Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 227, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218995

RESUMEN

Patients carrying mutations in polymerase epsilon/polymerase delta have shown positive responses to immune checkpoint inhibitors. Yet, prospective trials exploring the efficacy in those with polymerase epsilon/polymerase delta mutations are still lacking. A phase II clinical trial was initiated to evaluate the efficacy of toripalimab, a humanized IgG4K monoclonal antibody to human PD-1, in patients with advanced solid tumors with unselected polymerase epsilon/polymerase delta mutations but without microsatellite instability-high. A total of 15 patients were enrolled, 14 of whom were assessed for treatment efficacy. There was a 21.4% overall response rate, with a disease control rate of 57.1%. The median overall survival and median progression-free survival were 17.9 (95% CI 13.5-not reach) months and 2.5 (95% CI 1.4-not reach) months, respectively. For patients with exonuclease domain mutations, the objective response rate was 66.7% (2/3), with a disease control rate of 66.7% (2/3). For those with non-exonuclease domain mutations, the rates were 9.1% (1/11) and 54.5% (6/11), respectively. Notably, patients with PBRM1 gene mutations exhibited a high response rate to toripalimab at 75.0% (3/4). This study showed that neither the exonuclease domain mutations nor non-exonuclease domain mutations could fully predict the efficacy of immunotherapy, urging the need for more investigations to clarify potential immune sensitization differences within polymerase epsilon/polymerase delta mutation variants.


Asunto(s)
Anticuerpos Monoclonales Humanizados , ADN Polimerasa II , Mutación , Neoplasias , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Neoplasias/genética , Neoplasias/tratamiento farmacológico , ADN Polimerasa II/genética , ADN Polimerasa III/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Adulto , Anciano de 80 o más Años
2.
Nanoscale ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39238321

RESUMEN

Mesoporous ceria nanoparticles featuring ordered pores (O-MCNs) have much greater potential than their counterparts featuring interparticle pores (I-MCNs) due to their uniform pore size and interconnected framework structures. However, current methods can only synthesize I-MCNs and fail to achieve O-MCNs. Understanding the mechanisms underlying the formation of pores in I-MCNs can spark ideas for designing new methods to realize the synthesis of O-MCNs. In this study, the details of an established I-MCN synthetic method using 1-octadecene (ODE) and ethanol as a mixed solvent, Ce(NO3)3·6H2O as a precursor and trioctylphosphine oxide (TOPO) as a ligand were explored. The results revealed that six groups of molecules were generated ahead of ceria crystal nucleation, and these molecules played different roles in the formation of I-MCNs. Four steps, namely, ceria crystal nucleation, small ceria nanoparticle formation, small ceria nanoparticle assembly, and I-MCN growth, were involved in the formation of the I-MCNs. The assembly of small ceria nanoparticles driven by the fusion of the (200) plane leaving behind unoccupied spaces was the major reason for the formation of pores in the I-MCNs. These findings provided very useful information for the future design of new methods to achieve O-MCNs.

3.
Exp Gerontol ; 194: 112499, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901772

RESUMEN

OBJECTIVES: Lifelong learning facilitates active ageing, and intragenerational learning-the process by which older adults learn from their peers-is an effective means of achieving this goal. The present research aims to elucidate the mechanisms and differences between intergenerational and intragenerational learning models for older adults as evidenced by brain-to-brain synchrony. METHODS: Fifty-six instructor-learner dyads completed a study comparing intergenerational and intragenerational learning models, as well as task difficulty. The study utilized a block puzzle task and functional near-infrared spectroscopy (fNIRS) for hyperscanning. RESULTS: The instructor-learner dyads showed greater interpersonal neural synchrony (INS) and learning acquisition in the intragenerational learning model in the difficult task condition (t (54) = 3.49, p < 0.01), whereas the two learning models yielded similar results in the easy condition (t (54) = 1.96, p = 0.06). In addition, INS and self-efficacy mediated the association between learning models and learning acquisition in older adults (b = 0.14, SEM = 0.04, 95 % CI [0.01 0.16]). DISCUSSION: This study is the first to provide evidence of interbrain synchrony in an investigation of the intragenerational learning model in older adults. Our findings suggest that intra-learning is as effective as traditional inter-learning and may be more effective in certain contexts, such as difficult tasks. Encouraging intra-learning in community service or educational activities can effectively mitigate the challenge of limited volunteers and enhance learning acquisition among older adults.


