Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
2.
Plant Dis ; : PDIS08231571SC, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37840291

RESUMEN

Clubroot disease caused by the soil-borne Plasmodiophora brassicae is devastating to Brassicaceae crops and spreading rapidly in China in recent years, resulting in great yield losses annually. Virulence of P. brassicae populations specializes and is in dynamic change in the fields. Information on the pathotypes and their distributions is crucial to control the clubroot disease. Presently, the pathotypes of P. brassicae prevalent in China, however, are not well determined. In this study, we used 16 Brassica hosts, including the European Clubroot Differential (ECD) and Williams sets, to designate the pathotypes of 33 P. brassicae populations from 13 provinces. The 33 P. brassicae populations could be divided into 26 pathotypes by the ECD set or seven pathotypes by the Williams set, revealing ECD16/15/31 and ECD16/31/31 or P4 and P2 as the predominant pathotypes. We found that the Brassica rapa differentials ECD01 to ECD04 showed stable and high levels of resistance to most pathotypes of P. brassicae in China, thereby providing valuable resources for clubroot-resistance breeding of Brassicaceae crops. The ECD set exhibited much higher discernibility and further divided the isolates that belonged to the P4 pathotype into 10 ECD pathotypes. Isolates of ECD16/23/31 and ECD16/15/31 were strongly virulent on Huashuang 5R, the first and widely used clubroot-resistant cultivar of oilseed rape in China. As we learn, 26 pathotypes are the most diverse populations of P. brassicae characterized until now in China. Our study provides new insights into virulence specialization of P. brassicae and their geographical distributions, contributing to exploitation of clubroot-resistant resources and the field layout of the present resistant Brassica crops in China.

3.
Clin Kidney J ; 16(11): 1993-2002, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37915910

RESUMEN

Background: Acute kidney disease (AKD) defines patients with acute kidney injury (AKI) or subacute loss of kidney function lasting for >7 days. Little is known about the prognosis of AKD in hospitalized patients. The aim of this study was to investigate the risk factors and prognosis of AKD and to compare different types of acute/subacute renal impairment among Chinese inpatients. Methods: Complete data were available for 71 041 patients for a range of 5-63 months. AKI and AKD were diagnosed based on the Acute Disease Quality Initiative criteria of 2017. Results: Of 71 041 inpatients, 16 098 (22.7%) patients developed AKI or AKD; 5895 (8.3%) AKI patients recovered within 7 days, 5623 (7.9%) AKI patients developed AKD and 4580 (6.4%) patients developed AKD without AKI. Mortality was proportional to stages of AKI and AKD (P < .05), while AKI followed by AKD was associated with a higher risk of long-term mortality [hazard ratio (HR) 4.51] as compared with AKD without AKI (HR 2.25) and recovery from AKI (HR 1.18). The AKD criteria were robustly associated with overall survival [area under the receiver operating characteristic curve (AUROC) 0.71] and de novo CKD (AUROC 0.71), while the AKI criteria showed a relatively lower ability to fit the risk of overall survival (AUROC 0.65) and CKD (AUROC 0.63). Conclusions: AKD and AKD stages are useful clinical definitions for clinical practice, as they predict unfortunate clinical outcomes such as overall long-term mortality and CKD. Research activities should focus on AKD.

4.
Open Life Sci ; 18(1): 20220656, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37589009

RESUMEN

The aim of this study is to explore a novel classification and investigate the clinical significance of hepatocellular carcinoma (HCC) cells. We analyzed integrated single-cell RNA sequencing and bulk RNA-seq data obtained from HCC samples. Cell trajectory analysis divided HCC cells into three subgroups with different differentiation states: state 1 was closely related to phosphoric ester hydrolase activity, state 2 was involved in eukaryotic initiation factor 4E binding, translation regulator activity and ribosome, and state 3 was associated with oxidoreductase activity and metabolism. Three molecular classes based on HCC differentiation-related genes (HDRGs) from HCC samples were identified, which revealed immune checkpoint gene expression and overall survival (OS) of HCC patients. Moreover, a prognostic risk scoring (RS) model was generated based on eight HDRGs, and the results showed that the OS of the high-risk group was worse than that of the low-risk group. Further, potential therapeutic drugs were screened out based on eight prognostic RS-HDRGs. This study highlights the importance of HCC cell differentiation in immunotherapy, clinical prognosis, and potential molecular-targeted drugs for HCC patients, and proposes a direction for the development of individualized treatments for HCC.

