Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 86
1.
Eur J Cancer Prev ; 33(4): 376-385, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38842873

OBJECTIVE: The tumor, node and metastasis stage is widely applied to classify lung cancer and is the foundation of clinical decisions. However, increasing studies have pointed out that this staging system is not precise enough for the N status. In this study, we aim to build a convenient survival prediction model that incorporates the current items of lymph node status. METHODS: We performed a retrospective cohort study and collected the data from resectable nonsmall cell lung cancer (NSCLC) (IA-IIIB) patients from the Surveillance, Epidemiology, and End Results database (2006-2015). The x-tile program was applied to calculate the optimal threshold of metastatic lymph node ratio (MLNR). Then, independent prognostic factors were determined by multivariable Cox regression analysis and enrolled to build a nomogram model. The calibration curve as well as the Concordance Index (C-index) were selected to evaluate the nomogram. Finally, patients were grouped based on their specified risk points and divided into three risk levels. The prognostic value of MLNR and examined lymph node numbers (ELNs) were presented in subgroups. RESULTS TOTALLY,: 40853 NSCLC patients after surgery were finally enrolled and analyzed. Age, metastatic lymph node ratio, histology type, adjuvant treatment and American Joint Committee on Cancer 8th T stage were deemed as independent prognostic parameters after multivariable Cox regression analysis. A nomogram was built using those variables, and its efficiency in predicting patients' survival was better than the conventional American Joint Committee on Cancer stage system after evaluation. Our new model has a significantly higher concordance Index (C-index) (training set, 0.683 v 0.641, respectively; P < 0.01; testing set, 0.676 v 0.638, respectively; P < 0.05). Similarly, the calibration curve shows the nomogram was in better accordance with the actual observations in both cohorts. Then, after risk stratification, we found that MLNR is more reliable than ELNs in predicting overall survival. CONCLUSION: We developed a nomogram model for NSCLC patients after surgery. This novel and useful tool outperforms the widely used tumor, node and metastasis staging system and could benefit clinicians in treatment options and cancer control.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Lymph Nodes , Lymphatic Metastasis , Nomograms , Humans , Carcinoma, Non-Small-Cell Lung/surgery , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/surgery , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Female , Male , Retrospective Studies , Middle Aged , Lymphatic Metastasis/pathology , Lymph Nodes/pathology , Lymph Nodes/surgery , Aged , Prognosis , Survival Rate , Neoplasm Staging , SEER Program/statistics & numerical data , Lymph Node Ratio , Follow-Up Studies , Pneumonectomy/mortality , Pneumonectomy/methods
2.
Heliyon ; 10(11): e32314, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38868029

With the rapid development of clinical diagnosis and treatment, many traditional and conventional in vitro diagnosis technologies are unable to meet the demands of clinical medicine development. In this situation, nanomaterials are rapidly developing and widely used in the field of in vitro diagnosis. Nanomaterials have distinct size-dependent physical or chemical properties, and their optical, magnetic, electrical, thermal, and biological properties can be modulated at the nanoscale by changing their size, shape, chemical composition, and surface functional groups, particularly because they have a larger specific surface area than macromaterials. They provide an amount of space to modify different molecules on their surface, allowing them to detect small substances, nucleic acids, proteins, and microorganisms. Combining nanomaterials with in vitro diagnosis is expected to result in lower detection limits, higher sensitivity, and stronger selectivity. In this review, we will discuss the classfication and properties of some common nanomaterials, as well as their applications in protein, nucleic acids, and other aspect detection and analysis for in vitro diagnosis, especially on aging-related nanodiagnostics. Finally, it is summarized with guidelines for in vitro diagnosis.