Asunto(s)
Aprendizaje , Espectroscopía Infrarroja Corta , Humanos , Masculino , Femenino , Anciano , Aprendizaje/fisiología , Encéfalo/fisiología , Envejecimiento/fisiología , Envejecimiento/psicología , Relaciones Intergeneracionales , Persona de Mediana Edad , Relaciones Interpersonales , Autoeficacia
4.
Clin Exp Pharmacol Physiol ; 51(7): e13901, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843867

RESUMEN

Hepatocellular adenoma (HCA) represents a rare benign hepatic neoplasm with potential for malignant transformation into hepatocellular carcinoma (HCC), yet the underlying mechanism remains elusive. In this study, we investigated the genomic landscape of this process to identify therapeutic strategies for blocking malignant transformation. Using micro-detection techniques, we obtained specimens of adenoma, cancerous neoplasm and adjacent normal liver from three patients undergoing hepatic resection surgery. Whole-exome sequencing (WES) was performed, and genomic interactions between HCA and HCC components within the same tumour were evaluated using somatic variant calling, copy number variation (CNV) analysis, clonality evaluation and mutational signature analysis. Our results revealed genomic heterogeneity among patient cases, yet within each sample, HCA and HCC tissues exhibited a similar mutational landscape, suggesting a high degree of homology. Using nonnegative matrix factorization and phylogenetic trees, we identified shared and distinct mutational characteristics and uncovering necessary pathways associated with HCA-HCC malignant transformation. Remarkably, we found that HCA and HCC shared a common monoclonal origin while displaying significant genetic diversity within HCA-HCC tumours, indicating fundamental genetic connections or evolutionary pathways between the two. Moreover, elevated immune therapy-related markers in these patients suggested heightened sensitivity to immune therapy, providing novel avenues for the treatment of hepatic malignancies. This study sheds light on the genetic mechanisms underlying HCA-HCC progression, offering potential targets for therapeutic intervention and highlighting the promise of immune-based therapies in managing hepatic malignancies.


Asunto(s)
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Transformación Celular Neoplásica , Secuenciación del Exoma , Neoplasias Hepáticas , Mutación , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/genética , Adenoma de Células Hepáticas/genética , Adenoma de Células Hepáticas/patología , Masculino , Femenino , Variaciones en el Número de Copia de ADN , Persona de Mediana Edad , Análisis Mutacional de ADN
5.
Lab Invest ; 104(8): 102090, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830579

RESUMEN

Gastric cancer (GC) is one of the most common clinical malignant tumors worldwide, with high morbidity and mortality. Presently, the overall response rate to immunotherapy is low, and current methods for predicting the prognosis of GC are not optimal. Therefore, novel biomarkers with accuracy, efficiency, stability, performance ratio, and wide clinical application are needed. Based on public data sets, the chemotherapy cohort and immunotherapy cohort from Sun Yat-sen University Cancer Center, a series of bioinformatics analyses, such as differential expression analysis, survival analysis, drug sensitivity prediction, enrichment analysis, tumor immune dysfunction and exclusion analysis, single-sample gene set enrichment analysis, stemness index calculation, and immune cell infiltration analysis, were performed for screening and preliminary exploration. Immunohistochemical staining and in vitro experiments were performed for further verification. Overexpression of COX7A1 promoted the resistance of GC cells to Oxaliplatin. COX7A1 may induce immune escape by regulating the number of fibroblasts and their cellular communication with immune cells. In summary, measuring the expression levels of COX7A1 in the clinic may be useful in predicting the prognosis of GC patients, the degree of chemotherapy resistance, and the efficacy of immunotherapy.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Inmunoterapia , Oxaliplatino , Neoplasias Gástricas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Inmunoterapia/métodos , Oxaliplatino/uso terapéutico , Oxaliplatino/farmacología , Pronóstico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/terapia
6.
Chin J Integr Med ; 30(9): 842-851, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38753276

