular Diseases/prevention & control , Randomized Controlled Trials as Topic
3.
J Cancer ; 15(9): 2518-2537, 2024.
Article En | MEDLINE | ID: mdl-38577609

Background: The nuclear cap-binding complex (CBC)-dependent translation (CT) is an important initial translation pathway for 5'-cap-dependent translation in normal mammal cells. Eukaryotic translation initiation factor 4A-III (eIF4A3), as an RNA helicase, is recruited to CT complex and enhances CT efficiency through participating in unwinding of secondary structure in the 5' UTR. However, the detailed mechanism for eIF4A3 implicated in unwinding of secondary structure in the 5' UTR in normal mammal cells is still unclear. Specially, we need to investigate whether the kind of mechanism in normal mammal cells extrapolates to cancer cells, e.g. ESCC, and further interrogate whether and how the mechanism triggers malignant phenotype of ESCC, which are important for identifying a potential therapeutic target for patients with ESCC. Methods: Bioinformatics analysis, RNA immunoprecipitation and RNA pulldown assays were performed to detect the interaction of circular RNA circ-231 with eIF4A3. In vitro and in vivo assays were performed to detect biological roles of circ-231 in ESCC. RNA immunoprecipitation, RNA pulldown, mass spectrometry analysis and co-immunoprecipitation assays were used to measure the interaction of circ-231, eIF4A3 and STAU1 in HEK293T and ESCC. In vitro EGFP reporter and 5' UTR of mRNA pulldown assays were performed to probe for the binding of circ-231, eIF4A3 and STAU1 to secondary structure of 5' UTR. Results: RNA immunoprecipitation assays showed that circ-231 interacted with eIF4A3 in HEK293T and ESCC. Further study confirmed that circ-231 orchestrated with eIF4A3 to control protein expression of TPI1 and PRDX6, but not for mRNA transcripts. The in-depth mechanism study uncovered that both circ-231 and eIF4A3 were involved in unwinding of secondary structure in 5' UTR of TPI1 and PRDX6. More importantly, circ-231 promoted the interaction between eIF4A3 and STAU1. Intriguingly, both circ-231 and eIF4A3 were dependent on STAU1 binding to secondary structure in 5' UTR. Biological function assays revealed that circ-231 promoted the migration and proliferation of ESCC via TPI1 and PRDX6. In ESCC, the up-regulated expression of circ-231 was observed and patients with ESCC characterized by higher expression of circ-231 have concurrent lymph node metastasis, compared with control. Conclusions: Our data unravels the detailed mechanism by which STAU1 binds to secondary structure in 5' UTR of mRNAs and recruits eIF4A3 through interacting with circ-231 and thereby eIF4A3 is implicated in unwinding of secondary structure, which is common to HEK293T and ESCC. However, importantly, our data reveals that circ-231 promotes migration and proliferation of ESCC and the up-regulated circ-231 greatly correlates with tumor lymph node metastasis, insinuating that circ-231 could be a therapeutic target and an indicator of risk of lymph node metastasis for patients with ESCC.

4.
Phytomedicine ; 129: 155567, 2024 Jul.
Article En | MEDLINE | ID: mdl-38579644

BACKGROUND: Sarcopenia, an age-related disease, is characterized by a gradual loss of muscle mass, strength, and function. It has been linked to abnormal organelle function in myotubes, including the mitochondria and endoplasmic reticulum (ER). Recent studies revealed that mitochondria-associated membranes (MAM), the sites connecting mitochondria and the ER, may be implicated in skeletal muscle aging. In this arena, the potential of Polygonatum sibiricum polysaccharide (PSP) emerges as a beacon of hope. PSP, with its remarkable antioxidant and anti-senescence properties, is on the cusp of a therapeutic revolution, offering a promising strategy to mitigate the impacts of sarcopenia. PURPOSE: The objective of this research is to explore the effects of PSP on age-related muscle dysfunction and the underlying mechanisms involved both in vivo and in vitro. METHODS: In this investigation, we used in vitro experiments using D-galactose (D-gal)-induced aging in C2C12 myotubes and in vivo experiments on aged mice. Key indices were assessed, including reactive oxygen species (ROS) levels, mitochondrial function, the expression of aging-related markers, and the key proteins of mitochondria and MAM fraction. Differentially expressed genes (DEGs) related to mitochondria and ER were identified, and bioinformatic analyses were performed to explore underlying mechanisms. Muscle mass and function were determined to evaluate the quantity and quality of skeletal muscle in vivo. RESULTS: PSP treatment effectively mitigated oxidative stress and mitochondrial malfunction caused by D-gal in C2C12 myotubes, preserving mitochondrial fitness and reducing MAM formation. Besides, PSP attenuated D-gal-induced increases in Ca2+ concentrations intracellularly by modulating the calcium-related proteins, which were also confirmed by gene ontology (GO) analysis of DEGs. In aged mice, PSP increased muscle mass and improved grip strength, hanging time, and other parameters while reducing ROS levels and increasing antioxidant enzyme activities in skeletal muscle tissue. CONCLUSION: PSP offers protection against age-associated muscle impairments. The proposed mechanism suggests that modulation of calcium homeostasis via regulation of the MAM results in a favorable functional outcome during skeletal muscle aging. The results of this study highlight the prospect of PSP as a curative intervention for sarcopenia and affiliated pathological conditions, warranting further investigation.


