Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(10): 244, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354106

RESUMEN

Pearl millet is an essential crop worldwide, with noteworthy resilience to abiotic stress, yet the advancement of its breeding remains constrained by the underutilization of molecular-assisted breeding techniques. In this study, we collected 1,455,924 single nucleotide polymorphism (SNP) and 124,532 structural variant (SV) markers primarily from a pearl millet inbred germplasm association panel consisting of 242 accessions including 120 observed phenotypes, mostly related to the yield. Our findings revealed that the SV markers had the capacity to capture genetic diversity not discerned by SNP markers. Furthermore, no correlation in heritability was observed between SNP and SV markers associated with the same phenotype. The assessment of the nine genomic prediction models revealed that SV markers performed better than SNP markers. When using the SV markers as the predictor variable, the genomic BLUP model achieved the best performance, while using the SNP markers, Bayesian methods outperformed the others. The integration of these models enabled the identification of eight candidate accessions with high genomic estimated breeding values (GEBV) across nine phenotypes using SNP markers. Four candidate accessions were identified with high GEBV across 22 phenotypes using SV markers. Notably, accession 'P23' emerged as a consistent candidate predicted based on both SNP and SV markers specifically for panicle number. These findings contribute valuable insights into the potential of utilizing both SNP and SV markers for genomic prediction in pearl millet breeding. Moreover, the identification of promising candidate accessions, such as 'P23', underscores the accelerated prospects of molecular breeding initiatives for enhancing pearl millet varieties.


Asunto(s)
Genoma de Planta , Pennisetum , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Pennisetum/genética , Pennisetum/crecimiento & desarrollo , Marcadores Genéticos , Selección Genética , Teorema de Bayes , Genómica/métodos , Genotipo
2.
Plant Physiol Biochem ; 216: 109148, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39332330

RESUMEN

Tillers are specialized lateral shoots arising from axillary buds at basal nodes, and are also an important agronomic trait that determines the aboveground biomass and grain yield of various gramineous crops. So far, few genes have been reported to control tiller formation and most have been in the annual crop rice (Oryza sativa). Orchardgrass (Dactylis glomerata) is an important perennial forage crop with great economic and ecological value, but its genes regulating tillering have remained largely unknown. In the present study, we used a natural population of 264 global orchardgrass germplasms to determine genes associated with quantitative variation in tiller number through genome-wide association study analysis. A total of 19 putative loci and 55 genes associated with tiller number were thus identified. Additionally, 26 putative differentially expressed genes with tiller number, including DgCYC-C1, were identified by RNA-seq and genome-wide association study analysis. DgCYC-C1 which is involved in cell division, was overexpressed, revealing that DgCYC-C1 positively regulates tiller number. These results provide some new candidate genes or loci for the improvement of tiller number in crops, which might advance new sustainable strategies to meet global crop production challenges.

3.
Ecotoxicol Environ Saf ; 284: 117001, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39236654

RESUMEN

It is estimated that up to 50 % of arable lands worldwide are acidic, and most crops are severely inhibited due to the high active aluminum (Al). Trifolium repens is an excellent legume forage with a certain acid tolerance, although it is affected by Al toxicity in acidic soil. In this study, physiological and transcriptomic responses of different white clover varieties were analyzed when exposed to a high-level of Al stress. The results revealed that Trifolium repens had a high level of Al toxicity tolerance, and accumulated nearly 70 % of Al3+ in its roots. Al toxicity significantly inhibited the root length and root activity, decreased the chlorophyll (Chl) content and photosynthetic pigments, while significantly increased the intercellular CO2 concentration (Ci). The content of malondialdehyde (MDA), electrolyte leakage (EL), proline and reactive oxygen species (ROS) were significantly accumulated under Al stress. Furthermore, a total of 27,480 differentially expressed genes (DEGs) were identified after the treatment. Gene ontology (GO) and Kyoto encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that most Al-responsive genes enriched to chloroplast thylakoid membrane, chloroplast stroma and photosynthesis in Haifa leaf while in MAG leaf highly enriched in response to regulation of defense response, which could induce the different tolerance of the two cultivars to Al stress. Besides, pectin methylesterase (PME), glycosyl transferases (GT1) and chalcone synthase genes associated with cell wall biosynthesis may improve the Al accumulation and enhance tolerance of Al toxicity. The results established here would help to understand the morphological structure, physiological and biochemical response, and molecular mechanism of white clover under Al tolerance.


Asunto(s)
Aluminio , Perfilación de la Expresión Génica , Contaminantes del Suelo , Trifolium , Trifolium/efectos de los fármacos , Trifolium/genética , Aluminio/toxicidad , Contaminantes del Suelo/toxicidad , Raíces de Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Clorofila/metabolismo , Hojas de la Planta/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
4.
Plant Physiol Biochem ; 215: 109038, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39163651

RESUMEN

Anthocyanins and proanthocyanidins (PAs) are important secondary metabolites in plants, high contents of which are an important goal for quality breeding of white clover (Trifolium repens). However, the involvement of glutathione S-transferase (GST) in the transport of anthocyanins and PAs remains unexplored in white clover. This study identified 153 different TrGSTs in white clover. At the transcriptional level, compared to other TrGSTFs, TrGSTF10 and TrGSTF15 are highly expressed in the 'Purple' white clover, and they may work with the anthocyanin biosynthesis structural genes CHS and CHI to contribute to pigment buildup in white clover. Subcellular localization confirmed that TrGSTF10 and TrGSTF15 are located in the cytoplasm. Additionally, molecular docking experiments showed that TrGSTF10 and TrGSTF15 have similar binding affinity with two flavonoid monomers. Overexpression of TrGSTF15 complemented the deficiency of anthocyanin coloring and PA accumulation in the Arabidopsis tt19 mutant. The initial findings of this research indicate that TrGSTF15 encodes an important transporter of anthocyanin and PA in white clover, thus providing a new perspective for the further exploration of related transport and regulatory mechanisms.


Asunto(s)
Antocianinas , Glutatión Transferasa , Proteínas de Plantas , Proantocianidinas , Trifolium , Antocianinas/metabolismo , Antocianinas/genética , Trifolium/genética , Trifolium/metabolismo , Trifolium/enzimología , Proantocianidinas/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Transporte Biológico , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimología , Simulación del Acoplamiento Molecular , Plantas Modificadas Genéticamente
5.
Plant Dis ; 108(7): 2197-2205, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956749

RESUMEN

Rust disease is a common plant disease that can cause wilting, slow growth of plant leaves, and even affect the growth and development of plants. Orchardgrass (Dactylis glomerata L.) is native to temperate regions of Europe, which has been introduced as a superior forage grass in temperate regions worldwide. Orchardgrass has rich genetic diversity and is widely distributed in the world, which may contain rust resistance genes not found in other crops. Therefore, we collected a total of 333 orchardgrass accessions from different regions around the world. Through a genome-wide association study (GWAS) analysis conducted in four different environments, 91 genes that overlap or are adjacent to significant single nucleotide polymorphisms (SNPs) were identified as potential rust disease resistance genes. Combining transcriptome data from susceptible (PI292589) and resistant (PI251814) accessions, the GWAS candidate gene DG5C04160.1 encoding glutathione S-transferase (GST) was found to be important for orchardgrass rust (Puccinia graminis) resistance. Interestingly, by comparing the number of GST gene family members in seven species, it was found that orchardgrass has the most GST gene family members, containing 119 GST genes. Among them, 23 GST genes showed significant differential expression after inoculation with the rust pathogen in resistant and susceptible accessions; 82% of the genes still showed significantly increased expression 14 days after inoculation in resistant accessions, while the expression level significantly decreased in susceptible accessions. These results indicate that GST genes play an important role in orchardgrass resistance to rust (P. graminis) stress by encoding GST to reduce its oxidative stress response.