RESUMEN

Rheumatoid arthritis (RA) is a worldwide public health problem. Interventions to delay or prevent the onset of RA have attracted much attention in recent years, and researchers are now exploring various prevention strategies. At present, there is still no unified consensus for RA prevention, but targeting therapeutic windows and implementing interventions for at-risk individuals are extremely important. Due to the limited number of clinical trials on pharmacologic interventions, further studies are needed to explore and establish optimal intervention regimens and effective measures to prevent progression to RA. In this review, we introduce the RA disease process and risk factors, and present research on the use of both Western and Chinese medicine from clinical perspectives regarding RA prevention. Furthermore, we describe several complete and ongoing clinical studies on the use of Chinese herbal formulae for the prevention of RA.


Asunto(s)
Artritis Reumatoide , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/prevención & control , Humanos , Medicamentos Herbarios Chinos/uso terapéutico , Factores de Riesgo , Medicina Tradicional China/métodos
7.
Small ; : e2401447, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693087

RESUMEN

Topological defects are widely recognized as effective active sites toward a variety of electrochemical reactions. However, the role of defect curvature is still not fully understood. Herein, carbon nanomaterials with rich topological defect sites of tunable curvature is reported. The curved defective surface is realized by controlling the high-temperature pyrolytic shrinkage process of precursors. Theoretical calculations demonstrate bending the defect sites can change the local electronic structure, promote the charge transfer to key intermediates, and lower the energy barrier for oxygen reduction reaction (ORR). Experimental results convince structural superiority of highly-curved defective sites, with a high kinetic current density of 22.5 mA cm-2 at 0.8 V versus RHE for high-curvature defective carbon (HCDC), ≈18 times that of low-curvature defective carbon (LCDC). Further raising the defect densities in HCDC leads to the dual-regulated products (HCHDC), which exhibit exceptionally outstanding ORR activity in both alkaline and acidic media (half-wave potentials: 0.88 and 0.74 V), outperforming most of the reported metal-free carbon catalysts. This work uncovers the curvature-activity relationship in carbon defect for ORR and provides new guidance to design advanced catalysts via curvature-engineering.

8.
Front Bioeng Biotechnol ; 12: 1378681, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774816

RESUMEN

Poly-ether-ether-ketone (PEEK) is a biomedical plastic that can be used for orthopedic implants, but it offers poor antibacterial properties and bioactivity. In this study, PEEK was sulfonated with the obtained porous structure adsorbing graphene oxide (GO). The surface microstructures and properties of the original PEEK, sulfonated PEEK (SPEEK), and GO-grafted PEEK (GO-SPEEK) were characterized. The results revealed that the GO-SPEEK surface is a 3D porous structure exhibiting superior hydrophilicity to the original PEEK. Although SPEEK was shown to possess antimicrobial properties against both Escherichia coli and Staphylococcus aureus, the bactericidal effect was even more significant for GO-SPEEK, at about 86% and 94%, respectively. In addition, the in vitro simulated-body-fluid immersion and cell experiments indicated that GO-SPEEK had much better hydroxyapatite (HA)-precipitation induction capacity and cell-material interactions (e.g., cell adhesion, proliferation, osteodifferentiation, and extracellular matrix mineralization. The tensile test revealed that the mechanical properties of PEEK were maintained after surface modification, as GO-SPEEK has comparable values of elastic modulus and tensile strength to PEEK. Our investigation sought a method to simultaneously endow PEEK with both good antimicrobial properties and bioactivity as well as mechanical properties, providing a theoretical basis for developing high-performance orthopedic implants in the clinic.

