Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
BMC Cell Biol ; 11: 18, 2010 Mar 10.
Article En | MEDLINE | ID: mdl-20219113

BACKGROUND: Previous studies on the effects of aging in human and mouse mesenchymal stem cells suggest that a decline in the number and differentiation potential of stem cells may contribute to aging and aging-related diseases. In this report, we used stromal cells isolated from adipose tissue (ADSCs) of young (8-10 weeks), adult (5 months), and old (21 months) mice to test the hypothesis that mechanical loading modifies aging-related changes in the self-renewal and osteogenic and adipogenic differentiation potential of these cells. RESULTS: We show that aging significantly reduced the proliferation and increased the adipogenesis of ADSCs, while the osteogenic potential is not significantly reduced by aging. Mechanical loading (10% cyclic stretching, 0.5 Hz, 48 h) increased the subsequent proliferation of ADSCs from mice of all ages. Although the number of osteogenic colonies with calcium deposition was increased in ADSCs subjected to pre-strain, it resulted from an increase in colony number rather than from an increase in osteogenic potential after strain. Pre-strain significantly reduced the number of oil droplets and the expression of adipogenic marker genes in adult and old ADSCs. Simultaneously subjecting ADSCs to mechanical loading and adipogenic induction resulted in a stronger inhibition of adipogenesis than that caused by pre-strain. The reduction of adipogenesis by mechanical strain was loading-magnitude dependent: loading with 2% strain only resulted in a partial inhibition, and loading with 0.5% strain could not inhibit adipogenesis in ADSCs. CONCLUSIONS: We demonstrate that mechanical stretching counteracts the loss of self-renewal in aging ADSCs by enhancing their proliferation and, at the same time, reduces the heightened adipogenesis of old cells. These findings are important for the further study of stem cell control and treatment for a variety of aging related diseases.


Adipose Tissue/cytology , Cellular Senescence , Adipogenesis , Animals , Cell Differentiation , Cell Proliferation , Core Binding Factor Alpha 1 Subunit/metabolism , Fatty Acid-Binding Proteins/metabolism , Glycoproteins/metabolism , Mice , PPAR gamma/metabolism , Stress, Mechanical , Stromal Cells/metabolism
2.
Toxicol Lett ; 192(2): 252-60, 2010 Feb 01.
Article En | MEDLINE | ID: mdl-19896525

1,10-phenanthroline (phen), flufenamic acid, and indomethacin are inhibitors of aldo-keto reductases 1C1 (AKR1C1), but only phen decreased the benzo[a]pyrene (BaP)-induced cytochrome P450 1a1 (Cyp1a1) protein level. Therefore the decrease in the BaP-induced Cyp1a1 protein level was not due to inhibition of Akr1c1, but to phen itself. Phen decreased the BaP-induced Cyp1a1 promoter activity and protein expression, and in contrast, it increased Cyp1a1 mRNA, resulting from an increase in mRNA stability. Phen is also known as a transition metal ion-chelator. Along with the phen study, we also found that Zn(2+), Fe(2+) and Cu(2+) increased Cyp1a1 mRNA and protein stability. Our results show that phen stabilized the mRNA of Cyp1a1, although it decreased cell viability. In addition, Zn(2+) and Fe(2+) highly neutralized phen's suppression of Cyp1a1 protein expression, but they only slightly neutralized phen's promotion of mRNA stability and suppression of cell viability, and had no effect on phen's suppression of promoter activity. Phen's effect on Cyp1a1 expression was reversible, which indicates that phen is non-covalently linked to its target. This report elucidates a new role for phen of stabilizing Cyp1a1 mRNA, and provides information for further studies on mRNA stabilization.


Cytochrome P-450 CYP1A1/genetics , Phenanthrolines/pharmacology , RNA Stability/drug effects , RNA, Messenger/metabolism , Xenobiotics/pharmacology , Benzo(a)pyrene/pharmacology , Cations, Divalent/pharmacology , Cell Survival/drug effects , Copper/pharmacology , Cytochrome P-450 CYP1A1/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Iron/pharmacology , Transcription, Genetic/drug effects , Zinc/pharmacology
3.
Toxicology ; 262(2): 87-97, 2009 Aug 03.
Article En | MEDLINE | ID: mdl-19463884

Pyrene, benzo[a]pyrene (BaP), and indeno[1,2,3-cd]pyrene (IND) are poly cyclic aromatic hydrocarbons (PAHs) with four to six annealed phenyl rings. Dexamethasone (Dex) is a synthetic agonist of glucocorticoids. The aryl hydrocarbon receptor (AhR) ligands, BaP and IND, did not directly activate the glucocorticoid receptor (GR), and Dex did not activate the AhR either. Whenever BaP and IND were added to Dex-treated cultures, they were present with Dex for longer periods, and higher enhancement of Dex-induced transactivation of the GR was found, which indicates that the freshly activated AhR is essential for synergistic interactions with the activated GR. The degree of enhancement of Dex-induced transactivation of the GR by PAHs, BaP approximately IND>pyrene, paralleled the potency of PAHs in activating the AhR. This synergistic interaction was more distinct in ovarian granulosa cells (HO23) than in HepG2, 293T, or HeLa cells. In contrast, Dex suppressed AhR-mediated expressions, including AhR and cytochrome P450 (CYP) 1 A1 expressions. Dex also counteracted the BaP-induced decrease in cell viability. Crosstalk between the AhR and GR was independent of their expression levels. We concluded that the AhR functionally cross-reacts with the GR, through which transactivation activity of the GR is further enhanced, and in contrast, transactivation activity of the AhR is inhibited. This report shows the significance of in vitro endocrine-related results, which provide a clue for molecular studies of an interactive mechanism between the AhR and GR, and should be confirmed by future in vivo studies.


Granulosa Cells/metabolism , Receptor Cross-Talk/physiology , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Glucocorticoid/metabolism , Cell Line, Transformed , Cell Survival/drug effects , Dexamethasone/pharmacology , Drug Combinations , Female , Granulosa Cells/drug effects , Granulosa Cells/pathology , Humans , Polycyclic Aromatic Hydrocarbons/pharmacology , Receptor Cross-Talk/drug effects , Receptors, Aryl Hydrocarbon/drug effects , Receptors, Glucocorticoid/drug effects
4.
J Proteome Res ; 8(2): 1004-13, 2009 Feb.
Article En | MEDLINE | ID: mdl-19099420

Liver is unique in its capability to regenerate after an injury. Liver regeneration after a 2/3 partial hepatectomy served as a classical model and is adopted frequently to study the mechanism of liver regeneration. In the present study, semiquantitative analysis of protein expression in mouse liver regeneration following partial hepatectomy was performed using an iTRAQ technique. Proteins from pre-PHx control livers and livers regenerating for 24, 48 and 72 h were extracted and inspected using 4-plex isotope labeling, followed by liquid chromatography fractionation, mass spectrometry and statistical differential analysis. A total of 827 proteins were identified in this study. There were 270 proteins for which quantitative information was available at all the time points in both biologically duplicate experiments. Among the 270 proteins, Car3, Mif, Adh1, Lactb2, Fabp5, Es31, Acaa1b and LOC100044783 were consistently down-regulated, and Mat1a, Dnpep, Pabpc1, Apoa4, Oat, Hpx, Hp and Mt1 were up-regulated by a factor of at least 1.5 from that of the controls at one time point or more. The regulation of each differential protein was also demonstrated by monitoring its time-dependent expression changes during the regenerating process. We believe this is the first report to profile the protein changes in liver regeneration utilizing the iTRAQ proteomic technique.


Hepatectomy , Isotope Labeling/methods , Liver Regeneration/physiology , Liver/chemistry , Protein Array Analysis , Proteins/analysis , Animals , Female , Liver/metabolism , Liver Extracts/chemistry , Mass Spectrometry/methods , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Protein Array Analysis/instrumentation , Protein Array Analysis/methods , Proteome/analysis , Reproducibility of Results
...