Asunto(s)
Dactylis , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Puccinia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Puccinia/genética , Puccinia/fisiología , Dactylis/genética , Dactylis/microbiología , Perfilación de la Expresión Génica , Polimorfismo de Nucleótido Simple/genética , Glutatión Transferasa/genética , Genes de Plantas/genética , Transcriptoma , Basidiomycota/fisiología , Basidiomycota/genética
6.
Theor Appl Genet ; 137(7): 157, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861001

RESUMEN

KEY MESSAGE: Through the histological, physiological, and transcriptome-level identification of the abscission zone of Pennisetum alopecuroides 'Liqiu', we explored the structure and the genes related to seed shattering, ultimately revealing the regulatory network of seed shattering in P. alopecuroides. Pennisetum alopecuroides is one of the most representative ornamental grass species of Pennisetum genus. It has unique inflorescence, elegant appearance, and strong stress tolerance. However, the shattering of seeds not only reduces the ornamental effect, but also hinders the seed production. In order to understand the potential mechanisms of seed shattering in P. alopecuroides, we conducted morphological, histological, physiological, and transcriptomic analyses on P. alopecuroides cv. 'Liqiu'. According to histological findings, the seed shattering of 'Liqiu' was determined by the abscission zone at the base of the pedicel. Correlation analysis showed that seed shattering was significantly correlated with cellulase, lignin, auxin, gibberellin, cytokinin and jasmonic acid. Through a combination of histological and physiological analyses, we observed the accumulation of cellulase and lignin during 'Liqiu' seed abscission. We used PacBio full-length transcriptome sequencing (SMRT) combined with next-generation sequencing (NGS) transcriptome technology to improve the transcriptome data of 'Liqiu'. Transcriptomics further identified many differential genes involved in cellulase, lignin and plant hormone-related pathways. This study will provide new insights into the research on the shattering mechanism of P. alopecuroides.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pennisetum , Reguladores del Crecimiento de las Plantas , Semillas , Transcriptoma , Pennisetum/genética , Pennisetum/fisiología , Pennisetum/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica , Lignina/metabolismo
7.
Theor Appl Genet ; 137(7): 149, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836874

RESUMEN

KEY MESSAGE: Analyze the evolutionary pattern of DNAJ protein genes in the Panicoideae, including pearl millet, to identify and characterize the biological function of PgDNAJ genes in pearl millet. Global warming has become a major factor threatening food security and human development. It is urgent to analyze the heat-tolerant mechanism of plants and cultivate crops that are adapted to high temperature conditions. The Panicoideae are the second largest subfamily of the Poaceae, widely distributed in warm temperate and tropical regions. Many of these species have been reported to have strong adaptability to high temperature stress, such as pearl millet, foxtail millet and sorghum. The evolutionary differences in DNAJ protein genes among 12 Panicoideae species and 10 other species were identified and analyzed. Among them, 79% of Panicoideae DNAJ protein genes were associated with retrotransposon insertion. Analysis of the DNAJ protein pan-gene family in six pearl millet accessions revealed that the non-core genes contained significantly more TEs than the core genes. By identifying and analyzing the distribution and types of TEs near the DNAJ protein genes, it was found that the insertion of Copia and Gypsy retrotransposons provided the source of expansion for the DNAJ protein genes in the Panicoideae. Based on the analysis of the evolutionary pattern of DNAJ protein genes in Panicoideae, the PgDNAJ was obtained from pearl millet through identification. PgDNAJ reduces the accumulation of reactive oxygen species caused by high temperature by activating ascorbate peroxidase (APX), thereby improving the heat resistance of plants. In summary, these data provide new ideas for mining potential heat-tolerant genes in Panicoideae, and help to improve the heat tolerance of other crops.


Asunto(s)
Pennisetum , Proteínas de Plantas , Pennisetum/genética , Pennisetum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Proteínas del Choque Térmico HSP40/genética , Regulación de la Expresión Génica de las Plantas , Retroelementos/genética , Poaceae/genética , Evolución Molecular , Genes de Plantas
8.
Microorganisms ; 12(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38674660

RESUMEN

Soil health is seriously threatened by the overuse of chemical fertilizers in agricultural management. Biogas slurry is often seen as an organic fertilizer resource that is rich in nutrients, and its use has the goal of lowering the amount of chemical fertilizers used while preserving crop yields and soil health. However, the application of continuous biogas slurry has not yet been studied for its long-term impact on soil nutrients and microbial communities in a rotation system of annual ryegrass-silage maize (Zea mays). This study aimed to investigate the impacts on the chemical properties and microbial community of farmland soils to which chemical fertilizer (NPK) (225 kg ha-1), biogas slurry (150 t ha-1), and a combination (49.5 t ha-1 biogas slurry + 150 kg ha-1 chemical fertilizer) were applied for five years. The results indicated that compared to the control group, the long-term application of biogas slurry significantly increased the SOC, TN, AP, and AK values by 45.93%, 39.52%, 174.73%, and 161.54%, respectively; it neutralized acidic soil and increased the soil pH. TN, SOC, pH, and AP are all important environmental factors that influence the structural composition of the soil's bacterial and fungal communities. Chemical fertilizer application significantly increased the diversity of the bacterial community. Variation was observed in the composition of soil bacterial and fungal communities among the different treatments. The structure and diversity of soil microbes are affected by different methods of fertilization; the application of biogas slurry not only increases the contents of soil nutrients but also regulates the soil's bacterial and fungal community structures. Therefore, biogas slurry can serve as a sustainable management measure and offers an alternative to the application of chemical fertilizers for sustainable intensification.

9.
BMC Genomics ; 25(1): 235, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438835

RESUMEN

BACKGROUND: Orchardgrass (Dactylis glomerata L.), a perennial forage, has the advantages of rich leaves, high yield, and good quality and is one of the most significant forage for grassland animal husbandry and ecological management in southwest China. Mitochondrial (mt) genome is one of the major genetic systems in plants. Studying the mt genome of the genus Dactylis could provide more genetic information in addition to the nuclear genome project of the genus. RESULTS: In this study, we sequenced and assembled two mitochondrial genomes of Dactylis species of D. glomerata (597, 281 bp) and D. aschersoniana (613, 769 bp), based on a combination of PacBio and Illumina. The gene content in the mitochondrial genome of D. aschersoniana is almost identical to the mitochondrial genome of D. glomerata, which contains 22-23 protein-coding genes (PCGs), 8 ribosomal RNAs (rRNAs) and 30 transfer RNAs (tRNAs), while D. glomerata lacks the gene encoding the Ribosomal protein (rps1) and D. aschersoniana contains one pseudo gene (atp8). Twenty-three introns were found among eight of the 30 protein-coding genes, and introns of three genes (nad 1, nad2, and nad5) were trans-spliced in Dactylis aschersoniana. Further, our mitochondrial genome characteristics investigation of the genus Dactylis included codon usage, sequences repeats, RNA editing and selective pressure. The results showed that a large number of short repetitive sequences existed in the mitochondrial genome of D. aschersoniana, the size variation of two mitochondrial genomes is due largely to the presence of a large number of short repetitive sequences. We also identified 52-53 large fragments that were transferred from the chloroplast genome to the mitochondrial genome, and found that the similarity was more than 70%. ML and BI methods used in phylogenetic analysis revealed that the evolutionary status of the genus Dactylis. CONCLUSIONS: Thus, this study reveals the significant rearrangements in the mt genomes of Pooideae species. The sequenced Dactylis mt genome can provide more genetic information and improve our evolutionary understanding of the mt genomes of gramineous plants.


Asunto(s)
Genoma Mitocondrial , Animales , Genoma Mitocondrial/genética , Dactylis , Filogenia , Hibridación Genómica Comparativa , ARN Ribosómico , Genómica
10.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958746

RESUMEN

Tillering is a special type of branching and one of the important contributors to the yield of cereal crops. Strigolactone and sucrose play a vital role in controlling tiller formation, but their mechanism has not been elucidated completely in most crops. Orchardgrass (Dactylis glomerata L.) is an important perennial forage with prominent tillering ability among crops. To date, the mechanism of tillering in orchardgrass is still largely unknown. Therefore, we performed a transcriptome and miRNA analysis to reveal the potential RNA mechanism of tiller formation under strigolactone and sucrose treatment in orchardgrass. Our results found that D3, COL5, NCED1, HXK7, miRNA4393-z, and miRNA531-z could be key factors to control tiller bud development in orchardgrass. In addition, strigolactones might affect the ABA biosynthesis pathway to regulate the tiller bud development of orchardgrass, which may be related to the expression changes in miRNA4393-z, NCED1, and D10. miRNA531-z could be involved in the interaction of strigolactones and sucrose in regulating tillering. These results will be further used to clarify the potential mechanism of tillering for breeding new high-tillering and high-production orchardgrass varieties and beneficial to improving the production and reproduction of crops.