9.
Plant Physiol Biochem ; 210: 108629, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626657

RESUMEN

The timing of floral transition is essential for reproductive success in flowering plants. In sugarcane, flowering time affects the production of sugar and biomass. Although the function of the crucial floral pathway integrators, FLOWERING LOCUS T (FT), in sugarcane, has been uncovered, the proteins responsible for FT export and the underlying mechanism remain unexplored. In this study, we identified a member of the multiple C2 domain and transmembrane region proteins (MCTPs) family in sugarcane, FT-interacting protein 1 (ScFTIP1), which was localized to the endoplasmic reticulum. Ectopic expression of ScFTIP1 in the Arabidopsis mutant ftip1-1 rescued the late-flowering phenotype. ScFTIP1 interacted with AtFT in vitro and in vivo assays. Additionally, ScFTIP1 interacted with ScFT1 and the floral inducer ScFT3. Furthermore, we found that the NAC member, ScNAC23, could directly bind to the ScFTIP1 promoter and negatively regulate its transcription. Overall, our findings revealed the function of ScFTIP1 and proposed a potential mechanism underlying flowering regulation in sugarcane.


Asunto(s)
Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Saccharum , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Saccharum/genética , Saccharum/metabolismo , Saccharum/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Modificadas Genéticamente
10.
Adv Sci (Weinh) ; 11(25): e2402240, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38605604

RESUMEN

Single atomic catalysts have shown great potential in efficiently electro-converting O2 to H2O2 with high selectivity. However, the impact of coordination environment and introduction of extra metallic aggregates on catalytic performance still remains unclear. Herein, first a series of carbon-based catalysts with embedded coupling Ni single atomic sites and corresponding metallic nanoparticles at adjacent geometry is synthesized. Careful performance evaluation reveals NiSA/NiNP-NSCNT catalyst with precisely controlled active centers of synergetic adjacent Ni-N4S single sites and crystalline Ni nanoparticles exhibits a high H2O2 selectivity over 92.7% within a wide potential range (maximum selectivity can reach 98.4%). Theoretical studies uncover that spatially coupling single atomic NiN4S sites with metallic Ni aggregates in close proximity can optimize the adsorption behavior of key intermediates *OOH to achieve a nearly ideal binding strength, which thus affording a kinetically favorable pathway for H2O2 production. This strategy of manipulating the interaction between single atoms and metallic aggregates offers a promising direction to design new high-performance catalysts for practical H2O2 electrosynthesis.

11.
Cell Oncol (Dordr) ; 47(4): 1391-1403, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38607517

RESUMEN

PURPOSE: GPX8, which is found in the endoplasmic reticulum lumen, is a member of the Glutathione Peroxidases (GPXs) family. Its role in hepatocellular carcinoma (HCC) is unknown. METHODS: Immunohistochemical staining was used to detect the protein levels of GPX8 in HCC tissue microarrays. A short hairpin RNA lentivirus was used to knock down GPX8, and the main signaling pathways were investigated using transcriptome sequencing and a phosphorylated kinase array. The sphere formation assays, cloning-formation assays and cell migration assays were used to evaluate the stemness and migration ability of HCC cells. Identifying the GPX8-interacting proteins was accomplished through immunoprecipitation and protein mass spectrometry. RESULTS: The GPX8 protein levels were downregulated in HCC patients. Low expression of GPX8 protein was related to early recurrence and poor prognosis in HCC patients. GPX8 knockdown could enhance the stemness and migration ability of HCC cells. Consistently, Based on transcriptome analysis, multiple signaling pathways that include the PI3K-AKT and signaling pathways that regulate the pluripotency of stem cells, were activated after GPX8 knockdown. The downregulation of GPX8 could increase the expression of the tumor stemness markers KLF4, OCT4, and CD133. The in vivo downregulation of GPX8 could also promote the subcutaneous tumor-forming and migration ability of HCC cells. MK-2206, which is a small-molecule inhibitor of AKT, could reverse the tumor-promoting effects both in vivo and in vitro. We discovered that GPX8 and the 71-kDa heat shock cognate protein (Hsc70) have a direct interaction. The phosphorylation of AKT encouraged the translocation of Hsc70 into the nucleus and the expression of the PI3K p110 subunit, thereby increasing the downregulation of GPX8. CONCLUSION: The findings from this study demonstrate the anticancer activity of GPX8 in HCC by inactivating the Hsc70/AKT pathway. The results suggest a possible therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Movimiento Celular , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Células Madre Neoplásicas , Transducción de Señal , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Movimiento Celular/genética , Regulación hacia Abajo/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Línea Celular Tumoral , Transducción de Señal/genética , Factor 4 Similar a Kruppel , Masculino , Femenino , Animales , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/genética , Persona de Mediana Edad , Ratones Desnudos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Ratones Endogámicos BALB C
12.
Eur J Med Res ; 29(1): 180, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494472