5.
Genes (Basel) ; 14(7)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37510325

RESUMEN

SRS (SHI-related sequence) transcription factors play a crucial role in plant growth, development, and abiotic stress response. Although Brassica napus (B. napus) is one of the most important oil crops in the world, the role of SRS genes in B. napus (BnSRS) has not been well investigated. Therefore, we employed a bioinformatics approach to identify BnSRS genes from genomic data and investigated their characteristics, functions, and expression patterns, to gain a better understanding of how this gene family is involved in plant development and growth. The results revealed that there were 34 BnSRS gene family members in the genomic sequence of B. napus, unevenly distributed throughout the sequence. Based on the phylogenetic analysis, these BnSRS genes could be divided into four subgroups, with each group sharing comparable conserved motifs and gene structure. Analysis of the upstream promoter region showed that BnSRS genes may regulate hormone responses, biotic and abiotic stress response, growth, and development in B. napus. The protein-protein interaction analysis revealed the involvement of BnSRS genes in various biological processes and metabolic pathways. Our analysis of BnSRS gene expression showed that 23 BnSRS genes in the callus tissue exhibited a dominant expression pattern, suggesting their critical involvement in cell dedifferentiation, cell division, and tissue development. In addition, association analysis between genotype and agronomic traits revealed that BnSRS genes may be linked to some important agronomic traits in B. napus, suggesting that BnSRS genes were widely involved in the regulation of important agronomic traits (including C16.0, C18.0, C18.1, C18.2 C18.3, C20.1, C22.1, GLU, protein, TSW, and FFT). In this study, we predicted the evolutionary relationships and potential functions of BnSRS gene family members, providing a basis for the development of BnSRS gene functions which could facilitate targeted functional studies and genetic improvement for elite breeding in B. napus.


Asunto(s)
Brassica napus , Brassica napus/metabolismo , Filogenia , Fitomejoramiento , Redes y Vías Metabólicas , Regiones Promotoras Genéticas
6.
Biotechnol Biofuels Bioprod ; 16(1): 86, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37217949

RESUMEN

BACKGROUND: Oilseed rape (Brassica napus L.) is known as one of the most important oilseed crops cultivated around the world. However, its production continuously faces a huge challenge of Sclerotinia stem rot (SSR), a destructive disease caused by the fungus Sclerotinia sclerotiorum, resulting in huge yield loss annually. The SSR resistance in B. napus is quantitative and controlled by a set of minor genes. Identification of these genes and pyramiding them into a variety are a major strategy for SSR resistance breeding in B. napus. RESULTS: Here, we performed a genome-wide association study (GWAS) using a natural population of B. napus consisting of 222 accessions to identify BnaA08g25340D (BnMLO2_2) as a candidate gene that regulates the SSR resistance. BnMLO2_2 was a member of seven homolog genes of Arabidopsis Mildew Locus O 2 (MLO2) and the significantly SNPs were mainly distributed in the promoter of BnMLO2_2, suggesting a role of BnMLO2_2 expression level in the regulation of SSR resistance. We expressed BnMLO2_2 in Arabidopsis and the transgenic plants displayed an enhanced SSR resistance. Transcriptome profiling of different tissues of B. napus revealed that BnMLO2_2 had the most expression level in leaf and silique tissues among all the 7 BnMLO2 members and also expressed higher in the SSR resistant accession than in the susceptible accession. In Arabidopsis, mlo2 plants displayed reduced resistance to SSR, whereas overexpression of MLO2 conferred plants an enhanced SSR resistance. Moreover, a higher expression level of MLO2 showed a stronger SSR resistance in the transgenic plants. The regulation of MLO2 in SSR resistance may be associated with the cell death. Collinearity and phylogenetic analysis revealed a large expansion of MLO family in Brassica crops. CONCLUSION: Our study revealed an important role of BnMLO2 in the regulation of SSR resistance and provided a new gene candidate for future improvement of SSR resistance in B. napus and also new insights into understanding of MLO family evolution in Brassica crops.

7.
J Org Chem ; 88(1): 75-85, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36537803

RESUMEN

Here, we report a facile and metal-free method for the construction of dihydrooxazine derivatives via a formal (3 + 3) annulation reaction of naphthols and 1,3,5-triazinanes. The 1,3,5-triazinanes were utilized as a formal three-atom synthon (C-N-C) for cycloaddition. In addition, dihydrothiazine and tetrahydrobenzoquinazoline derivatives could also be produced in good yields by this strategy under catalyst-free and additive-free conditions.


Asunto(s)
Aminas , Naftoles , Reacción de Cicloadición , Catálisis
8.
Plant Physiol ; 191(1): 558-574, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36018261

RESUMEN

The trans-Golgi network (TGN) acts as a central platform for sorting and secreting various cargoes to the cell surface, thus being essential for the full execution of plant immunity. However, the fine-tuned regulation of TGN components in plant defense and stress response has been not fully elucidated. Our study revealed that despite largely compromising penetration resistance, the loss-of-function mutation of the TGN component protein ECHIDNA (ECH) induced enhanced postinvasion resistance to powdery mildew in Arabidopsis thaliana. Genetic and transcriptome analyses and hormone profiling demonstrated that ECH loss resulted in salicylic acid (SA) hyperaccumulation via the ISOCHORISMATE SYNTHASE 1 biosynthesis pathway, thereby constitutively activating SA-dependent innate immunity that was largely responsible for the enhanced postinvasion resistance. Furthermore, the ech mutant displayed accelerated SA-independent spontaneous cell death and constitutive POWDERY MILDEW RESISTANCE 4-mediated callose depositions. In addition, ECH loss led to a chronically prolonged endoplasmic reticulum stress in the ech mutant. These results provide insights into understanding the role of TGN components in the regulation of plant immunity and stress responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tachyglossidae , Animales , Red trans-Golgi/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tachyglossidae/metabolismo , Arabidopsis/metabolismo , Mutación/genética , Muerte Celular , Estrés del Retículo Endoplásmico , Enfermedades de las Plantas/genética , Ácido Salicílico/metabolismo , Regulación de la Expresión Génica de las Plantas
9.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36555357

RESUMEN

Trehalose and trehalose-6 phosphate played important roles in floral organ development, embryonic development, cell morphogenesis, and signal transduction under abiotic stress. However, little is known about the trehalose-6-phosphate synthase (TPS) gene family in Brassica napus. In this study, in total, 26 TPS genes in B. napus (BnTPS genes) were identified and classified into two groups. In each group, the BnTPS genes showed relatively conserved gene structures. The protein-protein interaction (PPI) network and enrichment analysis indicated that BnTPS genes were involved in the glycolysis/gluconeogenesis, fructose and mannose metabolism, galactose metabolism, pentose phosphate pathway, carbohydrate transmembrane transport, trehalose-phosphatase activity, etc. The expression of BnTPS genes varied greatly across different tissues, while most of the BnTPS genes showed a considerable improvement in expression under different abiotic stresses, indicating that BnTPS genes were significantly responsive to the abiotic treatments. In addition, the association mapping analysis revealed that eight BnTPS genes were potential regulators of particular agronomic traits. Among them, the gene BnTPS23 was significantly associated with the primary flowering time (PFT), full flowering time (FFT1), and final flowering time (FFT2), suggesting that BnTPS genes may play an important role in regulating key agronomic traits in B. napus. In summary, our research provides a better understanding of BnTPS genes, facilitates the breeding of superior B. napus varieties, and paves the way for future functional studies.


Asunto(s)
Brassica napus , Brassica napus/metabolismo , Genes de Plantas , Trehalosa/genética , Trehalosa/metabolismo , Fitomejoramiento , Regulación de la Expresión Génica de las Plantas , Filogenia
10.
Front Plant Sci ; 13: 1061196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407634

