Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1383863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903431

RESUMEN

Cotton, a vital textile raw material, is intricately linked to people's livelihoods. Throughout the cotton cultivation process, various diseases threaten cotton crops, significantly impacting both cotton quality and yield. Deep learning has emerged as a crucial tool for detecting these diseases. However, deep learning models with high accuracy often come with redundant parameters, making them challenging to deploy on resource-constrained devices. Existing detection models struggle to strike the right balance between accuracy and speed, limiting their utility in this context. This study introduces the CDDLite-YOLO model, an innovation based on the YOLOv8 model, designed for detecting cotton diseases in natural field conditions. The C2f-Faster module replaces the Bottleneck structure in the C2f module within the backbone network, using partial convolution. The neck network adopts Slim-neck structure by replacing the C2f module with the GSConv and VoVGSCSP modules, based on GSConv. In the head, we introduce the MPDIoU loss function, addressing limitations in existing loss functions. Additionally, we designed the PCDetect detection head, integrating the PCD module and replacing some CBS modules with PCDetect. Our experimental results demonstrate the effectiveness of the CDDLite-YOLO model, achieving a remarkable mean average precision (mAP) of 90.6%. With a mere 1.8M parameters, 3.6G FLOPS, and a rapid detection speed of 222.22 FPS, it outperforms other models, showcasing its superiority. It successfully strikes a harmonious balance between detection speed, accuracy, and model size, positioning it as a promising candidate for deployment on an embedded GPU chip without sacrificing performance. Our model serves as a pivotal technical advancement, facilitating timely cotton disease detection and providing valuable insights for the design of detection models for agricultural inspection robots and other resource-constrained agricultural devices.

2.
Genes (Basel) ; 15(2)2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38397145

RESUMEN

Rehmannia glutinosa, a member of the Scrophulariaceae family, has been widely used in traditional Chinese medicine since ancient times. The main bioactive component of R. glutinosa is catalpol. However, the biogenesis of catalpol, especially its downstream pathway, remains unclear. To identify candidate genes involved in the biosynthesis of catalpol, transcriptomes were constructed from R. glutinosa using the young leaves of three cultivars, Beijing No. 3, Huaifeng, and Jin No. 9, as well as the tuberous roots and adventitious roots of the Jin No. 9 cultivar. As a result, 71,142 unigenes with functional annotations were generated. A comparative analysis of the R. glutinosa transcriptomes identified over 200 unigenes of 13 enzymes potentially involved in the downstream steps of catalpol formation, including 9 genes encoding UGTs, 13 for aldehyde dehydrogenases, 70 for oxidoreductases, 44 for CYP450s, 22 for dehydratases, 30 for decarboxylases, 19 for hydroxylases, and 10 for epoxidases. Moreover, two novel genes encoding geraniol synthase (RgGES), which is the first committed enzyme in catalpol production, were cloned from R. glutinosa. The purified recombinant proteins of RgGESs effectively converted GPP to geraniol. This study is the first to discover putative genes coding the tailoring enzymes mentioned above in catalpol biosynthesis, and functionally characterize the enzyme-coding gene in this pathway in R. glutinosa. The results enrich genetic resources for engineering the biosynthetic pathway of catalpol and iridoids.


Asunto(s)
Monoterpenos Acíclicos , Glucósidos Iridoides , Plantas Medicinales , Rehmannia , Plantas Medicinales/genética , Rehmannia/genética , Rehmannia/metabolismo , Perfilación de la Expresión Génica
3.
BMC Plant Biol ; 23(1): 179, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020180

RESUMEN

BACKGROUND: Upland cotton (Gossypium hirsutum L.) is the most economically important species in the cotton genus (Gossypium spp.). Enhancing the cotton yield is a major goal in cotton breeding programs. Lint percentage (LP) and boll weight (BW) are the two most important components of cotton lint yield. The identification of stable and effective quantitative trait loci (QTLs) will aid the molecular breeding of cotton cultivars with high yield. RESULTS: Genotyping by target sequencing (GBTS) and genome-wide association study (GWAS) with 3VmrMLM were used to identify LP and BW related QTLs from two recombinant inbred line (RIL) populations derived from high lint yield and fiber quality lines (ZR014121, CCRI60 and EZ60). The average call rate of a single locus was 94.35%, and the average call rate of an individual was 92.10% in GBTS. A total of 100 QTLs were identified; 22 of them were overlapping with the reported QTLs, and 78 were novel QTLs. Of the 100 QTLs, 51 QTLs were for LP, and they explained 0.29-9.96% of the phenotypic variation; 49 QTLs were for BW, and they explained 0.41-6.31% of the phenotypic variation. One QTL (qBW-E-A10-1, qBW-C-A10-1) was identified in both populations. Six key QTLs were identified in multiple-environments; three were for LP, and three were for BW. A total of 108 candidate genes were identified in the regions of the six key QTLs. Several candidate genes were positively related to the developments of LP and BW, such as genes involved in gene transcription, protein synthesis, calcium signaling, carbon metabolism, and biosynthesis of secondary metabolites. Seven major candidate genes were predicted to form a co-expression network. Six significantly highly expressed candidate genes of the six QTLs after anthesis were the key genes regulating LP and BW and affecting cotton yield formation. CONCLUSIONS: A total of 100 stable QTLs for LP and BW in upland cotton were identified in this study; these QTLs could be used in cotton molecular breeding programs. Putative candidate genes of the six key QTLs were identified; this result provided clues for future studies on the mechanisms of LP and BW developments.


Asunto(s)
Gossypium , Mapeo Cromosómico , Fibra de Algodón , Estudio de Asociación del Genoma Completo , Gossypium/genética , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo
4.
Front Plant Sci ; 14: 1293599, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38510833

RESUMEN

KASP marker technology has been used in molecular marker-assisted breeding because of its high efficiency and flexibility, and an intelligent evaluation model of KASP marker primer typing results is essential to improve the efficiency of marker development on a large scale. To this end, this paper proposes a gene population delineation method based on NTC identification module and data distribution judgment module to improve the accuracy of K-Means clustering, and introduces a decision tree to construct the KASP-IEva primer typing evaluation model. The model firstly designs the NTC identification module and data distribution judgment module to extract four types of data, grouping and categorizing to achieve the improvement of the distinguishability of amplification product signals; secondly, the K-Means algorithm is used to aggregate and classify the data, to visualize the five aggregated clusters and to obtain the morphology location eigenvalues; lastly, the evaluation criteria for the typing effect level are constructed, and the logical decision tree is used to make conditional discrimination on the eigenvalues in order to realize the score prediction. The performance of the model was tested by the KASP marker typing test results of 2519 groups of cotton varieties, and the following conclusions were obtained: the model is able to visualize the aggregation and classification effects of the amplification products of NTC, pure genotypes, heterozygous genotypes, and untyped genotypes, enabling rapid and accurate KASP marker typing evaluation. Comparing and analyzing the model evaluation results with the expert evaluation results, the average accuracy rate of the four grades evaluated by the model was 87%, and the overall evaluation results showed an uneven distribution of the grades with significant differential characteristics. When evaluating 2519 KASP fractal maps, the expert evaluation consumes 15 hours, and the model evaluation only uses 8min27.45s, which makes the model intelligent evaluation significantly better than the expert evaluation from the perspective of time. The establishment of the model will further enhance the application of KASP markers in molecular marker-assisted breeding and provide technical support for the large-scale screening and identification of excellent genotypes.

5.
J Adv Res ; 42: 55-67, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35738523

RESUMEN

INTRODUCTION: Cotton is a vital industrial crop that is gradually shifting to planting in arid areas. However, tubby-like proteins (TULPs) involved in plant response to various stresses are rarely reported in cotton. The present study exhibited that GhTULP30 transcription in cotton was induced by drought stress. OBJECTIVE: The present study demonstrated the improvement of plant tolerance to drought stress by GhTULP30 through regulation of stomatal movement. METHODS: GhTULP30 response to drought and salt stress was preliminarily confirmed by qRT-PCR and yeast stress experiments. Ectopic expression in Arabidopsis and endogenous gene silencing in cotton were used to determine stomatal movement. Yeast two-hybrid and spilt-luciferase were used to screen the interacting proteins. RESULTS: Ectopic expression of GhTULP30 in yeast markedly improved yeast cell tolerance to salt and drought. Overexpression of GhTULP30 made Arabidopsis seeds more resistant to drought and salt stress during seed germination and increased the stomata closing speed of the plant under drought stress conditions. Silencing of GhTULP30 in cotton by virus-induced gene silencing (VIGS) technology slowed down the closure speed of stomata under drought stress and decreased the length and width of the stomata. The trypan blue and diaminobenzidine staining exhibited the severity of leaf cell necrosis of GhTULP30-silenced plants. Additionally, the contents of proline, malondialdehyde, and catalase of GhTULP30-silenced plants exhibited significant variations, with obvious leaf wilting. Protein interaction experiments exhibited the interaction of GhTULP30 with GhSKP1B and GhXERICO. CONCLUSION: GhTULP30 participates in plant response to drought stress. The present study provides a reference and direction for further exploration of TULP functions in cotton plants.


Asunto(s)
Arabidopsis , Sequías , Arabidopsis/genética , Gossypium/genética , Gossypium/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
6.
Molecules ; 27(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35268735

RESUMEN

Rehmannia glutinosa is an important medicinal plant that has long been used in Chinese traditional medicine. Acteoside, one of the bioactive components from R. glutinosa, possessed various pharmacological activities for human health; however, the molecular mechanism of acteoside formation is not fully understood. In the current study, a novel tyrosine decarboxylase (designated as RgTyDC2) was identified from the R. glutinosa transcriptome. Biochemical analysis of RgTyDC2 showed RgTyDC2 uses tyrosine and dopa as the substrate to produce tyramine and dopamine, respectively, and it displays higher catalytic efficiency toward tyrosine than dopa. Moreover, the transcript level of RgTyDC2 was consistent with the accumulation pattern of acteoside in R. glutinosa, supporting its possible role in the biosynthesis of acteoside in vivo.


Asunto(s)
Rehmannia
7.
BMC Genomics ; 22(1): 171, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750315

RESUMEN

BACKGROUND: The AP2/ERF family is widely present in plants and plays a crucial regulatory role in plant growth and development. As an essential aquatic horticultural model plant, lotus has an increasingly prominent economic and research value. RESULTS: We have identified and analysed the AP2/ERF gene family in the lotus. Initially, 121 AP2/ERF family genes were identified. By analysing their gene distribution and protein structure, and their expression patterns during the development of lotus rhizome, combined with previous studies, we obtained an SNP (megascaffold_20:3578539) associated with lotus rhizome phenotype. This SNP was in the NnADAP gene of the AP2 subfamily, and the changes in SNP (C/T) caused amino acid conversion (proline/leucine). We constructed a population of 95 lotus varieties for SNP verification. Through population typing experiments, we found that the group with SNP CC had significantly larger lotus rhizome and higher soluble sugar content among the population. CONCLUSIONS: In conclusion, we speculate that the alteration of the SNP in the NnADAP can affect the size and sugar content of the lotus rhizome.


Asunto(s)
Lotus , Nelumbo , Genoma de Planta , Lotus/genética , Nelumbo/genética , Filogenia , Desarrollo de la Planta , Proteínas de Plantas/genética , Rizoma/genética
8.
Planta ; 253(3): 65, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564987

RESUMEN

MAIN CONCLUSION: CONSTANS-LIKE 5 of Nelumbo nucifera is capable of promoting potato tuberization through CONSTANS-FLOWERING LOCUS T and gibberellin signaling pathways with a probable association with lotus rhizome enlargement. Lotus (Nelumbo nucifera) is an aquatic plant that is affiliated to the Nelumbonaceace family. It is widely used as an ornamental, vegetable, and medicinal herb with its rhizome being a popular vegetable. To explore the molecular mechanism underlying its rhizome enlargement, we conducted a systematic analysis on the CONSTANS-LIKE (COL) gene family, with the results, indicating that this gene plays a role in regulating potato tuber expansion. These analyses included phylogenetic relationships, gene structure, and expressional patterns of lotus COL family genes. Based on these analyses, NnCOL5 was selected for further study on its potential function in lotus rhizome formation. NnCOL5 was shown to be located in the nucleus, and its expression was positively associated with the enlargement of lotus rhizome. Besides, the overexpression of NnCOL5 in potato led to increased tuber weight and starch content under short-day conditions without changing the number of tubers. Further analysis suggested that the observed tuber changes might be mediated by affecting the expression of genes in CO-FT and GA signaling pathways. These results provide valuable insight in understanding the functions of COL gene as well as the enlargement of lotus rhizome.


Asunto(s)
Nelumbo , Solanum tuberosum , Nelumbo/genética , Filogenia , Tubérculos de la Planta/genética , Rizoma , Solanum tuberosum/genética
9.
Plant Physiol Biochem ; 160: 155-165, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33497846

RESUMEN

Lotus (Nelumbo nucifera) is a perennial aquatic plant with great value in ornamentation, nutrition, and medicine. Being a storage organ, lotus rhizome is not only used for vegetative reproduction, but also as a popular vegetable in Southeast Asia. Rhizome development, especially enlargement, largely determines its yield and hence becomes one of the major concerns in rhizome lotus breeding and cultivation. To obtain the genetic characteristic of this trait, and discover markers or genes associated with this trait, an F2 population was generated by crossing between temperate and tropical cultivars with contrasting rhizome enlargement. Based on this F2 population and Genotyping-by-Sequencing (GBS) technique, a genetic map was constructed with 1475 bin markers containing 12,113 SNP markers. Six traits associated with rhizome yield were observed over 3 years. Quantitative trait locus (QTL) mapping analysis identified 22 QTLs that are associated with at least one of these traits, among which 9 were linked with 3 different intervals. Comparison of the genes located in these three intervals with our previous transcriptomic data showed that light and phytohormone signaling might contribute to the development and enlargement of lotus rhizome. The QTLs obtained here could also be used for marker-assisted breeding of rhizome lotus.


Asunto(s)
Ligamiento Genético , Nelumbo/genética , Sitios de Carácter Cuantitativo , Rizoma/crecimiento & desarrollo , Mapeo Cromosómico , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Rizoma/genética
10.
J Integr Plant Biol ; 61(8): 929-942, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30253066

RESUMEN

Commercial varieties of upland cotton (Gossypium hirsutum) have undergone extensive breeding for agronomic traits, such as fiber quality, disease resistance, and yield. Cotton breeding programs have widely used Chinese upland cotton source germplasm (CUCSG) with excellent agronomic traits. A better understanding of the genetic diversity and genomic characteristics of these accessions could accelerate the identification of desirable alleles. Here, we analyzed 10,522 high-quality single-nucleotide polymorphisms (SNP) with the CottonSNP63K microarray in 137 cotton accessions (including 12 hybrids of upland cotton). These data were used to investigate the genetic diversity, population structure, and genomic characteristics of each population and the contribution of these loci to heterosis. Three subgroups were identified, in agreement with their known pedigrees, geographical distributions, and times since introduction. For each group, we identified lineage-specific genomic divergence regions, which potentially harbor key alleles that determine the characteristics of each group, such as early maturity-related loci. Investigation of the distribution of heterozygous loci, among 12 commercial cotton hybrids, revealed a potential role for these regions in heterosis. Our study provides insight into the population structure of upland cotton germplasm. Furthermore, the overlap between lineage-specific regions and heterozygous loci, in the high-yield hybrids, suggests a role for these regions in cotton heterosis.


Asunto(s)
Gossypium/fisiología , Alelos , Genómica , Genotipo , Gossypium/genética , Vigor Híbrido/genética , Vigor Híbrido/fisiología , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
11.
Planta ; 248(3): 715-727, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29948126

RESUMEN

MAIN CONCLUSION: Identification of NnCER2 and NnCER2-LIKE from Nelumbo nucifera, which are required for the very-long-chain fatty acid elongation, provides new evidence that CER2 proteins are evolutionarily conserved across the eudicots. CER2-LIKE family proteins have been described as core components of the fatty acid elongase complex in Arabidopsis, maize, and rice, having specific function in synthesis of the C30 to C34 fatty acyl-CoA precursors of cuticular waxes. Little is known about the functional conservation in this gene family across species. In this study, two CER2-LIKE family proteins, NnCER2 and NnCER2-LIKE, were characterized from sacred lotus (Nelumbo nucifera), which is an ancient basal eudicot. The transcriptional expression of NnCER2 and NnCER2-LIKE was found in floating leaf blades, emergent petioles and vertical leaves, petals, and anthers. The NnCER2 and NnCER2-LIKE proteins were localized to the endoplasmic reticulum and nucleus. Overexpressing NnCER2 and NnCER2-LIKE in Arabidopsis led to alteration of cuticle wax structure in inflorescence stems, and this was associated with elevated 30, 32, and 34 carbon length wax compounds, and their derivatives. The different substrate specificities of NnCER2 and NnCER2-LIKE were explored using co-expression with AtCER6 in yeast cells. These findings provide clear evidence that the function of CER2 family proteins in producing VLCFAs is highly conserved across the eudicots.


Asunto(s)
Acetiltransferasas/genética , Secuencia Conservada/genética , Ácidos Grasos/metabolismo , Nelumbo/genética , Proteínas de Plantas/genética , Acetiltransferasas/metabolismo , Arabidopsis/genética , Evolución Molecular , Elongasas de Ácidos Grasos , Genes de Plantas/genética , Nelumbo/metabolismo , Filogenia , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
J Integr Plant Biol ; 60(1): 2-15, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29052958

RESUMEN

Sacred lotus (Nelumbo nucifera or lotus) is an important aquatic plant in horticulture and ecosystems. As a foundation for exploring genomic variation and evolution among different germplasms, we re-sequenced 19 individuals from three cultivated temperate lotus subgroups (rhizome, seed and flower lotus), one wild temperate lotus subgroup (wild lotus), one tropical lotus group (Thai lotus) and an outgroup (Nelumbo lutea). Through genetic diversity and polymorphism analysis by non-missing SNP sites widely distributed in the whole genome, we confirmed that wild and Thai lotus exhibited greater differentiation with a higher genomic diversity compared to cultivated lotus. Rhizome lotus had the lowest genomic diversity and a closer relationship to wild lotus, whereas the genomes of seed and flower lotus were admixed. Genes in energy metabolism process and plant immunity evolved rapidly in lotus, reflecting local adaptation. We established that candidate genes in genomic regions with significant differentiation associated with temperate and tropical lotus divergence always exhibited highly divergent expression pattern. Together, this study comprehensive and credible interpretates important patterns of genetic diversity and relationships, gene evolution, and genomic signature from ecotypic differentiation of sacred lotus.


Asunto(s)
Evolución Molecular , Genoma de Planta , Nelumbo/genética , Análisis de Secuencia de ADN , Ecotipo , Ontología de Genes , Genes de Plantas , Estudios de Asociación Genética , Variación Genética , Familia de Multigenes , Filogenia , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...