Aging , Calcium , Homeostasis , Muscle, Skeletal , Polygonatum , Polysaccharides , Reactive Oxygen Species , Animals , Polysaccharides/pharmacology , Polygonatum/chemistry , Mice , Homeostasis/drug effects , Reactive Oxygen Species/metabolism , Calcium/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Aging/drug effects , Male , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Sarcopenia/drug therapy , Mitochondrial Membranes/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line , Mice, Inbred C57BL , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Antioxidants/pharmacology , Mitochondria Associated Membranes
5.
Front Aging Neurosci ; 16: 1381692, 2024.
Article En | MEDLINE | ID: mdl-38524118

Background and aims: Dementia imposes a heavy burden on society and families, therefore, effective drug treatments, exploring and preventing factors associated with dementia, are paramount. To provide reference points for the best frequency of physical exercise (physical exercise), we investigated the association between frequency of PE and cognition in Chinese old adults. Methods: 16,181 Chinese participants aged 65 years or older were included in this study. Associations between PE and cognition were estimated multivariate logistic and linear regression analyses. Associations were further investigated across dementia subtypes (Alzheimer dementia, vascular dementia, and other types of dementia). Subgroup analyses were performed in different age groups, in populations with and without stroke, and those with and without hypertension. Results: PE associated with dementia after adjusting for full covariates (OR: 0.5414, 95% CI: 0.4536-0.6491, p < 0.001). Exercise performed at ≥3 times/week associated with lower risk of dementia (OR: 0.4794-0.6619, all p value <0.001). PE was associated with improved cognition (ß: 12851, p < 0.001), and any PE frequency contributed to cognitive improvement (p values for exercise performed ≥1 time/week were <0.001). Similar conclusions were identified when we repeated analyses in different dementia subtypes and age groups. Subgroup analyses suggested that the cognition of individuals without hypertension also benefitted from exercising 1-2 times/week (OR: 0.6168, 95% CI: 0.4379-0.8668, p = 0.005). Conclusion: The best exercise frequency is exercising ≥3 times/week for individuals from different dementia subtypes and age groups. While for those without hypertension, PE at 1-2 times /week is also beneficial.

6.
Front Immunol ; 15: 1337557, 2024.
Article En | MEDLINE | ID: mdl-38390321

Introduction: The clinical efficacy of CAR-NK cells against CD19-expressing blood cancers has been demonstrated, and they have shown potential for treating solid tumors as well. However, the efficacy of CAR-NK cells for treating human oral tongue squamous cell carcinoma (OTSCC) has not been examined. Methods: We assessed MUC1 expression in human OTSCC tissue and a cell line using immunohistochemistry and immunofluorescence. We constructed NK cells that express CAR targeted to MUC1 from pluripotent stem cells (iPSC-derived MUC1-targeted CAR-NK cells) and evaluated their effectiveness against OTSCC in vitro using the xCELLigence Real-Time Cell Analysis system and CCK8 assay, and in vivo by measuring xenograft growth daily in BNDG mice treated with MUC1-targeted CAR-NK cells. As controls, we used iPSC-derived NK cells and NK-free media, which were CAR-free and blank, respectively. Results: MUC1 expression was detected in 79.5% (66/83) of all OTSCC patients and 72.7% (24/33) of stage III and IV. In stage III and IV MUC1 positive OTSCC, 63.6% (21/33) and 48.5% (16/33) patients had a MUC1-positive cancer cell rate of more than 50% and 80%, respectively. The iPSC-derived MUC1-targeted CAR-NK cells exhibited significant cytotoxicity against MUC1-expressing OTSCC cells in vitro, in a time- and dose-dependent manner, and showed a significant inhibitory effect on xenograft growth compared to both the iPSC-derived NK cells and the blank controls. We observed no weight loss, severe hematological toxicity or NK cell-mediated death in the BNDG mice. Conclusion: The MUC1-targeted CAR-NK cells had significant efficacy against human OTSCC, and their promising therapeutic response warrants further clinical trials.


Carcinoma, Squamous Cell , Tongue Neoplasms , Humans , Animals , Mice , Carcinoma, Squamous Cell/therapy , Tongue Neoplasms/therapy , Killer Cells, Natural , Cell Line , Tongue/metabolism , Mucin-1/genetics , Mucin-1/metabolism
7.
ACS Omega ; 9(3): 3184-3192, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38284007

In this work, four kinds of imidazole phosphate ionic liquids (ILs) with different anionic and cationic alkyl chain lengths were synthesized. The physicochemical properties and tribological performance of ILs were evaluated. The experimental results revealed that the tribological properties of ILs were positively correlated with the cationic chain length and negatively correlated with the anionic chain length. The effect mechanism can be summarized in two aspects: on the one hand, anions with shorter alkyl chain lengths possess stronger adsorption performance and better film forming ability on the friction pair surfaces, which makes the ILs form more robust and stable lubricating film; on the other hand, ILs with longer cationic alkyl chain lengths possess milder tribo-chemical reactions, which can effectively enhance the tribological performance and decrease the corrosion wear.

8.
BMJ Open ; 14(1): e080929, 2024 01 18.
Article En | MEDLINE | ID: mdl-38238173

OBJECTIVES: This study aimed to explore the influence of the interaction between parental myopia and lifestyle on myopia among school-age children. DESIGN: Cross-sectional study. SETTING: This study used data from the Tianjin Child and Adolescent Research of Eye between August and October 2022. PARTICIPANTS: A total of 49 035 participants between 6 and 18 years of age were eligible for this study. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome was the interaction between eye-healthy lifestyle and parental myopia on myopia. Parental myopia and eye-healthy lifestyle were ascertained by a Child and Adolescent Behavior Questionnaire. The lifestyle risk score (LRS) of eye health was calculated based on beta-coefficient in the backward regression model. The interaction between LRS and parental myopia was analysed by multivariate logistic regression. The predictive value of different predicted models was estimated using receiver operating characteristic curves. Multiple linear regression was used to evaluate the associations of lifestyle risk factors and parental myopia with spherical equivalent refraction, which were defined as the secondary outcomes. RESULTS: A total of 31 839 participants aged 6-18 years were included, and the myopia prevalence was 55.46%. Eye-healthy lifestyle and parental myopia were significantly associated with myopia, as was interaction. The predictive value for LRS & parental myopia was 0.714 (95% CI: 0.709 to 0.720), which was higher than LRS (0.693, 95% CI: 0.687 to 0.699) and parental myopia (0.710, 95% CI: 0.704 to 0.716) separately. CONCLUSIONS: High-risk lifestyles of myopia and parental myopia were significantly associated with a higher risk of myopia, and the combination had the strongest effect. For children, lifestyle adjustment should be prioritised in preventing myopia, especially for those with parental myopia.


Myopia , Child , Adolescent , Humans , Cross-Sectional Studies , Incidence , Myopia/epidemiology , China/epidemiology , Parents , Risk Factors , Life Style , Prevalence
9.
J Cancer ; 15(1): 232-250, 2024.
Article En | MEDLINE | ID: mdl-38164271

Background: Insulin-like growth factor binding protein 5 (IGFBP5) is highly expressed in multiple human cancers, including glioma. Despite this, it remains unclear what role it plays in glioma. The aim of the present study was to analyze whether IGFBP5 could be used as a predictor of prognosis and immune infiltration in glioma. Methods: Glioma patients' clinical information was collected from the Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA), Rembrandt, and Gravendeel databases. The diagnostic and prognostic roles of IGFBP5 were assessed by the Kaplan-Meier survival curves, diagnostic receiver operating characteristic (ROC) curves, nomogram model, Cox regression analysis and Enrichment analysis by R software. Moreover, the correlation between IGFBP5 expression and immune cell infiltration, and immune checkpoint genes was conducted. Immunohistochemistry staining, CCK8, colony formation, scratch and transwell assays and western blot were used to interrogate the expression and function of IGFBP5 in glioma. Results: IGFBP5 levels were obviously increased in glioma with higher malignancy and predicted poor outcomes by Univariate and multivariate Cox analysis. The biological function analysis revealed that IGFBP5 correlated closely with immune signatures. Moreover, IGFBP5 expression was associated with tumor infiltration of B cells, T cells, macrophages, and NK cells. IGFBP5 affected glioma cell proliferation, migration, and invasion probably involved in the epithelial-to-mesenchymal transition (EMT) and Hippo-YAP signaling pathway. Further study showed that IGFBP5 induced the expression of PD-L1 and CXCR4. Conclusions: IGFBP5 as an oncogene is a useful biomarker of prognosis and correlates with progression and immune infiltration in glioma.