RESUMEN

BACKGROUND: GC is a highly heterogeneous tumor with different responses to immunotherapy, and the positive response depends on the unique interaction between the tumor and the tumor microenvironment (TME). However, the currently available methods for prognostic prediction are not satisfactory. Therefore, this study aims to construct a novel model that integrates relevant gene sets to predict the clinical efficacy of immunotherapy and the prognosis of GC patients based on machine learning. METHODS: Seven GC datasets were collected from the Gene Expression Omnibus (GEO) database, The Cancer Genome Atlas (TCGA) database and literature sources. Based on the immunotherapy cohort, we first obtained a list of immunotherapy related genes through differential expression analysis. Then, Cox regression analysis was applied to divide these genes with prognostic significancy into protective and risky types. Then, the Single Sample Gene Set Enrichment Analysis (ssGSEA) algorithm was used to score the two categories of gene sets separately, and the scores differences between the two gene sets were used as the basis for constructing the prognostic model. Subsequently, Weighted Correlation Network Analysis (WGCNA) and Cytoscape were applied to further screen the gene sets of the constructed model, and finally COX7A1 was selected for the exploration and prediction of the relationship between the clinical efficacy of immunotherapy for GC. The correlation between COX7A1 and immune cell infiltration, drug sensitivity scoring, and immunohistochemical staining were performed to initially understand the potential role of COX7A1 in the development and progression of GC. Finally, the differential expression of COX7A1 was verified in those GC patients receiving immunotherapy. RESULTS: First, 47 protective genes and 408 risky genes were obtained, and the ssGSEA algorithm was applied for model construction, showing good prognostic discrimination ability. In addition, the patients with high model scores showed higher TMB and MSI levels, and lower tumor heterogeneity scores. Then, it is found that the COX7A1 expressions in GC tissues were significantly lower than those in their corresponding paracancerous tissues. Meanwhile, the patients with high COX7A1 expression showed higher probability of cancer invasion, worse clinical efficacy of immunotherapy, worse overall survival (OS) and worse disease-free survival (DFS). CONCLUSIONS: The ssGSEA score we constructed can serve as a biomarker for GC patients and provide important guidance for individualized treatment. In addition, the COX7A1 gene can accurately distinguish the prognosis of GC patients and predict the clinical efficacy of immunotherapy for GC patients.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Pronóstico , Biomarcadores , Inmunoterapia , Microambiente Tumoral/genética , Complejo IV de Transporte de Electrones
13.
Sci China Life Sci ; 67(7): 1455-1467, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523236

RESUMEN

Volatile sex pheromones are vital for sexual communication between males and females. Females of the American cockroach, Periplaneta americana, produce and emit two sex pheromone components, periplanone-A (PA) and periplanone-B (PB). Although PB is the major sex attractant and can attract males, how it interacts with PA in regulating sexual behaviors is still unknown. In this study, we found that in male cockroaches, PA counteracted PB attraction. We identified two odorant receptors (ORs), OR53 and OR100, as PB/PA and PA receptors, respectively. OR53 and OR100 were predominantly expressed in the antennae of sexually mature males, and their expression levels were regulated by the sex differentiation pathway and nutrition-responsive signals. Cellular localization of OR53 and OR100 in male antennae further revealed that two types of sensilla coordinate a complex two-pheromone-two-receptor pathway in regulating cockroach sexual behaviors. These findings indicate distinct functions of the two sex pheromone components, identify their receptors and possible regulatory mechanisms underlying the male-specific and age-dependent sexual behaviors, and can guide novel strategies for pest management.


Asunto(s)
Periplaneta , Receptores Odorantes , Atractivos Sexuales , Conducta Sexual Animal , Animales , Masculino , Atractivos Sexuales/metabolismo , Femenino , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Periplaneta/metabolismo , Periplaneta/fisiología , Periplaneta/genética , Conducta Sexual Animal/fisiología , Antenas de Artrópodos/metabolismo , Antenas de Artrópodos/fisiología , Comunicación Animal , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Receptores de Feromonas/metabolismo , Receptores de Feromonas/genética
14.
Nat Med ; 30(4): 1035-1043, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438735

RESUMEN

Epigenetic modifications of chromatin, including histone acetylation, and tumor angiogenesis play pivotal roles in creating an immunosuppressive tumor microenvironment. In the randomized phase 2 CAPability-01 trial, we investigated the potential efficacy of combining the programmed cell death protein-1 (PD-1) monoclonal antibody sintilimab with the histone deacetylase inhibitor (HDACi) chidamide with or without the anti-vascular endothelial growth factor (VEGF) monoclonal antibody bevacizumab in patients with unresectable chemotherapy-refractory locally advanced or metastatic microsatellite stable/proficient mismatch repair (MSS/pMMR) colorectal cancer. Forty-eight patients were randomly assigned to either the doublet arm (sintilimab and chidamide, n = 23) or the triplet arm (sintilimab, chidamide and bevacizumab, n = 25). The primary endpoint of progression-free survival (PFS) rate at 18 weeks (18wPFS rate) was met with a rate of 43.8% (21 of 48) for the entire study population. Secondary endpoint results include a median PFS of 3.7 months, an overall response rate of 29.2% (14 of 48), a disease control rate of 56.3% (27 of 48) and a median duration of response of 12.0 months. The secondary endpoint of median overall survival time was not mature. The triplet arm exhibited significantly improved outcomes compared to the doublet arm, with a greater 18wPFS rate (64.0% versus 21.7%, P = 0.003), higher overall response rate (44.0% versus 13.0%, P = 0.027) and longer median PFS rate (7.3 months versus 1.5 months, P = 0.006). The most common treatment-emergent adverse events observed in both the triplet and doublet arms included proteinuria, thrombocytopenia, neutropenia, anemia, leukopenia and diarrhea. There were two treatment-related fatalities (hepatic failure and pneumonitis). Analysis of bulk RNA sequencing data from the patients suggested that the triplet combination enhanced CD8+ T cell infiltration, resulting in a more immunologically active tumor microenvironment. Our study suggests that the combination of a PD-1 antibody, an HDACi, and a VEGF antibody could be a promising treatment regimen for patients with MSS/pMMR advanced colorectal cancer. ClinicalTrials.gov registration: NCT04724239 .


Asunto(s)
Aminopiridinas , Benzamidas , Neoplasias Colorrectales , Inhibidores de Histona Desacetilasas , Humanos , Anticuerpos Monoclonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bevacizumab/efectos adversos , Bevacizumab/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Inhibidores de Histona Desacetilasas/efectos adversos , Inhibidores de Histona Desacetilasas/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular
15.
Exp Cell Res ; 435(2): 113947, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301989

RESUMEN

Cancer-associated fibroblasts (CAFs) are the main components in the tumor microenvironment. Tumors activate fibroblasts from quiescent state into activated state by secreting cytokines, and activated CAFs may in turn promote tumor progression and metastasis. Therefore, studies targeting CAFs could enrich the therapeutic options for tumor treatment. In this study, we demonstrate that the content of lipid droplets and the expression of autophagosomes were higher in CAFs than in peri-tumor fibroblasts (PTFs), which was inhibited by 5-(tetradecyloxy)-2-furoic acid(TOFA). The expression of CD36 in CAFs was higher than that in PTFs at both mRNA and protein levels. Inhibition of CD36 activity using either the CD36 inhibitor SSO or siRNA had a significant negative impact on the proliferation and migration abilities of CAFs, which was associated with reduced levels of relevant activated genes (α-SMA, FAP, Vimentin) and cytokines (IL-6, TGF-ß and VEGF-α). SSO also inhibited HCC growth and tumorigenesis in nude mice orthotopically implanted with CAFs and HCC cells. Our data further show that CD36+CAFs affected the expression of PD-1 in CTLs leading to CTL exhaustion, and that patients with high CD36 expression in CAFs were correlated with shorter overall survival (OS). Together, our data demonstrate that CAFs were active in lipid metabolism with increased lipid content and lipophagy activity. CD36 may play a key role in the regulation of the biological behaviors of CAFs, which may influence the proliferation and migration of tumor cells by reprograming the lipid metabolism in tumor cells. Thus, CD36 could be an effective therapeutic target for the treatment of HCC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/patología , Fibroblastos Asociados al Cáncer/patología , Neoplasias Hepáticas/patología , Ratones Desnudos , Reprogramación Metabólica , Línea Celular Tumoral , Fibroblastos/metabolismo , Citocinas/metabolismo , Microambiente Tumoral , Proliferación Celular
16.
Environ Sci Pollut Res Int ; 31(11): 16274-16290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342833

RESUMEN

Electric arc furnace dust (EAFD) is a hazardous by-product of steel production. As global steel output increases, substantial amounts of EAFD are produced, which causes significant environmental issues. EAFD contains quantities of Fe and Zn, which could be reused as raw materials in the steelmaking process. However, zinc oxides can be reduced and vaporized during this process, forming zinc vapor that contaminates equipment surfaces and causes damage. Consequently, various pyrometallurgical methods have been proposed for zinc removal from EAFD. Due to the extensive usage of carbonaceous materials, these methods contribute to significant CO2, raising concerns about greenhouse gas emissions. Microwave heating offers an efficient, energy-saving, and environmentally friendly alternative to pyrometallurgical approaches. EAFD can generate heat under microwave irradiation without carbon addition, which means the CO2 emissions can be reduced by replacing the reductant in the microwave heating process. Furthermore, microwaves enhance zinc removal reactions to a certain extent, resulting in higher efficiency. Thus, employing microwave heating for EAFD processing has significant potential for future development. This paper reviews recent research on using microwave heating for zinc removal from EAFD, focusing on the heating behavior of EAFD in microwaves and the mechanisms of zinc removal. This review will be crucial for researchers working on processing EAFD using microwave heating and could help guide the development of more sustainable and efficient methods.


Asunto(s)
Polvo , Zinc , Polvo/análisis , Microondas , Dióxido de Carbono , Calefacción , Acero
17.
Cancer Commun (Lond) ; 44(2): 226-250, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38143235

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous and lethal hepatobiliary tumor with few therapeutic strategies. The metabolic reprogramming of tumor cells plays an essential role in the development of tumors, while the metabolic molecular classification of iCCA is largely unknown. Here, we performed an integrated multiomics analysis and metabolic classification to depict differences in metabolic characteristics of iCCA patients, hoping to provide a novel perspective to understand and treat iCCA. METHODS: We performed integrated multiomics analysis in 116 iCCA samples, including whole-exome sequencing, bulk RNA-sequencing and proteome analysis. Based on the non-negative matrix factorization method and the protein abundance of metabolic genes in human genome-scale metabolic models, the metabolic subtype of iCCA was determined. Survival and prognostic gene analyses were used to compare overall survival (OS) differences between metabolic subtypes. Cell proliferation analysis, 5-ethynyl-2'-deoxyuridine (EdU) assay, colony formation assay, RNA-sequencing and Western blotting were performed to investigate the molecular mechanisms of diacylglycerol kinase α (DGKA) in iCCA cells. RESULTS: Three metabolic subtypes (S1-S3) with subtype-specific biomarkers of iCCA were identified. These metabolic subtypes presented with distinct prognoses, metabolic features, immune microenvironments, and genetic alterations. The S2 subtype with the worst survival showed the activation of some special metabolic processes, immune-suppressed microenvironment and Kirsten rat sarcoma viral oncogene homolog (KRAS)/AT-rich interactive domain 1A (ARID1A) mutations. Among the S2 subtype-specific upregulated proteins, DGKA was further identified as a potential drug target for iCCA, which promoted cell proliferation by enhancing phosphatidic acid (PA) metabolism and activating mitogen-activated protein kinase (MAPK) signaling. CONCLUSION: Via multiomics analyses, we identified three metabolic subtypes of iCCA, revealing that the S2 subtype exhibited the poorest survival outcomes. We further identified DGKA as a potential target for the S2 subtype.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Diacilglicerol Quinasa/genética , Multiómica , Colangiocarcinoma/genética , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/genética , ARN/uso terapéutico , Microambiente Tumoral
18.
Small ; : e2309791, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095488

RESUMEN

The hydrogen evolution reaction (HER) activity of defect-stabilized low-Pt-loading catalysts is closely related with defect type in support materials, while the knowledge about the effect of higher-dimensional defects on the property and activity of trapped Pt atomic species is scarce. Herein, small size (5-10 nm) TiO2 nanoparticles with abundant surface step defects (one kind of line defect) are used to direct the uniform anchoring of Pt atomic clusters (Pt-ACs) via Pt─O─Ti linkage. The as-made low-Pt catalysts (Pt-ACs/S-TiO2 -NP) exhibit exceptional HER intrinsic activity due to the unique step-site Pi-O-Ti species, in which the mass activity and turnover frequency are as high as 21.46 A mg Pt -1 and 21.69 s-1 at the overpotential of 50 mV, both far beyond those of benchmark Pt/C catalysts and other Pt-ACs/TiO2 samples with less step sites. Spectroscopic measurements and theoretical calculations reveal that the step-defect-located Pt─O─Ti sites can simultaneously induce the charge transfer from TiO2 substrate to the trapped Pt-ACs and the downshift of d-band center, which helps the proton reduction to H* intermediates and the following hydrogen desorption process, thus improving the HER. The work provides a deep insight on the interactions between high-dimensional defect and well-dispersed atomic metal motifs for superior HER catalysis.

19.
Commun Biol ; 6(1): 1181, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985711

RESUMEN

Primary liver cancer (PLC) poses a leading threat to human health, and its treatment options are limited. Meanwhile, the investigation of homogeneity and heterogeneity among PLCs remains challenging. Here, using single-cell RNA sequencing, spatial transcriptomic and bulk multi-omics, we elaborated a molecular architecture of 3 PLC types, namely hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and combined hepatocellular-cholangiocarcinoma (CHC). Taking a high-resolution perspective, our observations revealed that CHC cells exhibit internally discordant phenotypes, whereas ICC and HCC exhibit distinct tumor-specific features. Specifically, ICC was found to be the primary source of cancer-associated fibroblasts, while HCC exhibited disrupted metabolism and greater individual heterogeneity of T cells. We further revealed a diversity of intermediate-state cells residing in the tumor-peritumor junctional zone, including a congregation of CPE+ intermediate-state endothelial cells (ECs), which harbored the molecular characteristics of tumor-associated ECs and normal ECs. This architecture offers insights into molecular characteristics of PLC microenvironment, and hints that the tumor-peritumor junctional zone could serve as a targeted region for precise therapeutical strategies.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Células Endoteliales/metabolismo , Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , Conductos Biliares Intrahepáticos , Microambiente Tumoral/genética
20.
Front Med (Lausanne) ; 10: 1217484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663668

RESUMEN

[This corrects the article DOI: 10.3389/fmed.2022.895564.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA