Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
J Agric Food Chem ; 71(25): 9847-9855, 2023 Jun 28.
Article En | MEDLINE | ID: mdl-37326390

Odd chain fatty acids (OCFAs) are high-value-added compounds with great application in the field of food and medicine. As an oleaginous microorganism, Schizochytrium sp. has the potential to produce OCFAs efficiently. Propionyl-CoA is used as a precursor to synthesize OCFAs through the fatty acid synthetase (FAS) pathway, so its flow direction determines the yield of OCFAs. Here, different substrates were assessed to promote propionyl-CoA supply for OCFA accumulation. Moreover, the methylmalonyl-CoA mutase (MCM) was identified as the key gene responsible for propionyl-CoA consumption, which promotes the propionyl-CoA to enter into the tricarboxylic acid cycle rather than the FAS pathway. As one of the classic B12-dependent enzymes, the activity of MCM can be inhibited in the absence of B12. As expected, the OCFA accumulation was greatly increased. However, the removal of B12 caused growth limitation. Furthermore, the MCM was knocked out to block the consumption of propionyl-CoA and to maintain cell growth; results showed that the engineered strain achieved the OCFAs titer of 2.82 g/L, which is 5.76-fold that of wild type. Last, a fed-batch co-feeding strategy was developed, resulting in the highest reported OCFAs titer of 6.82 g/L. This study provides guidance for the microbial production of OCFAs.


Acyl Coenzyme A , Fatty Acids , Fatty Acids/metabolism , Acyl Coenzyme A/metabolism , Citric Acid Cycle
2.
Biotechnol J ; 18(8): e2300052, 2023 Aug.
Article En | MEDLINE | ID: mdl-37128672

In order to find a more effective way to obtain docosahexaenoic acid (DHA) rich lipid from Schizochytrium sp., a widespread propionate wastewater (PW) is used. PW is a common industrial and domestic wastewater, and transforming it into valuable products is a potential treatment method. Schizochytrium sp. is a rapidly growing oleaginous organism, which has been used commercially for DHA production. Herein, PW is completely used for DHA production by Schizochytrium sp. by genetic engineering and fermentation optimization, which can alleviate the increasingly tense demand for water resources and environmental pollution caused by industrial wastewater. Firstly, the methylmalonyl-CoA mutase (MCM) was overexpressed in Schizochytrium sp. to enhance the metabolism of propionate, then the engineered strain of overexpressed MCM (OMCM) can effectively use propionate. Then, the effects of PW with different concentration of propionate were investigated, and results showed that OMCM can completely replace clean water with PW containing 5 g L-1 propionate. Furthermore, in the fed-batch fermentation, the OMCM obtained the highest biomass of 113.4 g L-1 and lipid yield of 64.4 g L-1 in PW condition, which is 26.8% and 51.7% higher than that of wild type (WT) in PW condition. Moreover, to verify why overexpression of MCM can promote DHA and lipid accumulation, the comparative metabolomics, ATP production level, the antioxidant system, and the transcription of key genes were investigated. Results showed that ATP induced by PW condition could drive the synthesis of DHA, and remarkably improve the antioxidant capacity of cells by enhancing the carotenoids production. Therefore, PW can be used as an effective and economical substrate and water source for Schizochytrium sp. to accumulate biomass and DHA.


Industrial Microbiology , Propionates , Stramenopiles , Wastewater , Stramenopiles/genetics , Stramenopiles/metabolism , Genetic Engineering , Docosahexaenoic Acids/genetics , Docosahexaenoic Acids/metabolism , Wastewater/chemistry , Wastewater/microbiology , Propionates/metabolism , Transcriptome , Genes, Bacterial/genetics
3.
Vaccines (Basel) ; 11(5)2023 May 02.
Article En | MEDLINE | ID: mdl-37243031