10.
Circ Res ; 134(4): 393-410, 2024 02 16.
Article En | MEDLINE | ID: mdl-38275112

BACKGROUND: The sympathoadrenergic system and its major effector PKA (protein kinase A) are activated to maintain cardiac output coping with physiological or pathological stressors. If and how PKA plays a role in physiological cardiac hypertrophy (PhCH) and pathological CH (PaCH) are not clear. METHODS: Transgenic mouse models expressing the PKA inhibition domain (PKAi) of PKA inhibition peptide alpha (PKIalpha)-green fluorescence protein (GFP) fusion protein (PKAi-GFP) in a cardiac-specific and inducible manner (cPKAi) were used to determine the roles of PKA in physiological CH during postnatal growth or induced by swimming, and in PaCH induced by transaortic constriction (TAC) or augmented Ca2+ influx. Kinase profiling was used to determine cPKAi specificity. Echocardiography was used to determine cardiac morphology and function. Western blotting and immunostaining were used to measure protein abundance and phosphorylation. Protein synthesis was assessed by puromycin incorporation and protein degradation by measuring protein ubiquitination and proteasome activity. Neonatal rat cardiomyocytes (NRCMs) infected with AdGFP (GFP adenovirus) or AdPKAi-GFP (PKAi-GFP adenovirus) were used to determine the effects and mechanisms of cPKAi on myocyte hypertrophy. rAAV9.PKAi-GFP was used to treat TAC mice. RESULTS: (1) cPKAi delayed postnatal cardiac growth and blunted exercise-induced PhCH; (2) PKA was activated in hearts after TAC due to activated sympathoadrenergic system, the loss of endogenous PKIα (PKA inhibition peptide α), and the stimulation by noncanonical PKA activators; (3) cPKAi ameliorated PaCH induced by TAC and increased Ca2+ influxes and blunted neonatal rat cardiomyocyte hypertrophy by isoproterenol and phenylephrine; (4) cPKAi prevented TAC-induced protein synthesis by inhibiting mTOR (mammalian target of rapamycin) signaling through reducing Akt (protein kinase B) activity, but enhancing inhibitory GSK-3α (glycogen synthase kinase-3α) and GSK-3ß signals; (5) cPKAi reduced protein degradation by the ubiquitin-proteasome system via decreasing RPN6 phosphorylation; (6) cPKAi increased the expression of antihypertrophic atrial natriuretic peptide (ANP); (7) cPKAi ameliorated established PaCH and improved animal survival. CONCLUSIONS: Cardiomyocyte PKA is a master regulator of PhCH and PaCH through regulating protein synthesis and degradation. cPKAi can be a novel approach to treat PaCH.


Cyclic AMP-Dependent Protein Kinases , Proteasome Endopeptidase Complex , Mice , Rats , Animals , Proteasome Endopeptidase Complex/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Cardiomegaly/metabolism , Myocytes, Cardiac/metabolism , Mice, Transgenic , Peptides/metabolism , Mammals
11.
J Gastroenterol Hepatol ; 39(4): 716-724, 2024 Apr.
Article En | MEDLINE | ID: mdl-38212102