RESUMEN

Rapeseed (Brassica napus) is an allotetraploid crop that is the main source of edible oils and feed proteins in the world. The ideal plant architecture breeding is a major objective of rapeseed breeding and determining the appropriate plant height is a key element of the ideal plant architecture. Therefore, this study aims to improve the understanding of the genetic controls underlying plant height. The plant heights of 230 rapeseed accessions collected worldwide were investigated in field experiments over two consecutive years in Wuhan, China. Whole-genome resequencing of these accessions yielded a total of 1,707,194 informative single nucleotide polymorphisms (SNPs) that were used for genome-wide association analysis (GWAS). GWAS and haplotype analysis showed that BnaA01g09530D, which encodes BRASSINOSTEROID-INSENSITIVE 2 and belongs to the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family, was significantly associated with plant height in B. napus. Moreover, a total of 31 BnGSK3s with complete domains were identified from B. napus genome and clustered into four groups according to phylogenetic analysis, gene structure, and motif distribution. The expression patterns showed that BnGSK3s exhibited significant differences in 13 developmental tissues in B. napus, suggesting that BnGSK3s may be involved in tissue-specific development. Sixteen BnGSK3 genes were highly expressed the in shoot apical meristem, which may be related to plant height or architecture development. These results are important for providing new haplotypes of plant height in B. napus and for extending valuable genetic information for rapeseed genetic improvement of plant architecture.

11.
Front Plant Sci ; 13: 1008665, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311105

RESUMEN

Alternative splicing (AS) is an important post-transcriptional mechanism promoting the diversity of transcripts and proteins to regulate various life processes in eukaryotes. Sclerotinia stem rot is a major disease of Brassica napus caused by Sclerotinia sclerotiorum, which causes severe yield loss in B. napus production worldwide. Although many transcriptome studies have been carried out on the growth, development, and infection of S. sclerotiorum, the genome-wide AS events of S. sclerotiorum remain poorly understood, particularly at the infection stage. In this study, transcriptome sequencing was performed to systematically explore the genome-scale AS events of S. sclerotiorum at five important infection stages on a susceptible oilseed rape cultivar. A total of 130 genes were predicted to be involved in AS from the S. sclerotiorum genome, among which 98 genes were differentially expressed and may be responsible for AS reprogramming for its successful infection. In addition, 641 differential alternative splicing genes (DASGs) were identified during S. sclerotiorum infection, accounting for 5.76% of all annotated S. sclerotiorum genes, and 71 DASGs were commonly found at all the five infection stages. The most dominant AS type of S. sclerotiorum was found to be retained introns or alternative 3' splice sites. Furthermore, the resultant AS isoforms of 21 DASGs became pseudogenes, and 60 DASGs encoded different putative proteins with different domains. More importantly, 16 DASGs of S. sclerotiorum were found to have signal peptides and possibly encode putative effectors to facilitate the infection of S. sclerotiorum. Finally, about 69.27% of DASGs were found to be non-differentially expressed genes, indicating that AS serves as another important way to regulate the infection of S. sclerotiorum on plants besides the gene expression level. Taken together, this study provides a genome-wide landscape for the AS of S. sclerotiorum during infection as well as an important resource for further elucidating the pathogenic mechanisms of S. sclerotiorum.

12.
Front Plant Sci ; 13: 962592, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186010

RESUMEN

Ovate family proteins (OFPs) were firstly identified in tomato as proteins controlling the pear shape of the fruit. Subsequent studies have successively proved that OFPs are a class of negative regulators of plant development, and are involved in the regulation of complex traits in different plants. However, there has been no report about the functions of OFPs in rapeseed growth to date. Here, we identified the OFPs in rapeseed at the genomic level. As a result, a total of 67 members were obtained. We then analyzed the evolution from Arabidopsis thaliana to Brassica napus, illustrated their phylogenetic and syntenic relationships, and compared the gene structure and conserved domains between different copies. We also analyzed their expression patterns in rapeseed, and found significant differences in the expression of different members and in different tissues. Additionally, we performed a GWAS for the number of seeds per silique (NSPS) in a rapeseed population consisting of 204 natural accessions, and identified a new gene BnOFP13_2 significantly associated with NSPS, which was identified as a novel function of OFPs. Haplotype analysis revealed that the accessions with haplotype 3 had a higher NSPS than other accessions, suggesting that BnOFP13_2 is associated with NSPS. Transcript profiling during the five stages of silique development demonstrated that BnOFP13_2 negatively regulates NSPS. These findings provide evidence for functional diversity of OFP gene family and important implications for oilseed rape breeding.

13.
Plants (Basel) ; 11(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35956479

RESUMEN

Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum (S. sclerotiorum) is the main disease threat of oilseed rape (Brassica napus), resulting in huge economic losses every year. SSR resistance manifests as quantitative disease resistance (QDR), and no gene with complete SSR resistance has been cloned or reported so far. Transcriptome analysis has revealed a large number of defense-related genes and response processes. However, the similarities and differences in the defense responses of different tissues are rarely reported. In this study, we analyzed the similarities and differences of different tissues in response to S. sclerotiorum at 24 h post inoculation (hpi) by using the published transcriptome data for respective leaf and stem inoculation. At 24 hpi, large differences in gene expression exist in leaf and stem, and there are more differentially expressed genes and larger expression differences in leaf. The leaf is more sensitive to S. sclerotiorum and shows a stronger response than stem. Different defense responses appear in the leaf and stem, and the biosynthesis of lignin, callose, lectin, chitinase, PGIP, and PR protein is activated in leaf. In the stem, lipid metabolism-mediated defense responses are obviously enhanced. For the common defense responses in both leaf and stem, the chain reactions resulting from signal transduction and biological process take the primary responsibility. This research will be beneficial to exploit the potential of different tissues in plant defense and find higher resistance levels of genotypic variability in different environments. Our results are significant in the identification of resistance genes and analysis of defense mechanisms.

14.
Front Plant Sci ; 13: 829668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251101

RESUMEN

Serine/arginine-rich (SR) proteins are indispensable factors for RNA splicing, and they play important roles in development and abiotic stress responses. However, little information on SR genes in Brassica napus is available. In this study, 59 SR genes were identified and classified into seven subfamilies: SR, SCL, RS2Z, RSZ, RS, SR45, and SC. In each subfamily, the genes showed relatively conserved structures and motifs, but displayed distinct expression patterns in different tissues and under abiotic stress, which might be caused by the varied cis-acting regulatory elements among them. Transcriptome datasets from Pacbio/Illumina platforms showed that alternative splicing of SR genes was widespread in B. napus and the majority of paralogous gene pairs displayed different splicing patterns. Protein-protein interaction analysis indicated that SR proteins were involved in the regulation of the whole lifecycle of mRNA, from synthesis to decay. Moreover, the association mapping analysis suggested that 12 SR genes were candidate genes for regulating specific agronomic traits, which indicated that SR genes could affect the development and hence influence the important agronomic traits of B. napus. In summary, this study provided elaborate information on SR genes in B. napus, which will aid further functional studies and genetic improvement of agronomic traits in B. napus.

15.
Front Plant Sci ; 13: 1080999, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589070

RESUMEN

Rapeseed (Brassica napus L.) is a crucial oil crop cultivated worldwide. First branch height, an essential component of rapeseed plant architecture, has an important effect on yield and mechanized harvesting; however, the underlying genetic mechanism remains unclear. In this study, based on the 60K single nucleotide polymorphism array and a recombinant inbred lines population derived from M083 and 888-5, a total of 19 QTLs were detected in five environments, distributed on linkage groups A02, A09, A10, C06, and C07, which explained phenotypic variation ranging from 4.87 to 29.87%. Furthermore, 26 significant SNPs were discovered on Chr.A02 by genome-wide association study in a diversity panel of 324 re-sequencing accessions. The major QTL of the first branch height trait was co-located on Chr.A02 by integrating linkage mapping and association mapping. Eleven candidate genes were screened via allelic variation analysis, inter-subgenomic synteny analysis, and differential expression of genes in parental shoot apical meristem tissues. Among these genes, BnaA02g13010D, which encodes a TCP transcription factor, was confirmed as the target gene according to gene function annotation, haplotype analysis, and full-length gene sequencing, which revealed that TATA insertion/deletion in the promoter region was closely linked to significantly phenotypic differences BnaA02.TCP1 M083 overexpression resulted in decreased branch height and increased branch number in Arabidopsis. These results provide a genetic basis for first branch height and the ideal architecture of B. napus.

16.
G3 (Bethesda) ; 11(7)2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-33836054

RESUMEN

Plant height is a crucial element related to plant architecture that influences the seed yield of oilseed rape (Brassica napus L.). In this study, we isolated a natural B. napus mutant, namely a semi-dwarf mutant (sdw-e), which exhibits a 30% reduction in plant height compared with Zhongshuang 11-HP (ZS11-HP). Quantitative trait locus sequencing (QTL-seq) was conducted using two extreme DNA bulks in F2 populations in Wuchang-2017 derived from ZS11-HP × sdw-e to identify QTLs associated with plant height. The result suggested that two QTL intervals were located on chromosome A10. The F2 population consisting of 200 individuals in Yangluo-2018 derived from ZS11-HP × sdw-e was used to construct a high-density linkage map using whole-genome resequencing. The high-density linkage map harbored 4323 bin markers and covered a total distance of 2026.52 cM with an average marker interval of 0.47 cM. The major QTL for plant height named qPHA10 was identified on linkage group A10 by interval mapping and composite interval mapping methods. The major QTL qPHA10 was highly consistent with the QTL-seq results. And then, we integrated the variation sites and expression levels of genes in the major QTL interval to predict the candidate genes. Thus, the identified QTL and candidate genes could be used in marker-assisted selection for B. napus breeding in the future.


Asunto(s)
Brassica napus , Sitios de Carácter Cuantitativo , Brassica napus/genética , Brassica napus/crecimiento & desarrollo , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple
17.
Front Microbiol ; 11: 507036, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178139

RESUMEN

The potential infection biology of Plasmodiophora brassicae in resistant hosts and non-hosts is still not completely understood. Clubroot resistance assay on European clubroot differentials (ECD) set revealed that ECD10 (Brassica napus) and ECD4 (Brassica rapa) show a complete resistance to the tested P. brassicae isolate in contrast to highly susceptible hosts Westar (B. napus) and ECD5 (B. rapa). Previously, we used fluorescent probe-based confocal microscopy (FCM) to refine the life cycle of P. brassicae and indicate the important time points during its infection in Arabidopsis. Here, we used FCM to systematically investigate the infection of P. brassicae in two resistant host species ECD10 and ECD4 and two non-host crops wheat and barley at each indicated time points, compared with two susceptible hosts Westar and ECD5. We found that P. brassicae can initiate the primary infection phase and produce uninucleate primary plasmodia in both resistant hosts and non-hosts just like susceptible hosts at 2 days post-inoculation (dpi). Importantly, P. brassicae can develop into zoosporangia and secondary zoospores and release the secondary zoospores from the zoosporangia in resistant hosts at 7 dpi, comparable to susceptible hosts. However, during the secondary infection phase, no secondary plasmodium was detected in the cortical cells of both resistant hosts in contrast to massive secondary plasmodia present in the cortex tissue of two susceptible hosts leading to root swelling at 15 dpi. In both non-host crops, only uninucleate primary plasmodia were observed throughout roots at 7 and 15 dpi. Quantitative PCR based on DNA revealed that the biomass of P. brassicae has no significant increase from 2 dpi in non-host plants and from 7 dpi in resistant host plants, compared to the huge biomass increase in susceptible host plants from 2 to 25 dpi. Our study reveals that the primary infection phase in the root epidermis and the secondary infection phase in the cortex tissue are, respectively, blocked in non-hosts and resistant hosts, contributing to understanding of cellular and molecular mechanisms underlying clubroot non-host and host resistance.

18.
Breast Cancer Res Treat ; 184(2): 567-583, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32779035

RESUMEN

BACKGROUND: As more young patients with breast cancer undergo treatments and obtain good prognoses, the issue of postoperative reproduction in breast cancer patients has attracted more attention. METHODS: We conducted a prospective, cross-sectional survey of 2000 breast cancer-associated physicians using a 24-items questionnaire adapted from prior guides. Then we used a multivariable linear regression model to confirm independent associations between the propensity of physicians' attitudes toward reproduction and physicians' specific demographic characteristics. RESULTS: A total of 911/1249 (72.93%) eligible physicians completed the questionnaire. Regarding the most concerning topic of whether breast cancer patients could conceive, 65 (7.1%) physicians having low and 457 (50.2%) physicians having high propensity for recommending reproduction. For ductal carcinoma in situ (DCIS) after surgery and radiotherapy, 599 (65.8%) physicians did not agree with the recommendation to conceive. 231 (25.4%) highly agree with the recommendation of reproduction for 2 years after surgery in invasive breast cancer patients with lymph nodes-negative. Only 140 (15.4%) physicians did not agree with the recommendation for 5 years after surgery in invasive breast cancer patients with lymph nodes-positive. A total of 861 (94.5%) physicians stated that they advised the patients to consult experts from other disciplines, such as gynecology, oncology, genetic and psychology disciplines. In multivariable analysis, more positive attitude toward reproduction was significantly associated with male, more than 11 times of participating in academic forum on breast cancer, 1-2 times of consulting about reproduction problems after breast cancer surgery per outpatient service and more than 11 min spending on solving the problem about reproduction in early breast cancer. CONCLUSION: This study showed that attitudes towards reproduction of young breast cancer patients from physicians in China. Physicians had a high propensity for recommending reproduction. Compared with the two reproduction guidelines recommendation when to reproduce in different circumstances for breast cancer patients, physicians from China remained a relatively conservative attitude. Most physicians advised the patients to consult experts from other disciplines, such as gynecology, oncology, genetic and psychology disciplines.


Asunto(s)
Neoplasias de la Mama , Médicos , Actitud del Personal de Salud , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/terapia , China/epidemiología , Estudios Transversales , Humanos , Masculino , Pautas de la Práctica en Medicina , Estudios Prospectivos , Reproducción , Encuestas y Cuestionarios
19.
Ren Fail ; 42(1): 693-703, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32698645

RESUMEN

BACKGROUND: Krüppel-like factor 6 (KLF6) is a transcription factor that participate in various pathophysiological processes, but its contribution in ischemia acute kidney injury (AKI) is lacking so far. The study aimed to investigate the expression and the role of KLF6 in kidney ischemia-reperfusion (IR) injury. METHOD: Microarray data were collected from GSE58438 and GSE52004. The rat IR model was established to evaluate the mRNA and protein expression of KLF6 and inflammatory cytokines in serum and kidney tissues. SiRNA-KLF6 was transfected with HK-2 cells, and then a cell-based hypoxia-reoxygenation (HR) model was established. RESULTS: Bioinformatics showed KLF6 mRNA in kidney tissue is up-regulated in 3 h after IR in rat kidney, which involved in cell activation, leukocyte activation, and response to hydrogen peroxide after IR. The rat IR model results showed that KLF6 expression was peaking at 6 h, and the expression of pro-inflammatory cytokines MCP-1 and TNF-α was increased both in serum and kidney tissues, while anti-inflammatory cytokine IL-10 was decreased after IR. Furthermore, in vitro results showed that KLF6 knock-down reduced the pro-inflammatory cytokines expression. CONCLUSION: These results suggest that (1) KLF6 might be a novel biomarker for early diagnosis of AKI and (2) KLF6 may play a role in promoting inflammation in AKI.


Asunto(s)
Lesión Renal Aguda/metabolismo , Inflamación/metabolismo , Factor 6 Similar a Kruppel/metabolismo , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/diagnóstico , Animales , Biomarcadores/metabolismo , Línea Celular , Citocinas/metabolismo , Factor 6 Similar a Kruppel/genética , Masculino , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/metabolismo , Regulación hacia Arriba
20.
G3 (Bethesda) ; 10(9): 3201-3211, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32646913

RESUMEN

Chlorophyll biosynthesis and chloroplast development are crucial to photosynthesis and plant growth, but their regulatory mechanism remains elusive in many crop species. We isolated a Brassica napus yellow-virescent leaf (yvl) mutant, which exhibited yellow-younger-leaf and virescent-older-leaf with decreased chlorophyll accumulation and delayed chloroplast development. We mapped yvl locus to a 70-kb interval between molecular markers yvl-O10 and InDel-O6 on chromosome A03 in BC2F2 population using whole genome re-sequencing and bulked segregant analysis. The mutant had a 'C' to 'T' substitution in the coding sequence of BnaA03.CHLH, which encodes putative H subunit of Mg-protoporphyrin IX chelatase (CHLH). The mutation resulted in an imperfect protein structure and reduced activity of CHLH. It also hampered the plastid encoded RNA polymerase which transcribes regulatory genes of photosystem II and I. Consequently, the chlorophyll a/b and carotenoid contents were reduced and the chloroplast ultrastructure was degraded in yvl mutant. These results explain that a single nucleotide mutation in BnaA03.CHLH impairs PEP activity to disrupt chloroplast development and chlorophyll biosynthesis in B. napus.


Asunto(s)
Brassica napus , Brassica napus/genética , Clorofila , Clorofila A , Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Hojas de la Planta , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...