3.
Chemosphere ; 361: 142556, 2024 Aug.
Article En | MEDLINE | ID: mdl-38851499

In this study, the Fe(III)/WS2/peroxymonosulfate (PMS) system was found to remove up to 97% of cyclohexanecarboxylic acid (CHA) within 10 min. CHA is a model compound for naphthenic acids (NAs), which are prevalent in petroleum industrial wastewater. The addition of WS2 effectively activated the Fe(III)/PMS system, significantly enhancing its ability to produce reactive oxidative species (ROS) for the oxidation of CHA. Further experimental results and characterization analyses demonstrated that the metallic element W(IV) in WS2 could provide electrons for the direct reduction of Fe(III) to Fe(II), thus rapidly activating PMS and initiating a chain redox process to produce ROS (SO4•-, •OH, and 1O2). Repeated tests and practical exploratory experiments indicated that WS2 exhibited excellent catalytic performance, reusability and anti-interference capacity, achieving efficient degradation of commercial NAs mixtures. Therefore, applying WS2 to catalyze the Fe(III)/PMS system can overcome speed limitations and facilitate simple, economical engineering applications.


Oxidation-Reduction , Peroxides , Tungsten , Peroxides/chemistry , Tungsten/chemistry , Catalysis , Carboxylic Acids/chemistry , Water Pollutants, Chemical/chemistry , Sulfides/chemistry , Ferric Compounds/chemistry , Wastewater/chemistry , Petroleum , Iron/chemistry , Reactive Oxygen Species/chemistry
5.
Anal Chem ; 96(9): 3951-3959, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38377587

Identification of degradation products and pathways is crucial for investigating emerging pollutants and evaluation of wastewater treatment methods. Nontargeted analysis is a powerful tool to comprehensively investigate the degradation pathways of organic pollutants in real-world wastewater samples but often generates large data sets, making it difficult to effectively locate the exact information on interests. Herein, to efficiently establish the linkages among compounds in the same degradation pathways, we introduce a compound similarity network (CSN) as a novel data mining strategy for LC-MS-based nontargeted analysis of complex wastewater samples. Different from molecular networks that cluster compounds based on MS/MS spectra similarity, our CSN strategy harnesses molecular fingerprints to establish linkages among compounds and thus is spectra-independent. The effectiveness of CSN was demonstrated by nontargeted identification of degradation pathways and products of organic pollutants in leather industrial wastewater that underwent laboratory-scale activated carbon adsorption (ACD) and ozonation treatments. Utilizing CSN in interpreting nontargeted data, we tentatively annotated 4324 compounds in the untreated leather industrial wastewater, 3246 after ACD, and 3777 after ACD/ozonation. We located 145 potential degradation pathways of organic pollutants in the ACD/ozonation process using CSN and validated 7 pathways with 15 chemical standards. CSN also revealed 5 clusters of emerging pollutants, from which 3 compounds were selected for in vitro cytotoxicity study to evaluate their potential biohazards as new pollutants. As CSN offers an efficient way to connect massive compounds and to find multiple degradation pathways in a high-throughput manner, we anticipate that it will find wide applications in nontargeted analysis of diverse environmental samples.

6.
Methods ; 222: 100-111, 2024 Feb.
Article En | MEDLINE | ID: mdl-38228196

BACKGROUND: Breast cancer (BC), the most common form of malignant cancer affecting women worldwide, was characterized by heterogeneous metabolic disorder and lack of effective biomarkers for diagnosis. The purpose of this study is to search for reliable metabolite biomarkers of BC as well as triple-negative breast cancer (TNBC) using serum metabolomics approach. METHODS: In this study, an untargeted metabolomics technique based on ultra-high performance liquid chromatography combined with mass spectrometry (UHPLC-MS) was utilized to investigate the differences in serum metabolic profile between the BC group (n = 53) and non-BC group (n = 57), as well as between TNBC patients (n = 23) and non-TNBC subjects (n = 30). The multivariate data analysis, determination of the fold change and the Mann-Whitney U test were used to screen out the differential metabolites. Additionally, machine learning methods including receiver operating curve analysis and logistic regression analysis were conducted to establish diagnostic biomarker panels. RESULTS: There were 36 metabolites found to be significantly different between BC and non-BC groups, and 12 metabolites discovered to be significantly different between TNBC and non-TNBC patients. Results also showed that four metabolites, including N-acetyl-D-tryptophan, 2-arachidonoylglycerol, pipecolic acid and oxoglutaric acid, were considered as vital biomarkers for the diagnosis of BC and non-BC with an area under the curve (AUC) of 0.995. Another two-metabolite panel of N-acetyl-D-tryptophan and 2-arachidonoylglycerol was discovered to discriminate TNBC from non-TNBC and produced an AUC of 0.965. CONCLUSION: This study demonstrated that serum metabolomics can be used to identify BC specifically and identified promising serum metabolic markers for TNBC diagnosis.


Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/diagnosis , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid/methods , Tandem Mass Spectrometry , Early Detection of Cancer , Metabolomics/methods , Biomarkers , Biomarkers, Tumor
7.
Chemosphere ; 349: 140915, 2024 Feb.
Article En | MEDLINE | ID: mdl-38070611

This study investigated the application of a natural plant polyphenol, gallic acid (GA) to form complex with iron to promote the redox cycle of Fe(III)/Fe(II) under neutral initial pH conditions in the electrochemical (EC) system for activation of peroxymonosulfate (PMS) to efficiently degrade carbamazepine (CBZ). Results demonstrated that the synergistic effects of GA and EC significantly improved the removal efficiency, and the EC/GA/Fe(III)/PMS system effectively removed 100% of CBZ within a wide initial pH range of 3.0-7.0. The optimum stoichiometric ratio of GA to Fe(III) was found as 2:1. Investigations including quenching experiment, chemical probe analysis, and electron paramagnetic resonance (EPR) analysis were conducted to identify the primary reaction radicals as •OH, SO4•-, along with the 1O2 and Fe(IV). In the EC/GA/Fe(III)/PMS system, the synergistic effect of GA and electrochemistry led to a remarkable enhancement in the generation of •OH. Furthermore, the complexation reduction mechanism of GA and Fe(III) was proposed based on experimental and instrumental analyses, which demonstrated that the semi-quinone products of GA were the main substances promoting the Fe(III)/Fe(II) cycle. Mass spectrometry results showed that CBZ generated 27 byproducts during degradation, with formic acid as the main product of GA. The degradation efficiency of the EC/GA/Fe(III)/PMS system remained stable and excellent, exhibiting remarkable performance in the presence of various inorganic anions, including Cl- and NO3-, as well as naturally occurring organic compounds such as fulvic acid (FA). Overall results indicated that the EC/GA/Fe(III)/PMS system can be applied to effectively treat practical wastewater treatment without requirement of pH adjustment.


Ferric Compounds , Water Pollutants, Chemical , Gallic Acid , Gas Chromatography-Mass Spectrometry , Water Pollutants, Chemical/analysis , Peroxides/chemistry , Carbamazepine/chemistry , Ferrous Compounds , Electricity
8.
Sci Total Environ ; 913: 169636, 2024 Feb 25.
Article En | MEDLINE | ID: mdl-38157903

Industrial extraction of unconventional petroleum results in notable volumes of oil sands process water (OSPW), containing elevated concentrations of naphthenic acids (NAs). The presence of NAs represents an intricate amalgamation of dissolved organic constituents, thereby presenting a notable hurdle for the domain of environmental analytical chemistry. There is growing concern about monitoring the potential seepage of OSPW NAs into nearby groundwater and river water. This review summarizes recent studies on sample preparation, characterization, monitoring, risk assessment, and treatment of NAs in industrial wastewater and surrounding water. Sample preparation approaches, such as liquid-liquid extraction, solid phase microextraction, and solid phase extraction, are crucial in isolating chemical standards, performing molecular level analysis, assessing aquatic toxicity, monitoring, and treating OSPW. Instrument techniques for NAs analysis were reviewed to cover different injection modes, ionization sources, and mass analyzers. Recent studies of transfer and transformation of NAs provide insights to differentiate between anthropogenic and natural bitumen-derived sources of NAs. In addition, related risk assessment and treatment studies were also present for elucidation of environmental implication and reclamation strategies. The synthesis of the current state of scientific knowledge presented in this review targets government regulators, academic researchers, and industrial scientists with interests spanning analytical chemistry, toxicology, and wastewater management.

9.
Front Immunol ; 14: 1274547, 2023.
Article En | MEDLINE | ID: mdl-38022518

The emergence of immunotherapy has revolutionized the treatment landscape for various types of cancer. Nevertheless, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to the development of resistance in most patients. As one of the most abundant groups of immune cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play crucial and complex roles in the development of lung cancer, including the regulation of immunosuppressive TME remodeling, metabolic reprogramming, neoangiogenesis, metastasis, and promotion of tumoral neurogenesis. Hence, relevant strategies for lung cancer therapy, such as inhibition of macrophage recruitment, TAM reprograming, depletion of TAMs, and engineering of TAMs for drug delivery, have been developed. Based on the satisfactory treatment effect of TAM-targeted therapy, recent studies also investigated its synergistic effect with current therapies for lung cancer, including immunotherapy, radiotherapy, chemotherapy, anti-epidermal growth factor receptor (anti-EGFR) treatment, or photodynamic therapy. Thus, in this article, we summarized the key mechanisms of TAMs contributing to lung cancer progression and elaborated on the novel therapeutic strategies against TAMs. We also discussed the therapeutic potential of TAM targeting as adjuvant therapy in the current treatment of lung cancer, particularly highlighting the TAM-centered strategies for improving the efficacy of anti-programmed cell death-1/programmed cell death-ligand 1 (anti-PD-1/PD-L1) treatment.


Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Tumor-Associated Macrophages/pathology , Immunotherapy , Macrophages , Tumor Microenvironment
10.
Molecules ; 28(17)2023 Aug 28.
Article En | MEDLINE | ID: mdl-37687118

The ethylenediamine-N,N'-disuccinic acid (EDDS) was utilized to form Fe-EDDS complex to activate peroxymonosulfate (PMS) in the electrochemical (EC) co-catalytic system for effective oxidation of naphthenic acids (NAs) under neutral pH conditions. 1-adamantanecarboxylic acid (ACA) was used as a model compound to represent NAs, which are persistent pollutants that are abundantly present in oil and gas field wastewater. The ACA degradation rate was significantly enhanced in the EC/PMS/Fe(III)-EDDS system (96.6%) compared to that of the EC/PMS/Fe(III) system (65.4%). The addition of EDDS led to the formation of a stable complex of Fe-EDDS under neutral pH conditions, which effectively promoted the redox cycle of Fe(III)-EDDS/Fe(II)-EDDS to activate PMS to generate oxidative species for ACA degradation. The results of quenching and chemical probe experiments, as well as electron paramagnetic resonance (EPR) analysis, identified significant contributions of •OH, 1O2, and SO4•- in the removal of ACA. The ACA degradation pathways were revealed based on the results of high resolution mass spectrometry analysis and calculation of the Fukui index. The presence of anions, such as NO3-, Cl-, and HCO3-, as well as humic acids, induced nonsignificant influence on the ACA degradation, indicating the robustness of the current system for applications in authentic scenarios. Overall results indicated the EC/PMS/Fe(III)-EDDS system is a promising strategy for the practical treatment of NAs in oil and gas field wastewater.

11.
J Hazard Mater ; 458: 132004, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37423130

In this work, the pulsed electrochemical (PE) system was investigated to activate peroxymonosulfate (PMS) with the addition of Fe(III) to achieve efficient degradation of sulfamethoxazole (SMX) with reduced energy consumption, in comparison with the direct current (DC) electrochemical system. The operational conditions of PE/PMS/Fe(III) system were optimized as 4 kHz pulse frequency, 50% duty cycle, and pH 3, at which 67.6% reduction of energy consumption and enhanced degradation performance were achieved compared to the DC/PMS/Fe(III) system. Results of electron paramagnetic resonance spectroscopy analysis and quenching and chemical probe experiment revealed the presence of •OH, SO4•-, and 1O2 in the system, with •OH being the dominant role. The concentrations of these active species were averagely 15 ± 1% higher in the PE/PMS/Fe(III) system than those of the DC/PMS/Fe(III) system. Identification of SMX byproducts was achieved based on high resolution mass spectrometry analysis to predict the degradation pathways. The SMX byproducts could eventually be eliminated by the PE/PMS/Fe(III) system with extended treatment time. Overall, the PE/PMS/Fe(III) system was demonstrated with high energy and degradation performance, and is appear to be an robust strategy for practical treatment of wastewater.

12.
J Hazard Mater ; 458: 132040, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37451102

The acceleration of Fe(III)/Fe(II) conversion in Fenton systems is the critical route to achieve the long-lasting generation of reactive oxygen species towards the oxidation of refractory contaminants. Here, we found that waste leather derived porous carbon materials (LPC), as a simple and readily available metal-free biochar material, can promote the Fe(III)/H2O2 system to generate hydroxyl radicals (•OH) for oxidizing a broad spectrum of contaminants. Results of characterizations, theoretical calculations, and electrochemical tests show that the surface carbonyl groups of LPC can provide electron for direct Fe(III) reduction. More importantly, the graphitic-N on surface of LPC can enhance the reactivity of Fe(III) for accelerating H2O2 induced Fe(III) reduction. The presence of LPC accelerates the Fe(III)/Fe(II) redox cycle in the Fe(III)/H2O2 system, sustainable Fenton chain reactions is thus initiated for long-lasting generation of hydroxyl radicals without adding Fe(II). The continuous flow mode that couples in-situ Fenton-like oxidation and LPC with excellent adsorption catalytic properties, anti-coexisting substances interference and reusability performance enables efficient, green and sustainable degradation of trace organic pollutants. Therefore, the application of metal-free carbon materials in Fenton-like system can solve its rate-limiting problem, reduce the production of iron sludge, achieve green Fenton chemistry, and facilitate the actual engineering application of economic and ecological methods to efficiently remove trace organic contaminants from actual water sources.

13.
J Hazard Mater ; 458: 131952, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37399723

The rise of emerging pollutants in the current environment and requirements of trace analysis in complex substrates pose challenges to modern analytical techniques. Ion chromatography coupled with mass spectrometry (IC-MS) is the preferred tool for analyzing emerging pollutants due to its excellent separation ability for polar and ionic compounds with small molecular weight and high detection sensitivity and selectivity. This paper reviews the progress of sample preparation and ion-exchange IC-MS methods in the analysis of several major categories of environmental polar and ionic pollutants including perchlorate, inorganic and organic phosphorus compounds, metalloids and heavy metals, polar pesticides, and disinfection by-products in past two decades. The comparison of various methods to reduce the influence of matrix effect and improve the accuracy and sensitivity of analysis are emphasized throughout the process from sample preparation to instrumental analysis. Furthermore, the human health risks of these pollutants in the environment with natural concentration levels in different environmental medias are also briefly discussed to raise public attention. Finally, the future challenges of IC-MS for analysis of environmental pollutants are briefly discussed.

14.
J Hazard Mater ; 457: 131790, 2023 Sep 05.
Article En | MEDLINE | ID: mdl-37295335

Periodate (PI) has recently been studied as an excellent oxidant in advanced oxidation processes, and its reported mechanism is mainly the formation of reactive oxygen species (ROS). This work presents an efficient approach using N-doped iron-based porous carbon (Fe@N-C) to activate periodate for the degradation of sulfisoxazole (SIZ). Characterization results indicated the catalyst has high catalytic activity, stable structure, and high electron transfer activity. In terms of degradation mechanism, it is pointed out that the non-radical pathway is the dominant mechanism. In order to prove this mechanism, we have carried out scavenging experiments, electron paramagnetic resonance (EPR) analysis, salt bridge experiments and electrochemical experiments, which demonstrate the occurrence of mediated electron transfer mechanism. Fe@N-C could mediate the electron transfer from organic contaminant molecules to PI, thus improving the efficiency of PI utilization, rather than simply inducing the activation of PI through Fe@N-C. The overall results of this study provided a new understanding into the application of Fe@N-C activated PI in wastewater treatment.

15.
J Hazard Mater ; 455: 131524, 2023 Aug 05.
Article En | MEDLINE | ID: mdl-37196437

This work investigated the activation of peroxymonosulfate by electrochemical (EC) system assisted with Fe(III)-nitrilotriacetic acid (NTA) complex for degradation of persistent naphthenic acids (NAs) under neutral initial pH conditions. As NAs are a complicated mixture, 1-adamantanecarboxylic acid (ACA) was selected as the model NA compound for degradation experiment. The addition of NTA is to chelate with Fe(III), gaining stability under neutral pH condition to facilitate the circulation of Fe(II)/Fe(III) by the electrochemical process to activate PMS. The EC/Fe(III)-NTA/PMS system was explored with applicable pH range of 3-9 and an optimized molar ratio 1: 2 for Fe: NTA. Results of quenching and chemical probe experiment together with results of electron paramagnetic resonance (EPR) analysis revealed the main reactive species of the system, including •OH, SO4•-, 1O2 and possibly Fe(IV). With the addition of NTA, the yields of •OH, SO4•-, 1O2 were enhanced. Results of mass spectrometry analysis and DFT calculations indicated the formation of 9 degradation byproducts of ACA via three primary degradation pathways such as hydroxyl substitution, carbonyl substitution, and decarboxylation. Furthermore, the EC/Fe(III)-NTA/PMS system could achieve excellent removal efficiency of ACA with different anions such as Cl-, HCO3-, NO3- and H2PO4- in the background. The practical applicability of the system was also verified with the high removal of commercial NAs mixture standard. Overall results have indicated the EC/Fe(III)-NTA/PMS system could be utilized for efficient reclamation of authentic oil and gas industrial wastewater under natural pH conditions.

16.
J Hazard Mater ; 445: 130577, 2023 Mar 05.
Article En | MEDLINE | ID: mdl-37055982

Herein, electro-catalysis (EC) as the electron donor to accelerate the continuable Fe(III)/Fe(II) cycles in different inorganic peroxides (i.e., peroxymonosulfate (PMS), peroxydisulfate (PDS) and hydrogen peroxide (HP)) activation systems were established. These electro-cocatalytic Fenton-like systems exhibited an excellent degradation efficiency of sulfamethoxazole (SMX). A series of analytical and characterization methods including quenching experiments, probe experiments, and electron paramagnetic resonance spectrometry (EPR) were implemented to systematically sort out the source and yield of reactive oxygen species (ROS). A wide kind of ROS including hydroxyl radical (•OH), singlet oxygen (1O2), and sulfate radical (SO4•-), which contributed 38%, 37%, and 24% were produced in EC/Fe(III)/PMS system, respectively. •OH was the dominant ROS in both EC/Fe(III)/PDS and EC/Fe(III)/HP processes. According to the analysis of SMX degradation routes and biotoxicity, abundant degradation pathways were identified in EC/Fe(III)/PMS process and lower environmental impact was achieved in EC/Fe(III)/HP process. The diversiform ROS of EC/Fe(III)/PMS system makes it exhibit greater environmental adaptability in complex water matrixes and excellent low-energy consumption performance in many organic pollutants degradation. Continuous flow treatment experiments proved that the three systems have great sustainability and practical application prospect. This work provides a strong basis for constructing suitable systems to achieve different treatment requirements.

17.
Front Immunol ; 14: 1105973, 2023.
Article En | MEDLINE | ID: mdl-36875102

Balancing microglia M1/M2 polarization is an effective therapeutic strategy for neuroinflammation after subarachnoid hemorrhage (SAH). Pleckstrin homology-like domain family A member 1 (PHLDA1) has been demonstrated to play a crucial role in immune response. However, the function roles of PHLDA1 in neuroinflammation and microglial polarization after SAH remain unclear. In this study, SAH mouse models were assigned to treat with scramble or PHLDA1 small interfering RNAs (siRNAs). We observed that PHLDA1 was significantly increased and mainly distributed in microglia after SAH. Concomitant with PHLDA1 activation, nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome expression in microglia was also evidently enhanced after SAH. In addition, PHLDA1 siRNA treatment significantly reduced microglia-mediated neuroinflammation by inhibiting M1 microglia and promoting M2 microglia polarization. Meanwhile, PHLDA1 deficiency reduced neuronal apoptosis and improved neurological outcomes after SAH. Further investigation revealed that PHLDA1 blockade suppressed the NLRP3 inflammasome signaling after SAH. In contrast, NLRP3 inflammasome activator nigericin abated the beneficial effects of PHLDA1 deficiency against SAH by promoting microglial polarization to M1 phenotype. In all, we proposed that PHLDA1 blockade might ameliorate SAH-induced brain injury by balancing microglia M1/M2 polarization via suppression of NLRP3 inflammasome signaling. Targeting PHLDA1 might be a feasible strategy for treating SAH.


Inflammasomes , Subarachnoid Hemorrhage , Animals , Mice , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Neuroinflammatory Diseases , RNA, Small Interfering
18.
Diabetes Metab Syndr Obes ; 16: 1-14, 2023.
Article En | MEDLINE | ID: mdl-36760592

Objective: We aimed to identify structural and functional alterations of gut microbiota associated with visceral obesity in adult women with polycystic ovary syndrome (PCOS). Methods: Twenty-seven adults with PCOS underwent stool and fasting blood collection, oral glucose tolerance testing, and visceral fat area (VFA) measurement via dual-bioimpedance technique. Metagenomic analysis was used to analyze gut microbiota. Results: PCOS patients were divided into three groups: visceral obesity group (PCOS-VO, n=9, age 28.33±5.68 years, BMI 37.06±4.27 kg/m2, VFA 128.67±22.45 cm2), non-visceral obesity group (PCOS-NVO, n=10, age 25.40±4.53, BMI 30.74±3.95, VFA 52.00±24.04), normal BMI group (PCOS-NB, n=8, age 27.88±2.53, BMI 21.56±2.20, VFA 27.00±21.18), with no statistical difference in age (P>0.05) and significantly statistical differences in BMI and VFA (P<0.05). The groups showed a significant difference in microbial ß-diversity between PCOS-VO and PCOS-NVO (P=0.002) and no difference between PCOS-NVO and PCOS-NB (P=0.177). Bacteroidetes was the phylum with the highest relative abundance among all patients, followed by Firmicutes. Those with visceral obesity had a higher abundance of Prevotella, Megamonas, and Dialister genera, positively correlated with metabolic markers (r>0.4, P<0.05), and lower abundance of Phascolarctobacterium and Neisseria genera, negatively correlated with metabolic markers (r<-0.4, P<0.05). Functional annotation analysis showed significant differences in relative abundance of ribosome pathway, fatty acid biosynthesis pathway, and sphingolipid signaling pathway between groups, affecting lipid homeostasis and visceral fat accumulation. Conclusion: Alteration in ß-diversity of gut microbiota exists in PCOS with visceral obesity versus those without visceral obesity and relates to functional differences in ribosomes, fatty acid biosynthesis, and sphingolipid signaling pathways.

19.
Clin. transl. oncol. (Print) ; 25(1): 105-113, ene. 2023.
Article En | IBECS | ID: ibc-215825

Myelodysplastic syndrome (MDS) consists of a group of hematologic tumors that are derived from the clonal proliferation of hematopoietic stem cells, featuring abnormal hematopoietic cell development and ineffective hematopoiesis. Animal models are an important scientific research platform that has been widely applied in the research of human diseases, especially tumors. Animal models with MDS can simulate characteristic human genetic variations and tumor phenotypes. They also provide a reliable platform for the exploration of the pathogenesis and diagnostic markers of MDS as well as for a drug efficacy evaluation. This paper reviews the research status of three animal models and a new spontaneous mouse model with MDS (AU)


Animals , Disease Models, Animal , Myelodysplastic Syndromes/genetics , Hematopoietic Stem Cells/pathology , Hematopoiesis , Phenotype
20.
J Hazard Mater ; 443(Pt B): 130386, 2023 Feb 05.
Article En | MEDLINE | ID: mdl-36444072

The regeneration of Fe(II) is the rate-limiting step in the Fenton/Fenton-like chain reactions that seriously hinder their scientific progress towards practical application. In this study, we proposed iron boride (FeB) for the first time as a new material to sustainably decompose H2O2 to generate hydroxyl radicals, which can non-selectively degrade a wide array of refractory organic pollutants. Fe(II) can be steadily released by the stepwise oxidation of FeB to stimulate Fenton reaction, meanwhile, B-B bonds as electron donors on the surface of FeB effectively promote the regeneration of Fe(II) from Fe(III) species and significantly accelerate the production of hydroxyl radicals. The low generation of toxic by-products and the high utilization rate of iron species validly avoid the secondary organic/metal pollution in the FeB/H2O2 system. Therefore, FeB mediated Fenton oxidation provides a novel strategy to realize a green and long-lasting environmental remediation.

...