BACKGROUND AND AIM: The Global Leadership Initiative on Malnutrition (GLIM) criteria are increasingly used to assess the nutritional status of hospitalized patients and predict the prognosis of patients with malignant tumors; however, malnutrition is often overlooked in overweight individuals, such as colorectal cancer patients. This study aimed to investigate the predictive value of the GLIM criteria combined with handgrip strength (HGS) in overweight colorectal cancer patients. METHODS: This retrospective study enrolled overweight patients who underwent radical resection for colorectal cancer at two centers between 2015 and 2021. Malnutrition was diagnosed based on the GLIM criteria. Skeletal muscle mass was assessed using the skeletal muscle index, and skeletal muscle function was assessed using the HGS test. The risk factors for complications and survival were also evaluated. RESULTS: A total of 850 patients were enrolled in the study. The incidence of malnutrition in the GLIM and HGS-GLIM groups was 12.4% and 6.4%, respectively. The incidence of total complications in both the malnutrition groups was significantly higher than that in the control group. Patients in the HGS-GLIM-malnutrition group had worse overall survival and disease-free survival. HGS-GLIM was independently associated with postoperative complications (P = 0.046), overall survival (P = 0.037), and disease-free survival (P = 0.047). CONCLUSION: The GLIM criteria combined with the HGS test is an effective tool for diagnosing malnutrition. Particularly, these modalities are applicable in overweight colorectal cancer patients. Compared with the standard GLIM criteria, this tool has a better predictive value for postoperative complications and long-term survival.


Colorectal Neoplasms , Malnutrition , Humans , Hand Strength , Leadership , Overweight/complications , Retrospective Studies , Malnutrition/diagnosis , Malnutrition/etiology , Nutritional Status , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Colorectal Neoplasms/complications , Colorectal Neoplasms/surgery
12.
Nutr Clin Pract ; 39(2): 459-469, 2024 Apr.
Article En | MEDLINE | ID: mdl-37667519

BACKGROUND: Severe pneumonia in children accounts for a significant healthcare burden, involving prolonged hospitalization and increased risk of complications. The prognosis is closely related to the child's nutrition status. Anthropometric z scores are preferred to evaluate growth levels in children. This study aimed to investigate the association of anthropometric z scores with complications and length of hospital stay (LOS) in children with severe pneumonia. METHODS: This study included 361 hospitalized children aged 3 months to 5 years with severe pneumonia in Tianjin, China. Anthropometry was performed, and anthropometric z scores were calculated. Blood laboratory indices were assessed, and complications and LOS were recorded. RESULTS: The average anthropometric z scores were -0.10 ± 1.15 (body mass index for age z score), 0.00 ± 0.97 (upper arm circumference for age z score [ACAZ]), and -0.14 ± 1.00 (triceps skinfold thickness for age z score [TSAZ]). The prevalence of complications was 73.96% (n = 267), including 82 children with only respiratory complications, 71 with only extrapulmonary complications, and 114 with both. After adjusting for confounding factors, compared with the noncomplication group, only the extrapulmonary complication group had a lower TSAZ (odds ratio [OR] = 0.597; 95% CI = 0.405-0.880; P < 0.05), whereas the respiratory and extrapulmonary complication group had a lower ACAZ (OR = 0.674; 95% CI = 0.469-0.969; P < 0.05) and TSAZ (OR = 0.573; 95% CI = 0.389-0.843; P < 0.05). ACAZ (ß = -0.368; 95% CI = -0.720 to 0.016; P < 0.05) and TSAZ (ß = -1.123; 95% CI = -1.470 to -0.777; P < 0.05) were negatively correlated with LOS. CONCLUSION: ACAZ and TSAZ were associated with complications and LOS of severe pneumonia in children aged 3 months to 5 years.


Nutritional Status , Pneumonia , Child , Humans , Length of Stay , Anthropometry , Body Mass Index , Pneumonia/epidemiology , Pneumonia/etiology
13.
Bioresour Technol ; 393: 130120, 2024 Feb.
Article En | MEDLINE | ID: mdl-38029803

Phenol-rich wine grape pomace (WGP) improves the conversion of pig manure (PM) into humic acid (HA) during composting. However, the impact of using combinations of Fe2O3 and biochar known to promote compost maturation remains uncertain. This research explored the individual and combined influence of biochar and Fe2O3 during the co-composting of PM and WGP. The findings revealed that Fe2O3 boosts microbial network symbiosis (3233 links), augments the HA yield to 3.38 by promoting polysaccharide C-O stretching, and improves the germination index to 124.82 %. Limited microbial interactions, increased by biochar, resulted in a lower HA yield (2.50). However, the combination weakened the stretching of aromatics and quinones, which contribute to the formation of HA, resulting in reduced the humification to 2.73. In addition, Bacillus and Actinomadura were identified as pivotal factors affecting HA content. This study highlights Fe2O3 and biochar's roles in phenol-rich compost humification, but combined use reduces efficacy.


Charcoal , Composting , Vitis , Animals , Swine , Soil , Manure , Humic Substances/analysis , Phenols , Microbial Interactions , Phenol
14.
Injury ; 55(2): 111207, 2024 Feb.
Article En | MEDLINE | ID: mdl-37984015

Calcaneal tuberosity avulsion fracture, an extra-articular injury, is a rare fracture caused internally by Achilles tendon driven following intense contraction of gastrocnemius-soleus complex, and externally by low-energy (possibly high-energy). Moreover, the risk of injuries of the skin and Achilles tendon around calcaneal tuberosity is closely related to Lee classification and Carnero-Martín de Soto Classification of calcaneal tuberosity avulsion fracture. Although the diagnosis confirmed by X-ray, digital imaging and computed tomography (CT), magnetic resonance imaging (MRI) should also be used to evaluate soft tissue. In recent years, the understanding of this fracture has witnessed the development of different internal fixation devices and surgical procedures. These advances have been further elaborated scientifically in terms of their ability to provide stable fracture reduction ad resistance to Achilles tendon forces. In order to obtain a comprehensive knowledge of the disease, this article reviewed the new understanding of the anatomy, typing, risk factors, and treatment modalities of calcaneal tuberosity avulsion fracture in recent years.


Calcaneus , Fractures, Avulsion , Fractures, Bone , Humans , Fractures, Avulsion/diagnostic imaging , Fractures, Avulsion/surgery , Fractures, Bone/diagnostic imaging , Fractures, Bone/surgery , Fractures, Bone/pathology , Fracture Fixation , Calcaneus/diagnostic imaging , Calcaneus/surgery , Calcaneus/injuries , Muscle, Skeletal/pathology , Fracture Fixation, Internal
15.
Eur J Nutr ; 63(1): 291-302, 2024 Feb.
Article En | MEDLINE | ID: mdl-37870657

PURPOSE: Oxidative stress has been reported to cause telomere attrition, which triggers cell apoptosis. Apoptosis of neurocytes may play an essential role in the pathogenesis of neurodegenerative diseases. This study hypothesized that folic acid (FA) supplementation decreased neurocyte apoptosis by alleviating oxidative stress-induced telomere attrition in 25-month-old Sprague Dawley (SD) rats. METHODS: Three-month-old male SD rats were randomly divided into four diet groups by different concentrations of folic acid in equal numbers, with intervention for 22 months. Folate, homocysteine (Hcy), reactive oxygen species (ROS) levels, antioxidant activities, and telomere length in the brain tissues were tested at 11, 18, and 22 months of intervention, and 8-hydroxy-deoxyguanosine (8-OHdG) levels, neurocyte apoptosis and telomere length in the cerebral cortex and hippocampal regions were tested during the 22-month intervention. An automated chemiluminescence system, auto-chemistry analyzer, Q-FISH, qPCR, and TUNEL assay were used in this study. RESULTS: The rats had lower folate concentrations and higher Hcy, ROS, and 8-OHdG concentrations in brain tissue with aging. However, FA supplementation increased folate concentrations and antioxidant activities while decreasing Hcy, ROS, and 8-OHdG levels in rat brain tissue after 11, 18, and 22 months of intervention. Furthermore, FA supplementation alleviated telomere length shortening and inhibited neurocyte apoptosis during the 22-month intervention. CONCLUSION: FA supplementation alleviated oxidative stress-induced telomere attrition and inhibited apoptosis of neurocytes in 25-month-old rats.


Antioxidants , Folic Acid , Rats , Male , Animals , Folic Acid/pharmacology , Antioxidants/pharmacology , Reactive Oxygen Species , Rats, Sprague-Dawley , Oxidative Stress , Apoptosis , 8-Hydroxy-2'-Deoxyguanosine , Telomere
16.
Nutrition ; 117: 112256, 2024 Jan.
Article En | MEDLINE | ID: mdl-37944410

OBJECTIVES: The skeletal muscle mass index and skeletal muscle radiodensity have promise as specific diagnostic indicators for muscle quality. However, the difficulties in measuring low skeletal muscle mass index and low skeletal muscle radiodensity limit their use in routine clinical practice, impeding early screening and diagnosis. The objective of this study is to develop a nomogram that incorporates preoperative factors for predicting low skeletal muscle mass index and low skeletal muscle radiodensity. METHODS: A total of 1692 colorectal cancer patients between 2015 and 2021 were included. The patients were randomly divided into a training cohort (n = 1353) and a validation cohort (n = 339). Nomogram models were calibrated using the area under the curve, calibration curves, and the Hosmer-Lemeshow test to assess their predictive ability. Finally, a decision curve was applied to assess the clinical usefulness. RESULTS: In a prediction model for low skeletal muscle mass index, age, body mass index, and grip strength were incorporated as variables. For low skeletal muscle radiodensity, age, sex, body mass index, serum hemoglobin level, and grip strength were included as predictors. In the training cohort, the area under the curve value for low skeletal muscle mass index was 0.750 (95% CI, 0.726-0.773), whereas for low skeletal muscle radiodensity, it was 0.763 (95% CI, 0.739-0.785). The Hosmer-Lemeshow test confirmed that both models fit well in both cohorts. Decision curve analysis was applied to assess the clinical usefulness of the model. CONCLUSIONS: The incorporation of preoperative factors into the nomogram-based prediction model represents a significant advancement in the muscle quality assessment. Its implementation has the potential to early screen patients at risk of low skeletal muscle mass index and low skeletal muscle radiodensity.


Colorectal Neoplasms , Nomograms , Humans , Muscle, Skeletal/diagnostic imaging , Body Mass Index , Hand Strength , Colorectal Neoplasms/diagnostic imaging , Retrospective Studies
17.
Curr Alzheimer Res ; 20(7): 506-514, 2023.
Article En | MEDLINE | ID: mdl-37957919

BACKGROUND: Along with the problem of population aging, the prevalence of dementia is gradually increasing. Associations between vitamin D deficiency (VDD) and cognitive functions remain unclear. OBJECTIVES: We aimed to determine the relationship between VDD and changes in cognitive performance in community-dwelling older adults. METHODS: In this longitudinal cohort study, participants aged ≥65 years were enrolled in March, 2016. The serum level of 25-hydroxy-vitamin D was analyzed by liquid-chromatography-tandem-- mass-spectrometry at baseline. VDD was defined as less than 20 ng/mL. All participants completed a health status questionnaire. Cognitive functions were evaluated by the Wechsler Adult Intelligence Scale-Revised in China at baseline and each visit. The linear mixed-effects model was utilized to examine the association between baseline VDD and changes in cognitive functions. RESULTS: In total, 866 participants were included in our study, with a mean duration of 3 years. VDD was markedly associated with lower full intelligence quotient (FIQ) (ß: -3.355, 95% confidence interval [CI]:-4.165,-2.545), verbal intelligence quotient (VIQ) (ß: -3.420, 95%CI: -4.193,-2.647), performance intelligence quotient (PIQ) (ß: -2.610, 95%CI: -3.683,-1.537), comprehension (ß: -0.630, 95%CI: -1.022,-0.238), information (ß: -0.354, 95%CI: -0.699,-0.008), arithmetic (ß: -1.065, 95%CI: -1.228,-0.902), digit span (ß: -0.370, 95%CI: -0.547,-0.192), vocabulary (ß: -0.789, 95%CI: -1.084,-0.493), picture completion (ß: -0.391, 95%CI: -0.761,-0.022), block design (ß: -0.412, 95%CI: -0.697,-0.127), picture arrangement (ß: -0.542, 95%CI: -0.909,-0.174), and object assembly (ß: -0.492, 95%CI: -0.818,-0.165) than those with adequacy. CONCLUSION: A higher frequency of VDD was associated with lower scores of FIQ, VIQ, PIQ and subtests on memory and executive function. Future randomized controlled trials are warranted to further verify the conclusions.


East Asian People , Vitamin D Deficiency , Humans , Aged , Longitudinal Studies , Prospective Studies , Cognition , Vitamin D Deficiency/complications , Vitamin D Deficiency/epidemiology , Vitamin D , Cohort Studies
18.
Int J Mol Sci ; 24(19)2023 Sep 25.
Article En | MEDLINE | ID: mdl-37833955

Research demonstrated that folate deficiency in either the mother or father could impact the biological functions of the offspring's of neural cells. Folate deficiency can also impair the methionine cycle, thus contributing to the conversion of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH), which could potentially cause damage to the central nervous system. The study focused on the effect of parental folate deficiency on neural cell apoptosis in offspring neonatal rats and whether it is mediated by the levels of SAM and SAH in brains. The experimental design was conducted by feeding female and male Sprague Dawley (SD) rats with either folate-deficient or folate-normal diets, sacrificing the offspring within 24 h and isolating their brain tissue. Rats were divided into four groups: the maternal-folate-deficient and paternal-folate-deficient (D-D) group; the maternal-folate-deficient and paternal-folate-normal (D-N) group; the maternal-folate-normal and paternal-folate-deficient (N-D) group; and the maternal-folate-normal and paternal-folate-normal (N-N) group. There was down-regulation of B-cell lymphoma 2 (Bcl-2) expression, up-regulation of Bcl-2-associated X protein (Bax) and Caspase-3 expression of neural cells, and pathological changes in the brain ultrastructure, as well as decreased SAM levels, increased SAH levels, and a decreased SAM/SAH ratio in the rat fetal brain via parental folate deficiency. In conclusion, parental folate deficiency could induce the apoptosis of neural cells in neonatal offspring rats, while biparental folate deficiency had the greatest effect on offspring, and the unilateral effect was greater in mothers than in fathers. This process may be mediated by the levels of SAM and SAH in the rat fetal brain.


Folic Acid Deficiency , Rats , Animals , Male , Female , Animals, Newborn , bcl-2-Associated X Protein/genetics , Caspase 3 , Rats, Sprague-Dawley , Folic Acid Deficiency/metabolism , Folic Acid , Apoptosis/physiology , S-Adenosylmethionine/metabolism
19.
J Nutr Biochem ; 122: 109455, 2023 12.
Article En | MEDLINE | ID: mdl-37788724

Maternal folate status during pregnancy is associated with the neurodevelopment of offspring; however, study results on the association between paternal folate status and offspring neurodevelopment are inconsistent. This study aimed to explore whether parental folic acid deficiency affects the neurobehavioral development of offspring by affecting the differentiation of neural stem cells (NSCs) into neurons. In the present study, the offspring were divided into four groups: parental folic acid deficient group (D-D), maternal folic acid deficient and paternal folic acid normal group (D-N), maternal folic acid normal and paternal folic acid deficient group (N-D), and parental folic acid normal group (N-N). For in vivo study, neurobehavioral indexes, and neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP) expression in the brain hippocampus and cerebral cortex of offspring were measured at different time points. For in vitro study, NSCs were cultured from the hippocampus and striatum, and neuronal and astrocytic differentiation were measured. The results demonstrated that parental folic acid deficiency decreased the brain folate level in offspring, delayed early sensory-motor reflex development, impaired spatial learning and memory ability in adolescence and adulthood, decreased differentiation of NSCs into neurons and increased differentiation of NSCs into astrocytes in vivo and in vitro. These impacts on the neurodevelopment of offspring were most pronounced in D-D group, followed by D-N group and N-D group. In conclusion, parental folic acid deficiency inhibits the neurobehavioral development of offspring, possibly by inhibiting the differentiation of NSCs into neurons.


Folic Acid Deficiency , Neural Stem Cells , Pregnancy , Female , Rats , Animals , Neural Stem Cells/physiology , Neurons/metabolism , Folic Acid/pharmacology , Folic Acid/metabolism , Cell Differentiation
20.
Nutrients ; 15(19)2023 Oct 01.
Article En | MEDLINE | ID: mdl-37836528

The deterioration of brain glucose metabolism predates the clinical onset of Alzheimer's disease (AD). Medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA) positively improve brain glucose metabolism and decrease the expression of AD-related proteins. However, the effects of the combined intervention are unclear. The present study explored the effects of the supplementation of MCTs combined with DHA in improving brain glucose metabolism and decreasing AD-related protein expression levels in APP/PS1 mice. The mice were assigned into four dietary treatment groups: the control group, MCTs group, DHA group, and MCTs + DHA group. The corresponding diet of the respective groups was fed to mice from the age of 3 to 11 months. The results showed that the supplementation of MCTs combined with DHA could increase serum octanoic acid (C8:0), decanoic acid (C10:0), DHA, and ß-hydroxybutyrate (ß-HB) levels; improve glucose metabolism; and reduce nerve cell apoptosis in the brain. Moreover, it also aided with decreasing the expression levels of amyloid beta protein (Aß), amyloid precursor protein (APP), ß-site APP cleaving enzyme-1 (BACE1), and presenilin-1 (PS1) in the brain. Furthermore, the supplementation of MCTs + DHA was significantly more beneficial than that of MCTs or DHA alone. In conclusion, the supplementation of MCTs combined with DHA could improve energy metabolism in the brain of APP/PS1 mice, thus decreasing nerve cell apoptosis and inhibiting the expression of Aß.


Alzheimer Disease , Amyloid beta-Peptides , Mice , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/metabolism , Docosahexaenoic Acids/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Mice, Transgenic , Aspartic Acid Endopeptidases/metabolism , Disease Models, Animal , Alzheimer Disease/drug therapy , Brain/metabolism , Dietary Supplements , Triglycerides/metabolism
...