Asunto(s)
Dactylis , Fitomejoramiento , Dactylis/genética , Perfilación de la Expresión Génica , Sacarosa , Transcriptoma
11.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003372

RESUMEN

Drought stress is an important factor that reduces plant biomass production and quality. As one of the most important economic forage grasses, orchardgrass (Dactylis glomerata) has high drought tolerance. Auxin/indole-3-acetic acid (Aux/IAA) is one of the early responsive gene families of auxin and plays a key role in the response to drought stress. However, the characteristics of the Aux/IAA gene family in orchardgrass and their potential function in responding to drought stress remain unclear. Here, 30 Aux/IAA members were identified in orchardgrass. Segmental duplication may be an important driving force in the evolution of the Aux/IAA gene family in orchardgrass. Some Aux/IAA genes were induced by IAA, drought, salt, and temperature stresses, implying that these genes may play important roles in responding to abiotic stresses. Heterologous expression in yeast revealed that DgIAA21 can reduce drought tolerance. Similarly, the overexpression of DgIAA21 also reduced drought tolerance in transgenic Arabidopsis, which was supported by lower total chlorophyll content and relative water content as well as higher relative electrolyte leakage and malondialdehyde content (MDA) than Col-0 plants under drought conditions. The results of this study provided valuable insight into the function of DgIAAs in response to drought stress, which can be further used to improve forage grass breeding programs.


Asunto(s)
Arabidopsis , Dactylis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Filogenia
12.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003564

RESUMEN

Orchardgrass (Dactylis glomerata L.) is among the most economically important perennial cool-season grasses, and is considered an excellent hay, pasture, and silage crop in temperate regions worldwide. Tillering is a vital feature that dominates orchardgrass regeneration and biomass yield. However, transcriptional dynamics underlying early-stage bud development in high- and low-tillering orchardgrass genotypes are unclear. Thus, this study assessed the photosynthetic parameters, the partially essential intermediate biomolecular substances, and the transcriptome to elaborate the early-stage profiles of tiller development. Photosynthetic efficiency and morphological development significantly differed between high- (AKZ-NRGR667) and low-tillering genotypes (D20170203) at the early stage after tiller formation. The 206.41 Gb of high-quality reads revealed stage-specific differentially expressed genes (DEGs), demonstrating that signal transduction and energy-related metabolism pathways, especially photosynthetic-related processes, influence tiller induction and development. Moreover, weighted correlation network analysis (WGCNA) and functional enrichment identified distinctively co-expressed gene clusters and four main regulatory pathways, including chlorophyll, lutein, nitrogen, and gibberellic acid (GA) metabolism pathways. Therefore, photosynthesis, carbohydrate synthesis, nitrogen efficient utilization, and phytohormone signaling pathways are closely and intrinsically linked at the transcriptional level. These findings enhance our understanding of tillering in orchardgrass and perennial grasses, providing a new breeding strategy for improving forage biomass yield.


Asunto(s)
Dactylis , Fitomejoramiento , Dactylis/genética , Perfilación de la Expresión Génica , Poaceae/genética , Transcriptoma , Genotipo , Nitrógeno
13.
BMC Genomics ; 24(1): 510, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653366