Human rotavirus (HRV) is the causative agent of severe dehydrating diarrhea in children under the age of five, resulting in up to 215,000 deaths each year. These deaths almost exclusively occur in low- and middle-income countries where vaccine efficacy is the lowest due to chronic malnutrition, gut dysbiosis, and concurrent enteric viral infection. Parenteral vaccines for HRV are particularly attractive as they avoid many of the concerns associated with currently used live oral vaccines. In this study, a two-dose intramuscular (IM) regimen of the trivalent, nanoparticle-based, nonreplicating HRV vaccine (trivalent S60-VP8*), utilizing the shell (S) domain of the capsid of norovirus as an HRV VP8* antigen display platform, was evaluated for immunogenicity and protective efficacy against P[6] and P[8] HRV using gnotobiotic pig models. A prime-boost strategy using one dose of the oral Rotarix® vaccine, followed by one dose of the IM trivalent nanoparticle vaccine was also evaluated. Both regimens were highly immunogenic in inducing serum virus neutralizing, IgG, and IgA antibodies. The two vaccine regimens failed to confer significant protection against diarrhea; however, the prime-boost regimen significantly shortened the duration of virus shedding in pigs challenged orally with the virulent Wa (G1P[8]) HRV and significantly shortened the mean duration of virus shedding, mean peak titer, and area under the curve of virus shedding after challenge with Arg (G4P[6]) HRV. Prime-boost-vaccinated pigs challenged with P[8] HRV had significantly higher P[8]-specific IgG antibody-secreting cells (ASCs) in the spleen post-challenge. Prime-boost-vaccinated pigs challenged with P[6] HRV had significantly higher numbers of P[6]- and P[8]-specific IgG ASCs in the ileum, as well as significantly higher numbers of P[8]-specific IgA ASCs in the spleen post-challenge. These results suggest the promise of and warrant further investigation into the oral priming and parenteral boosting strategy for future HRV vaccines.

4.
Trends Biotechnol ; 41(7): 857-859, 2023 07.
Article En | MEDLINE | ID: mdl-36709095

Polyunsaturated fatty acids (PUFAs) are important nutrients for humans and animals. Microorganisms, such as yeast, filamentous fungi, and microalgae, have successfully been modified to produce PUFAs. Apart from strain improvement and fermentation optimization, efficient and cost-effective downstream processing will determine whether production can advance from the laboratory to the factory.


Fatty Acids, Unsaturated , Microalgae , Animals , Humans , Fungi/genetics , Fermentation , Saccharomyces cerevisiae , Fatty Acids
5.
J Agric Food Chem ; 71(5): 2446-2454, 2023 Feb 08.
Article En | MEDLINE | ID: mdl-36696156

It is well known that polyunsaturated fatty acids (PUFAs) in Schizochytrium sp. are mainly synthesized via the polyketide synthase (PKS) pathway. However, the specific mechanism of PKS in fatty acid synthesis is still unclear. In this work, the functions of ORFA, ORFB, ORFC, and their individual functional domain genes on fatty acid synthesis were investigated through heterologous expression in Yarrowia lipolytica. The results showed that the expression of ORFA, ORFB, ORFC, and their individual functional domains all led to the increase of the very long-chain PUFA content (mainly eicosapentaenoic acid). Furthermore, the transcriptomic analysis showed that except for the 3-ketoacyl-ACP synthase (KS) domain of ORFB, the expression of an individual functional domain, including malonyl-CoA: ACP acyltransferase, 3-hydroxyacyl-ACP dehydratase (DH), 3-ketoacyl-ACP reductase, and KS domains of ORFA, acyltransferase domains of ORFB, and two DH domains of ORFC resulted in upregulation of the tricarboxylic acid cycle and pentose phosphate pathway, downregulation of the triacylglycerol biosynthesis, fatty acid synthesis pathway, and ß-oxidation in Yarrowia lipolytica. These results provide a theoretical basis for revealing the function of PKS in fatty acid synthesis in Y. lipolytica and elucidate the possible mechanism for PUFA biosynthesis.


Polyketide Synthases , Yarrowia , Polyketide Synthases/metabolism , Yarrowia/metabolism , Acyltransferases/metabolism , Fatty Acids, Unsaturated/metabolism , Eicosapentaenoic Acid/metabolism , Fatty Acids/metabolism
6.
Biotechnol Bioeng ; 120(4): 1026-1037, 2023 04.
Article En | MEDLINE | ID: mdl-36522292

The increasing market demand for squalene requires novel biotechnological production platforms. Schizochytrium sp. is an industrial oleaginous host with a high potential for squalene production due to its abundant native acetyl-CoA pool. We first found that iron starvation led to the accumulation of 1.5 g/L of squalene by Schizochytrium sp., which was 40-fold higher than in the control. Subsequent transcriptomic and lipidomic analyses showed that the high squalene titer is due to the diversion of precursors from lipid biosynthesis and increased triglycerides (TAG) content for squalene storage. Furthermore, we constructed the engineered acetyl-CoA C-acetyltransferase (ACAT)-overexpressing strain 18S::ACAT, which produced 2.79 g/L of squalene, representing an 86% increase over the original strain. Finally, a nitrogen-rich feeding strategy was developed to further increase the squalene titer of the engineered strain, which reached 10.78 g/L in fed-batch fermentation, a remarkable 161-fold increase over the control. To our best knowledge, this is the highest squalene yield in thraustochytrids reported to date.


Metabolic Engineering , Squalene , Fermentation , Acetyl Coenzyme A/metabolism
7.
Biotechnol Biofuels Bioprod ; 15(1): 114, 2022 Oct 26.
Article En | MEDLINE | ID: mdl-36289497

BACKGROUND: Schizochytrium sp. is a heterotrophic, oil-producing microorganism that can efficiently produce lipids. However, the industrial production of bulk chemicals using Schizochytrium sp. is still not economically viable due to high-cost culture medium. Replacing glucose with cheap and renewable lignocellulose is a highly promising approach to reduce production costs, but Schizochytrium sp. cannot efficiently metabolize xylose, a major pentose in lignocellulosic biomass. RESULTS: In order to improve the utilization of lignocellulose by Schizochytrium sp., we cloned and functionally characterized the genes encoding enzymes involved in the xylose metabolism. The results showed that the endogenous xylose reductase and xylulose kinase genes possess corresponding functional activities. Additionally, attempts were made to construct a strain of Schizochytrium sp. that can effectively use xylose by using genetic engineering techniques to introduce exogenous xylitol dehydrogenase/xylose isomerase; however, the introduction of heterologous xylitol dehydrogenase did not produce a xylose-utilizing engineered strain, whereas the introduction of xylose isomerase did. The results showed that the engineered strain 308-XI with an exogenous xylose isomerase could consume 8.2 g/L xylose over 60 h of cultivation. Xylose consumption was further elevated to 11.1 g/L when heterologous xylose isomerase and xylulose kinase were overexpressed simultaneously. Furthermore, cultivation of 308-XI-XK(S) using lignocellulosic hydrolysates, which contained glucose and xylose, yielded a 22.4 g/L of dry cell weight and 5.3 g/L of total lipid titer, respectively, representing 42.7 and 30.4% increases compared to the wild type. CONCLUSION: This study shows that engineering of Schizochytrium sp. to efficiently utilize xylose is conducive to improve its utilization of lignocellulose, which can reduce the costs of industrial lipid production.

8.
Plant Mol Biol ; 109(6): 703-715, 2022 Aug.
Article En | MEDLINE | ID: mdl-35522401

Fungal endophytes establish symbiotic relationships with host plants, which results in a mutual growth benefit. However, little is known about the plant genetic response underpinning endophyte colonization. Phomopsis liquidambaris usually lives as an endophyte in a wide range of asymptomatic hosts and promotes biotic and abiotic stress resistance. In this study, we show that under low nitrogen conditions P. liquidambaris promotes rice growth in a hydroponic system, which is free of other microorganisms. In order to gain insights into the mechanisms of plant colonization by P. liquidambaris under low nitrogen conditions, we compared root and shoot transcriptome profiles of root-inoculated rice at different colonization stages. We determined that genes related to plant growth promotion, such as gibberellin and auxin related genes, were up-regulated at all developmental stages both locally and systemically. The largest group of up-regulated genes (in both roots and shoots) were related to flavonoid biosynthesis, which is involved in plant growth as well as antimicrobial compounds. Furthermore, genes encoding plant defense-related endopeptidase inhibitors were strongly up-regulated at the early stage of colonization. Together, these results provide new insights into the molecular mechanisms of plant-microbe mutualism and the promotion of plant growth by a fungal endophyte under nitrogen-deficient conditions.


Endophytes , Oryza , Ascomycota , Endophytes/physiology , Nitrogen , Plant Roots/genetics
9.
Plant Cell Environ ; 45(6): 1813-1828, 2022 06.
Article En | MEDLINE | ID: mdl-35274310

In the soil, plant roots associated with fungi often encounter uneven distribution of nitrate (NO3- )/ammonium (NH4+ ) patches, but the mechanism underlying N form-influenced plant-fungal interactions remains limited. We inoculated Arabidopsis with a root endophyte Phomopsis liquidambaris, and evaluated the effects of P. liquidambaris on plant performance under NO3- or NH4+ nutrition. Under NO3- nutrition, P. liquidambaris inoculation promoted seedling growth, whereas under NH4+ nutrition, P. liquidambaris suppressed seedling growth. Under high NH4+ conditions, fungus-colonized roots displayed increased NH4+ accumulation and NH4+ efflux, similar to the effect of ammonium stress caused by elevated NH4+ levels. Notably, this fungus excluded NH4+ during interactions with host roots, thereby leading to increased NH4+ levels at the plant-fungal interface under high NH4+ conditions. A nitrite reductase-deficient strain that excludes NO3- but absorbs NH4+ , decreased NH4+ levels in Arabidopsis shoots and rescued plant growth and nitrogen metabolism under high NH4+ levels. Transcriptomic analysis highlighted that P. liquidambaris had altered transcriptional responses associated with plant response to inorganic N forms. Our results demonstrate that fungus-regulated NO3- /NH4+ dynamics at the plant-fungal interface alters plant response to NO3- /NH4+ nutrition. This study highlights the essential functions of root endophytes in plant adaptation to soil nitrogen nutrients.


Ammonium Compounds , Arabidopsis , Ammonium Compounds/metabolism , Arabidopsis/metabolism , Endophytes/metabolism , Fungi , Nitrates/metabolism , Nitrogen/metabolism , Plant Roots/metabolism , Soil
10.
Biotechnol J ; 17(5): e2100470, 2022 May.
Article En | MEDLINE | ID: mdl-35072339

Schizochytrium sp. has received increasing attention as promising commercial resource for the sustainable production of lipids, due to their fast growth rate and high lipid content. However, the price of glucose represents a significant proportion of the total substrate cost. Therefore, in this study, the lignocellulosic hydrolysate of corn stover hydrolysate (CSH) was used as low-cost culture medium to replace glucose in Schizochytrium sp. fermentation. When Schizochytrium sp. HX-308 was fermented with 20% glucose from CSH and 80% of glucose from pure glucose, the lipid production reached 21.2 g L-1 , which is lower than that of using 100% of pure glucose. However, the shifts of fatty acid composition indicated that CSH has great potential to enhance the percentage of polyunsaturated fatty acids (PUFAs) in total lipids. However, as the second largest carbon source in CSH, xylose was not utilized by the Schizochytrium sp. HX-308, and further analysis showed that probably because it does not possess a functional xylulose kinase. In addition, the degradation products in lignocellulosic hydrolysate have a strong inhibitory effect on cell growth, so it is necessary to investigate the tolerance of Schizochytrium sp. HX-308 to degradation products. Here, the effects of five typical degradation products on the growth and lipid synthesis were further investigated. Schizochytrium sp. HX-308 showed good tolerance to furan derivatives and organic acids, but low tolerance to phenolic compounds. Furthermore, in order to improve the lipid accumulation using CSH, the two-stage fermentation strategy was developed, resulting in a 54.8% increase compared to that of the one-stage strategy. In summary, this study provides a reference for further fermentation engineering with cheap lignocellulosic biomass as substrate.


Stramenopiles , Zea mays , Fatty Acids, Unsaturated/metabolism , Fermentation , Glucose/metabolism , Stramenopiles/metabolism , Xylose/metabolism
11.
Front Nutr ; 8: 795651, 2021.
Article En | MEDLINE | ID: mdl-34970583

Schizochytrium sp. HX-308 is a marine microalga with fast growth and high lipid content, which has potential as microbial cell factories for lipid compound biosynthesis. It is significant to develop efficient genetic editing tool and discover molecular target in Schizochytrium sp. HX-308 for lipid compound biosynthesis. In this study, we developed an efficient gene editing tool in HX-308 which was mediated by Agrobacterium tumefaciens AGL-1. Results showed that the random integration efficiency reached 100%, and the homologous recombination efficiency reached about 30%. Furthermore, the metabolic pathway of lipid and terpenoid biosynthesis were engineered. Firstly, the acetyl-CoA c-acetyltransferase was overexpressed in HX-308 with a strong constitutive promoter. With the overexpression of acetyl-CoA c-acetyltransferase, more acetyl-CoA was used to synthesize terpenoids, and the production of squalene, ß-carotene and astaxanthin was increased 5.4, 1.8, and 2.4 times, respectively. Interestingly, the production of saturated fatty acids and polyunsaturated fatty acids also changed. Moreover, three Acyl-CoA oxidase genes which catalyze the first step of ß-oxidation were knocked out using homologous recombination. Results showed that the production of lipids increased in the three knock-out strains. Our results demonstrated that the A. tumefaciens-mediated transformation method will be of great use for the study of function genes, as well as developing Schizochytrium sp. as a strong cell factory for producing high value products.

12.
IEEE Trans Biomed Circuits Syst ; 15(3): 537-548, 2021 06.
Article En | MEDLINE | ID: mdl-34101596

This work presents a portable wireless urine detection system which consists of an electrochemical readout application specific integrated circuit (ASIC) and a biosensor composed of 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and carbon nanotube (ABTS-CNT) for the detection of urine albumin-to-creatinine ratio (UACR). The ASIC includes a potentiostat, a digital circuitry and a power management circuit which can perform electrochemistry techniques with a dual-channel screen-printing carbon electrode (SPCE). Electrochemical experiments on the proposed biosensor (SPCE|ABTS-CNT|Nafion) have revealed promising sensing characteristics for creatinine and human serum albumin detection. Practical urine tests has demonstrated the capability of the proposed urine detection system for UACR detection with both the power-efficient readout ASIC and the ABTS-CNT biosensor. A user-friendly prototype has also been designed which can be useful for either personal health administrationor homecare.


Biosensing Techniques , Nanotubes, Carbon , Benzothiazoles , Electrochemical Techniques , Electrochemistry , Humans , Sulfonic Acids
13.
Appl Microbiol Biotechnol ; 105(12): 4919-4930, 2021 Jun.
Article En | MEDLINE | ID: mdl-34125275

Terpenoids represent one of the largest class of chemicals in nature, which play important roles in food and pharmaceutical fields due to diverse biological and pharmacological activities. Microorganisms are recognized as a promising source of terpenoids due to its short growth cycle and sustainability. Importantly, microalgae can fix inorganic carbon through photosynthesis for the growth of themselves and the biosynthesis of various terpenoids. Moreover, microalgae possess effective biosynthesis pathways of terpenoids, both the eukaryotic mevalonic acid (MVA) pathway and the prokaryotic methyl-D-erythritol 4-phosphate (MEP) pathway. In recent years, various genetic engineering strategies have been applied to increase target terpenoid yields, including overexpression of the rate-limited enzymes and inhibition of the competing pathways. However, since gene-editing tools are only built in some model microalgae, fermentation strategies that are easier to be operated have been widely successful in promoting the production of terpenoids, such as changing culture conditions and addition of chemical additives. In addition, an economical and effective downstream process is also an important consideration for the industrial production of terpenoids, and the solvent extraction and the supercritical fluid extraction method are the most commonly used strategies, especially in the industrial production of ß-carotene and astaxanthin from microalgae. In this review, recent advancements and novel strategies used for terpenoid production are concluded and discussed, and new insights to move the field forward are proposed. KEY POINTS: • The MEP pathway is more stoichiometrically efficient than the MVA pathway. • Advanced genetic engineering and fermentation strategies can increase terpene yield. • SFE has a higher recovery of carotenoids than solvent extraction.


Microalgae , Terpenes , Biosynthetic Pathways , Carotenoids , Metabolic Engineering , Mevalonic Acid
14.
Biotechnol Biofuels ; 14(1): 247, 2021 Dec 31.
Article En | MEDLINE | ID: mdl-34972534

BACKGROUND: The oleaginous microorganism Schizochytrium sp. is widely used in scientific research and commercial lipid production processes. However, low glucose-to-lipid conversion rate (GLCR) and low lipid productivity of Schizochytrium sp. restrict the feasibility of its use. RESULTS: Orlistat is a lipase inhibitor, which avoids triacylglycerols (TAGs) from hydrolysis by lipase. TAGs are the main storage forms of fatty acids in Schizochytrium sp. In this study, the usage of orlistat increased the GLCR by 21.88% in the middle stage of fermentation. Whereas the productivity of lipid increased 1.34 times reaching 0.73 g/L/h, the saturated fatty acid and polyunsaturated fatty acid yield increased from 21.2 and 39.1 to 34.9 and 48.5 g/L, respectively, indicating the advantages of using a lipase inhibitor in microbial lipids fermentation. Similarly, the system was also successful in Thraustochytrid Aurantiochytrium. The metabolic regulatory mechanisms stimulated by orlistat in Schizochytrium sp. were further investigated using transcriptomics and metabolomics. The results showed that orlistat redistributed carbon allocation and enhanced the energy supply when inhibiting the TAGs' degradation pathway. Therefore, lipase in Schizochytrium sp. prefers to hydrolyze saturated fatty acid TAGs into the ß-oxidation pathway. CONCLUSIONS: This study provides a simple and effective approach to improve lipid production, and makes us understand the mechanism of lipid accumulation and decomposition in Schizochytrium sp., offering new guidance for the exploitation of oleaginous microorganisms.

15.
Fungal Genet Biol ; 136: 103301, 2020 03.
Article En | MEDLINE | ID: mdl-31765708

The endophytic fungus Phomopsis liquidambaris efficiently promotes the nitrogen metabolism and growth of host plants such as rice and peanut. However, a lack of genetic tools limits further research regarding the mechanisms of interaction between P. liquidambaris and its host plants. Herein, a CRISPR/Cas9 system for targeted gene disruption in this strain was first constructed and optimized. The knock-out efficiency increased to over 60% when the ku70 or ku80 gene (involved in nonhomologous end-joining, NHEJ) was disrupted. Furthermore, the CRISPR/Cas9 system was applied to disrupt the PmkkA gene, encoding a mitogen-activated protein kinase kinase (MAPKK) in the cell-wall integrity (CWI) MAPK pathway of the strain. The ΔPmkkA mutant strain induced higher reactive oxygen species (ROS) production, chitinase activity and glucanase activity in rice seedlings than wild-type P. liquidambaris (WT), resulting in growth inhibition and strong resistance on rice. These results suggested that the PmkkA gene is crucial during the interaction with rice and may play a role in inhibiting the immune system of host plants. The CRISPR-Cas9 system will be of great use for the study of the interaction between P. liquidambaris and its host plants.


Ascomycota/enzymology , Ascomycota/genetics , CRISPR-Cas Systems , Host Microbial Interactions , Mitogen-Activated Protein Kinase Kinases/genetics , Oryza/growth & development , Oryza/microbiology , Cell Wall/metabolism , Endophytes , Fungal Proteins/genetics , Gene Knockout Techniques , Genes, Fungal , Ku Autoantigen/genetics , Mutation , Reactive Oxygen Species/metabolism , Signal Transduction/genetics
16.
IEEE Trans Biomed Circuits Syst ; 13(6): 1471-1482, 2019 12.
Article En | MEDLINE | ID: mdl-31634841

Heart-sound auscultation is a rapid and fundamental technique used for examining the cardiovascular system. The main components of heart sounds are the first and second heart sounds. Discriminating these heart sounds under the presence of additional heart sounds and murmurs will be difficult. To recognize these signals efficiently, this study proposes a monitoring system with phonocardiogram and electrocardiogram. This system has two key points. The first is chip implementation, including capacitor coupled amplifier, transimpedance amplifier, high-pass sigma-delta modulator, and digital signal processing block. The chip in the system is fabricated in 0.18 µm standard complementary metal-oxide-semiconductor process. The second is a software application on smartphones for heart-related physiological signal recording, display, and identification. A wavelet-based QRS complex detection algorithm verified by MIT/BIH Arrhythmia Database is also proposed. The overall measured positive prediction, sensitivity, and error rate of the proposed algorithm are 99.90%, 99.82%, and 0.28%, respectively. During auscultation, doctors may refer to these physiological signals displayed on the smartphone and simultaneously listen to the heart sounds to diagnose the potential heart disease. By taking advantage of signal visualization and keeping the original diagnosis procedure, the uncertainty existing in heart sounds can be eliminated, and the training period to acquire auscultation skills can be reduced.


Cardiovascular Diseases/diagnosis , Electrocardiography , Heart Auscultation/instrumentation , Phonocardiography , Algorithms , Amplifiers, Electronic , Heart Auscultation/methods , Humans , Semiconductors , Signal Processing, Computer-Assisted , Wearable Electronic Devices
17.
Appl Microbiol Biotechnol ; 103(15): 6041-6059, 2019 Aug.
Article En | MEDLINE | ID: mdl-31227866

Filamentous fungi can produce many valuable secondary metabolites; among these fungi, endophytic fungi play an ecological role in mutualistic symbiosis with plants, including promoting plant growth, disease resistance, and stress resistance. However, the biosynthesis of most secondary metabolites remains unclear, and knowledge of the interaction mechanisms between endophytes and plants is still limited, especially for some novel fungi, due to the lack of genetic manipulation tools for novel species. Herein, we review the newly discovered strategies of gene disruption, such as the CRISPR-Cas9 system, the site-specific recombination Cre/loxP system, and the I-SceI endonuclease-mediated system in filamentous fungi. Gene expression systems contain using integration of target genes into the genome, host-dependent expression cassette construction depending on the host, a host-independent, universal expression system independent of the host, and reporter-guided gene expression for filamentous fungi. Furthermore, the Newly CRISPRi, CRISPRa, and the selection markers were also discussed for gene disruption and gene expression were also discussed. These studies lay the foundation for the biosynthesis of secondary metabolites in these organisms and aid in understanding the ecological function of filamentous fungi.


Fungi/genetics , Gene Knockout Techniques/methods , Genetics, Microbial/methods , Fungi/metabolism , Metabolic Networks and Pathways/genetics , Secondary Metabolism
18.
Microbiol Res ; 206: 99-112, 2018 Jan.
Article En | MEDLINE | ID: mdl-29146266

Filamentous ascomycete Phomopsis sp. are common inhabitants of natural ecosystems and, as saprophytes, are largely responsible for the destructive decay of litterfall, promoting the carbon and nitrogen cycles. Phomopsis liquidambari B3 can establish mutualistic symbiosis with a broad spectrum of crop plants. Colonizing dynamics observations and a growth promotion assay of rice and Arabidopsis thaliana revealed that the B3 colonization strategy is host-adapted and resulted in different growth promotions influenced by N availability. However, the biochemical mechanisms and underlying genetics of the saprophyte transition to an endophyte are poorly understood. Here, the transcriptome features of generalist P. liquidambari and highlighted gene sets involved in the lifestyle transition from saprophytism to endophytism were reported. Most notable were genes for translation, ribosome biogenesis and MAPK signaling, several of which were only up-regulated in endophytic B3. Coordinated up-regulation of genes encoding enzymes involved in phenylalanine, tyrosine and tryptophan biosynthesis were preceded by secondary metabolite induction, which was encountered with host defense. Quantitative PCR validates the reliability of RNA-seq. Dissection at the molecular level facilitated a deeper understanding of P. liquidambari adaptation to hosts and the complex natural environment to play a role in sustainable agriculture and carbon and nitrogen cycles.


Ascomycota/genetics , Ascomycota/physiology , Endophytes/physiology , Symbiosis/physiology , Transcriptome , Agriculture , Arabidopsis/growth & development , Arabidopsis/microbiology , Ascomycota/growth & development , Carbon , Carbon Cycle , Crops, Agricultural/microbiology , Ecosystem , Gene Expression Regulation, Fungal , Genes, Fungal/genetics , Mitogen-Activated Protein Kinases/metabolism , Nitrogen Cycle , Oryza/growth & development , Oryza/microbiology , Plant Development/physiology , Plant Shoots/growth & development , Plant Shoots/microbiology , Ribosomes/metabolism , Secondary Metabolism/physiology , Sequence Analysis , Signal Transduction , Soil Microbiology
19.
World J Microbiol Biotechnol ; 32(8): 134, 2016 Aug.
Article En | MEDLINE | ID: mdl-27339315

A newly isolated Pseudomonas fragi P121 strain in a soil sample taken from the Arctic Circle is able to produce trehalose. The P121 strain was able to grow at temperatures ranging from 4 to 25 °C, had an optimum pH of 6.5, and an optimum salt concentration of 2 %. The P121 strain had a survival rate of 29.1 % after being repeatedly frozen and thawed five times, and a survival rate of 78.9 % when placed in physiological saline for 15 days at 20 °C after cold shock, which is far higher than the type strain Pseudomonas fragi ATCC 4973. The P121 strain could produce 2.89 g/L trehalose, which was 18.6 % of dry cell weight within 52 h in a 25 L fermention tank using the malt extract prepared from barley as medium at 15 °C, while only 11.8 % of dry cell weight at 20 °C. These results suggested that cold stress promoted the strain producing trehalose. It is the first reported cold-tolerant bacterium that produces trehalose, which may protect cells against the cold environment.


Pseudomonas fragi/growth & development , Pseudomonas fragi/isolation & purification , Trehalose/metabolism , Antarctic Regions , Cold Temperature , Fermentation , Sequence Analysis, DNA , Soil Microbiology , Stress, Physiological
...