RESUMEN

BACKGROUND: Along with global warming, resulting in crop production, exacerbating the global food crisis. Therefore, it is urgent to study the mechanism of plant heat resistance. However, crop resistance genes were lost due to long-term artificial domestication. By analyzing the potential heat tolerance genes and molecular mechanisms in other wild materials, more genetic resources can be provided for improving the heat tolerance of crops. Elephant grass (Pennisetum purpureum Schum.) has strong adaptability to heat stress and contains abundant heat-resistant gene resources. RESULTS: Through sequence structure analysis, a total of 36 RWP-RK members were identified in elephant grass. Functional analysis revealed their close association with heat stress. Four randomly selected RKDs (RKD1.1, RKD4.3, RKD6.6, and RKD8.1) were analyzed for expression, and the results showed upregulation under high temperature conditions, suggesting their active role in response to heat stress. The members of RWP-RK gene family (36 genes) in elephant grass were 2.4 times higher than that of related tropical crops, rice (15 genes) and sorghum (15 genes). The 36 RWPs of elephant grass contain 15 NLPs and 21 RKDs, and 73% of RWPs are related to WGD. Among them, combined with the DAP-seq results, it was found that RWP-RK gene family expansion could improve the heat adaptability of elephant grass by enhancing nitrogen use efficiency and peroxidase gene expression. CONCLUSIONS: RWP-RK gene family expansion in elephant grass is closely related to thermal adaptation evolution and speciation. The RKD subgroup showed a higher responsiveness than the NLP subgroup when exposed to high temperature stress. The promoter region of the RKD subgroup contains a significant number of MeJA and ABA responsive elements, which may contribute to their positive response to heat stress. These results provided a scientific basis for analyzing the heat adaptation mechanism of elephant grass and improving the heat tolerance of other crops.


Asunto(s)
Pennisetum , Termotolerancia , Pennisetum/genética , Termotolerancia/genética , Aclimatación , Productos Agrícolas , Domesticación
14.
Plant Biotechnol J ; 21(11): 2348-2357, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37530223

RESUMEN

Millets are a class of nutrient-rich coarse cereals with high resistance to abiotic stress; thus, they guarantee food security for people living in areas with extreme climatic conditions and provide stress-related genetic resources for other crops. However, no platform is available to provide a comprehensive and systematic multi-omics analysis for millets, which seriously hinders the mining of stress-related genes and the molecular breeding of millets. Here, a free, web-accessible, user-friendly millets multi-omics database platform (Milletdb, http://milletdb.novogene.com) has been developed. The Milletdb contains six millets and their one related species genomes, graph-based pan-genomics of pearl millet, and stress-related multi-omics data, which enable Milletdb to be the most complete millets multi-omics database available. We stored GWAS (genome-wide association study) results of 20 yield-related trait data obtained under three environmental conditions [field (no stress), early drought and late drought] for 2 years in the database, allowing users to identify stress-related genes that support yield improvement. Milletdb can simplify the functional genomics analysis of millets by providing users with 20 different tools (e.g., 'Gene mapping', 'Co-expression', 'KEGG/GO Enrichment' analysis, etc.). On the Milletdb platform, a gene PMA1G03779.1 was identified through 'GWAS', which has the potential to modulate yield and respond to different environmental stresses. Using the tools provided by Milletdb, we found that the stress-related PLATZs TFs (transcription factors) family expands in 87.5% of millet accessions and contributes to vegetative growth and abiotic stress responses. Milletdb can effectively serve researchers in the mining of key genes, genome editing and molecular breeding of millets.


Asunto(s)
Barajamiento de ADN , Mijos , Humanos , Mijos/genética , Estudio de Asociación del Genoma Completo , Multiómica , Genómica/métodos
15.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446266

RESUMEN

Heat stress can hinder the growth of perennial ryegrass (Lolium perenne L.). Methyl jasmonate (MeJA) applied exogenously can increase heat stress tolerance in plants; however, the regulatory mechanisms involved in heat tolerance mediated by MeJA are poorly understood in perennial ryegrass. Here, the microRNA (miRNA) expression profiles of perennial ryegrass were assessed to elucidate the regulatory pathways associated with heat tolerance induced by MeJA. Plants were subjected to four treatments, namely, control (CK), MeJA pre-treatment (T), heat stress treatment (H), and MeJA pre-treatment + heat stress (TH). According to the results, 102 miRNAs were up-regulated in all treatments, with 20, 27, and 33 miRNAs being up-regulated in the T, H, and TH treatment groups, respectively. The co-expression network analysis between the deferentially expressed miRNAs and their corresponding target genes showed that 20 miRNAs modulated 51 potential target genes. Notably, the miRNAs that targeted genes related to with regards to heat tolerance were driven by MeJA, and they were involved in four pathways: novel-m0258-5p mediated signal transduction, novel-m0350-5p mediated protein homeostasis, miR397-z, miR5658-z, and novel-m0008-5p involved in cell wall component, and miR1144-z and miR5185-z dominated chlorophyll degradation. Overall, the findings of this research paved the way for more research into the heat tolerance mechanism in perennial ryegrass and provided a theoretical foundation for developing cultivars with enhanced heat tolerance.


Asunto(s)
Lolium , MicroARNs , Termotolerancia , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo
16.
Genetica ; 151(3): 251-265, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37266766

RESUMEN

In addition to their roles in developmental and metabolic processes, MYB transcription factors play crucial roles in plant defense mechanisms and stress responses. A comprehensive analysis of six pearl millet genomes revealed the presence of 1133 MYB genes, which can be classified into four phylogenetically distinct subgroups. The duplication pattern of MYB genes across the pearl millet genomes demonstrates their conserved and similar evolutionary history. Overall, MYB genes were observed to be involved in drought and heat stress responses, with stronger differential expressed observed in root tissues. Multiple analyses indicated that MYB genes mediate abiotic stress responses by modulating abscisic acid-related pathways, circadian rhythms, and histone modification processes. A substantial number of duplicated genes were determined to exhibit differential expression under abiotic stress. The consistent positive expression trend observed in duplicated gene pairs, such as PMA5G04432.1 and PMA2G00728.1, across various abiotic stresses suggests that duplicated MYB genes plays a key role in the evolution of adaptive responses of pearl millet to abiotic stresses.


Asunto(s)
Genoma de Planta , Pennisetum , Estrés Fisiológico , Pennisetum/genética , Proteínas Proto-Oncogénicas c-myb/genética , Filogenia , Regulación de la Expresión Génica de las Plantas , Cromosomas de las Plantas , Redes Reguladoras de Genes
17.
Int J Biol Macromol ; 245: 125463, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348590

RESUMEN

As an important forage crop worldwide, the growth and productivity of orchardgrass are greatly impacted by high temperatures. However, little information is known about how orchardgrass proteomic changes under heat conditions. Therefore, the present study investigated the proteomics and physiological changes in 667 [AKZ-NRGR667 (heat-tolerant)] and 7602 [PI237602 (heat-sensitive)] under heat stress (40/35 °C). In addition, the responses of translational regulating of heat stress in orchardgrass were analyzed through proteomic changes using the tandem mass tags (TMT) technique. Together, 410 differentially expressed proteins (DEPs) were identified from two orchardgrass genotypes under heat at 24 h. Proteomics analyses indicated that proteins related to substance metabolism, photosynthesis, and heat shock proteins (HSPs) were differentially expressed under heat stress and control conditions. Moreover, a large proportion of HSPs were expressed in the heat-tolerant genotype as compared to the heat-sensitive genotype. In conclusion, genotype 667 has higher adaptability and repairing capability due to stronger heat tolerance capacity that can make it more suited to sustaining its survival and growth than genotype 7602. These findings can provide the basis for genetic improvements in orchardgrass and other crops facing high-temperature stress or heat environment that may lead to heat resistance or tolerance.


Asunto(s)
Dactylis , Proteómica , Dactylis/genética , Respuesta al Choque Térmico/genética , Genotipo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
18.
Genes (Basel) ; 14(4)2023 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-37107682

RESUMEN

Plant-specific TCP transcription factors regulate several plant growth and development processes. Nevertheless, little information is available about the TCP family in orchardgrass (Dactylis glomerata L.). This study identified 22 DgTCP transcription factors in orchardgrass and determined their structure, phylogeny, and expression in different tissues and developmental stages. The phylogenetic tree classified the DgTCP gene family into two main subfamilies, including class I and II supported by the exon-intron structure and conserved motifs. The DgTCP promoter regions contained various cis-elements associated with hormones, growth and development, and stress responses, including MBS (drought inducibility), circadian (circadian rhythms), and TCA-element (salicylic acid responsiveness). Moreover, DgTCP9 possibly regulates tillering and flowering time. Additionally, several stress treatments upregulated DgTCP1, DgTCP2, DgTCP6, DgTCP12, and DgTCP17, indicting their potential effects regarding regulating responses to the respective stress. This research offers a valuable basis for further studies of the TCP gene family in other Gramineae and reveals new ideas for increasing gene utilization.


Asunto(s)
Dactylis , Perfilación de la Expresión Génica , Dactylis/genética , Dactylis/metabolismo , Filogenia , Factores de Transcripción/metabolismo , Intrones
19.
Environ Pollut ; 328: 121658, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37075919

RESUMEN

Cadmium (Cd) is among the toxic pollutants that harms the both animals and plants. The natural antioxidant, melatonin can improve Cd-stress tolerance but its potential role in reducing Cd stress and resilience mechanisms in pearl millet (Pennisetum glaucum L.) is remain unclear. The present study suggests that Cd causes severe oxidative damage by decreasing photosynthesis, and increasing reactive oxygen species (ROS), malondialdehyde content (MDA), and Cd content in different parts of pearl millet. However, exogenous melatonin (soil application and foliar treatment) mitigated the Cd toxicity and enhanced the growth, antioxidant defense system, and differentially regulated the expression of antioxidant-responsive genes i. e superoxide dismutase SOD-[Fe] 2, Fe-superoxide dismutase, Peroxiredoxin 2C, and L-ascorbate peroxidase-6. The results showed that foliar melatonin at F-200/50 significantly increased the plant height, chlorophyll a, b, a+b and carotenoids by 128%, 121%, 150%, 122%, and 69% over the Cd treatment, respectively. The soil and foliar melatonin at S-100/50 and F-100/50 reduced the ROS by 36%, and 44%, and MDA by 42% and 51% over the Cd treatment, respectively. Moreover, F200/50 significantly boosted the activities of antioxidant enzymes i. e SOD by 141%, CAT 298%, POD 117%, and APX 155% over the Cd treatment. Similarly, a significant reduction in Cd content in root, stem, and leaf was found on exposure to higher concentrations of exogenous melatonin. These findings suggest that exogenous melatonin may significantly and differentially improve the tolerance to Cd stress in crop plants. However, field applications, type of plant species, concentration of dose, and type of stress may vary with the degree of tolerance in crop plants.


Asunto(s)
Melatonina , Pennisetum , Contaminantes del Suelo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Melatonina/farmacología , Cadmio/toxicidad , Cadmio/metabolismo , Pennisetum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Clorofila A , Suelo , Superóxido Dismutasa/metabolismo , Estrés Oxidativo , Contaminantes del Suelo/toxicidad
20.
Nat Genet ; 55(3): 507-518, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36864101

RESUMEN

Pearl millet is an important cereal crop worldwide and shows superior heat tolerance. Here, we developed a graph-based pan-genome by assembling ten chromosomal genomes with one existing assembly adapted to different climates worldwide and captured 424,085 genomic structural variations (SVs). Comparative genomics and transcriptomics analyses revealed the expansion of the RWP-RK transcription factor family and the involvement of endoplasmic reticulum (ER)-related genes in heat tolerance. The overexpression of one RWP-RK gene led to enhanced plant heat tolerance and transactivated ER-related genes quickly, supporting the important roles of RWP-RK transcription factors and ER system in heat tolerance. Furthermore, we found that some SVs affected the gene expression associated with heat tolerance and SVs surrounding ER-related genes shaped adaptation to heat tolerance during domestication in the population. Our study provides a comprehensive genomic resource revealing insights into heat tolerance and laying a foundation for generating more robust crops under the changing climate.


Asunto(s)
Pennisetum , Termotolerancia , Pennisetum/genética , Termotolerancia/genética , Adaptación Fisiológica/genética , Genómica , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA