Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202409432, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38946171

RESUMEN

Host-guest chemistry, a pivotal branch of supramolecular chemistry, plays an essential role in understanding and constructing complex structures through non-covalent interactions. Organic molecular cages, characterized by their intrinsic confined cavities, can selectively bind a variety of guest molecules. Their host-guest chemistry has been well studied in the solution phase, and several attempts have been made to encode well-defined molecular architectures into solid-state polymeric materials. However, only limited studies have explored their potential in the solid state, where their lack of robustness and less ordered networks significantly hinder practical applications. Herein, we report the synthesis of a single-crystal cage framework and a systematic study of its host-guest chemistry, spanning from the solution state to the solid state. Our studies reveal that the host-guest interactions inherent to the cage are successfully maintained in the solid-state polymeric material. Furthermore, the framework's robustness allows for the guest molecules (fullerene) to be released triggered by an organic acid (trifluoracetic acid), with subsequent regeneration of the framework through an organic base (triethylamine) treatment. Our findings represent the first synthesis of a robust, single-crystal cage framework exhibiting highly selective and reversible host-guest chemistry, thus showing great potential towards molecular separation application.

2.
Chem Rev ; 124(12): 7829-7906, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38829268

RESUMEN

Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.

3.
Angew Chem Int Ed Engl ; 63(20): e202403599, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38444217

RESUMEN

Naturally occurring polymeric structures often consist of 1D polymer chains intricately folded and entwined through non-covalent bonds, adopting precise topologies crucial for their functionality. The exploration of crystalline 1D polymers through dynamic covalent chemistry (DCvC) and supramolecular interactions represents a novel approach for developing crystalline polymers. This study shows that sub-angstrom differences in the counter-ion size can lead to various helical covalent polymer (HCP) topologies, including a novel metal-coordination HCP (m-HCP) motif. Single-crystal X-ray diffraction (SCXRD) analysis of HCP-Na revealed that double helical pairs are formed by sodium ions coordinating to spiroborate linkages to form rectangular pores. The double helices are interpenetrated by the unreacted diols coordinating sodium ions. The reticulation of the m-HCP structure was demonstrated by the successful synthesis of HCP-K. Finally, ion-exchange studies were conducted to show the interconversion between HCP structures. This research illustrates how seemingly simple modifications, such as changes in counter-ion size, can significantly influence the polymer topology and determine which supramolecular interactions dominate the crystal lattice.

4.
Nutr Rev ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472140

RESUMEN

With increasing attention to diabetes remission, various special dietary patterns have been found to be effective in achieving diabetes remission. The effect of a single dietary pattern on lowering blood glucose is clear, but studies on the synergistic effects of different dietary patterns are limited. This article describes the types of intermittent fasting and ketogenic diets, potential mechanisms, contraindications of combination diets, recommendations for combination diets, and their health outcomes. This paper aims to illustrate the evidence for intermittent fasting combined with a ketogenic diet on outcomes of diabetes remission and effect on blood glucose control. Knowledge of these findings can help doctors and patients determine dietary patterns for achieving diabetes remission and understanding their application.

5.
Front Endocrinol (Lausanne) ; 14: 1237832, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645409

RESUMEN

Aims: This study aims to describe the clinical characteristics, laboratory data and complications of hospitalized COVID-19 patients with type 2 diabetes mellitus (T2DM) since epidemic prevention and control optimization was adjusted in December 2022 in China. Methods: This retrospective multicenter study included 298 patients with confirmed type 2 diabetes mellitus with or without COVID-19. We collected data from the first wave of the pandemic in The Fifth Affiliated Hospital of Guangzhou Medical University, Loudi Central Hospital and The First People's Hospital of Xiangtan from December 1, 2022 to February 1, 2023. We extracted baseline data, clinical symptoms, acute complications, laboratory findings, treatment and outcome data of each patient from electronic medical records. Results: For among 298 hospitalized patients with type 2 diabetes, 136 (45.6%) were COVID-19 uninfected, and 162 (54.4%) were COVID-19 infected. We found that the incidence of cough, fatigue, fever, muscle soreness, sore throat, shortness of breath, hyposmia, hypogeusia and polyphagia (all p<0.01) were significantly higher in the exposure group. They showed higher levels of ketone (p=0.04), creatinine (p<0.01), blood potassium (p=0.01) and more diabetic ketoacidosis (p<0.01). Patients with COVID-19 less use of metformin (p<0.01), thiazolidinediones (p<0.01) and SGLT2 (p<0.01) compared with patients without COVID-19. Conclusion: COVID-19 patients with diabetes showed more severe respiratory and constitutional symptoms and an increased proportion of hyposmia and hypogeusia. Moreover, COVID-19 patients with diabetes have a higher incidence of acute complications, are more prone to worsening renal function, and are more cautious about the use of antidiabetic drugs.


Asunto(s)
Ageusia , COVID-19 , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Estudios Retrospectivos , Anosmia , COVID-19/complicaciones , COVID-19/epidemiología , China/epidemiología
6.
Chemistry ; 29(63): e202302135, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37556201

RESUMEN

Double-walled covalent organic frameworks, consisting of two same building blocks parallel to each other forming ladder-shape linkers, could enhance the stability of the frameworks and increase the density of functional sites, thus making them suitable for various applications. In this study, two double-walled covalent organic frameworks, namely DW-COF-1 and DW-COF-2, were successfully synthesized via imine condensation. The resulting DW-COFs exhibited a honeycomb topology, high crystallinity and stability. Particularly, DW-COF-2 showed excellent resistance toward boiling water, strong acid, and strong base, due to its double-walled structure, which limits the exposure of labile imine bonds to external chemical environments. The DW-COFs showed high porosity near 900 m2 /g, making them suitable for gas storage/separation. The selective gas adsorption experiments showed that at 273 K and 1 atm pressure, DW-COF-1 and DW-COF-2 exhibited a good IAST selectivity towards CO2 /N2 (15/85) adsorption, with selectivity values of 121.3 and 56.4 for CO2 over N2 , respectively.

7.
J Am Chem Soc ; 145(28): 15547-15552, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37406308

RESUMEN

The design and development of intricate artificial architectures have been pursued for decades. Helical covalent polymer (HCP) was recently reported as an unexpected topology that consists of chiral 1D polymers assembled through weak hydrogen bonds from achiral building blocks. However, many questions remained about the formation, driving force, and the single-handedness observed in each crystal. In this work, we reveal a metastable, racemic, fully covalently cross-linked, 3D covalent organic framework (COF) as an intermediate in the early stage of polymerization, which slowly converts into single-handed HCP double helices through partial fragmentation and self-sorting with the aid of a series of hydrogen bonding. Our work provides an intriguing example where weak noncovalent bonds serve as the determining factor of the overall product structure and facilitate the formation of a sophisticated polymeric architecture.

8.
Angew Chem Int Ed Engl ; 62(27): e202304279, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37146103

RESUMEN

Self-sorting is commonly observed in complex reaction systems, which has been utilized to guide the formation of single major by-design molecules. However, most studies have been focused on non-covalent systems, and using self-sorting to achieve covalently bonded architectures is still relatively less explored. Herein, we first demonstrated the dynamic nature of spiroborate linkage and systematically studied the self-sorting behavior observed in the transformation between spiroborate-linked well-defined polymeric and molecular architectures, which is enabled by spiroborate bond exchange. The scrambling between a macrocycle and a 1D helical covalent polymer led to the formation of a molecular cage, whose structures are all unambiguously elucidated by single-crystal X-ray diffraction. The results indicate that the molecular cage is the thermodynamically favored product in this multi-component reaction system. This work represents the first example of a 1D polymeric architecture transforming into a shape-persistent molecular cage, driven by dynamic covalent self-sorting. This study will further guide the design of spiroborate-based materials and open the possibilities for the development of novel complex yet responsive dynamic covalent molecular or polymeric systems.

9.
J Am Chem Soc ; 145(16): 9112-9117, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37058550

RESUMEN

Covalent adaptable networks (CANs) represent a novel class of polymeric materials crosslinked by dynamic covalent bonds. Since their first discovery, CANs have attracted great attention due to their high mechanical strength and stability like conventional thermosets under service conditions and easy reprocessability like thermoplastics under certain external stimuli. Here, we report the first example of ionic covalent adaptable networks (ICANs), a type of crosslinked ionomers, consisting of negatively charged backbone structures. More specifically, two ICANs with different backbone compositions were prepared through spiroborate chemistry. Given the dynamic nature of the spiroborate linkages, the resulting ionomer thermosets display rapid reprocessability and closed-loop recyclability under mild conditions. The materials mechanically broken into smaller pieces can be reprocessed into coherent solids at 120 °C within only 1 min with nearly 100% recovery of the mechanical properties. Upon treating the ICANs with dilute hydrochloric acid at room temperature, the valuable monomers can be easily chemically recycled in almost quantitative yield. This work demonstrates the great potential of spiroborate bonds as a novel dynamic ionic linkage for development of new reprocessable and recyclable ionomer thermosets.

10.
Angew Chem Int Ed Engl ; 62(22): e202303538, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36997343

RESUMEN

Two covalent organic frameworks consisting of carbazolylene-ethynylene shape-persistent macrocycles with azine (MC-COF-1) or imine (MC-COF-2) linkages were synthesized via imine condensation. The obtained 2D frameworks are fully conjugated which imparts semiconducting properties. In addition, the frameworks showed high porosity with aligned accessible porous channels along the z axis, serving as an ideal platform for post-synthetic incorporation of I2 into the channels to enable electrical conductivity. The resulting MC-COF-1 showed an electrical conductivity up to 7.8×10-4  S cm-1 at room temperature upon I2 doping with the activation energy as low as 0.09 eV. Furthermore, we demonstrated that the electrical properties of both MC-COFs are switchable between electron-conducting and insulating states by simply implementing doping-regenerating cycles. The knowledge gained in this study opens new possibilities for the future development of tunable conductive 2D organic materials.

11.
J Am Chem Soc ; 144(39): 17737-17742, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36165690

RESUMEN

We report, for the first time, highly crystalline cyanurate-linked covalent organic frameworks synthesized via dynamic nucleophilic aromatic substitution. The high crystallinity is enabled by the bond exchange reaction (self-correction) between 2,4,6-triphenoxy-1,3,5-triazine and diphenols via reversible SNAr catalyzed by triazabicyclodecene. The CN-COFs contain flexible backbones that exhibit a unique AA'-stacking due to interlayer hydrogen bonding interactions. The isoreticular expansion study demonstrates the general applicability of this synthetic method. The resulting CN-COFs exhibited good stability, as well as high CO2/N2 selectivity.


Asunto(s)
Estructuras Metalorgánicas , Dióxido de Carbono , Triazinas
12.
J Am Chem Soc ; 144(23): 10615-10621, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35653721

RESUMEN

The development of 2D electrically conductive metal-organic frameworks (EC-MOFs) has significantly expanded the scope of MOFs' applications into energy storage, electrocatalysis, and sensors. Despite growing interest in EC-MOFs, they often show low surface area and lack functionality due to the limited ligand motifs available. Herein we present a new EC-MOF using 2,3,8,9,14,15-hexahydroxyltribenzocyclyne (HHTC) linker and Cu nodes, featuring a large surface area. The MOF exhibits an electrical conductivity up to 3.02 × 10-3 S/cm and a surface area up to 1196 m2/g, unprecedentedly high for 2D EC-MOFs. We also demonstrate the utilization of alkyne functionality in the framework by postsynthetically hosting heterometal ions (e.g., Ni2+, Co2+). Additionally, we investigated particle size tunability, facilitating the study of size-property relationships. We believe that these results not only contribute to expanding the library of EC-MOFs but shed light on the new opportunities to explore electronic applications.


Asunto(s)
Estructuras Metalorgánicas , Alquinos , Conductividad Eléctrica , Electrónica
13.
Chem Sci ; 12(40): 13316-13320, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34777750

RESUMEN

It is highly desirable to maintain both permanent accessible pores and selective molecular recognition capability of macrocyclic cavitands in the solid state. Integration of well-defined discrete macrocyclic hosts into ordered porous polymeric frameworks (e.g., covalent organic frameworks, COFs) represents a promising strategy to transform many supramolecular chemistry concepts and principles well established in the solution phase into the solid state, which can enable a broad range of practical applications, such as high-efficiency molecular separation, heterogeneous catalysis, and pollution remediation. However, it is still a challenging task to construct macrocycle-embedded COFs. In this work, a novel pillar[5]arene-derived (P5) hetero-porous COF, denoted as P5-COF, was rationally designed and synthesized. Featuring the unique backbone structure, P5-COF exhibited selective adsorption of C2H2 over C2H4 and C2H6, as well as significantly enhanced host-guest binding interaction with paraquat, in comparison with the pillar[5]arene-free COF analog, Model-COF. The present work established a new strategy for developing COFs with customizable molecular recognition/separation properties through the bottom-up "pre-porous macrocycle to porous framework" design.

14.
Chem Sci ; 12(28): 9591-9606, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34349932

RESUMEN

Shape-persistent purely organic molecular architectures have attracted tremendous research interest in the past few decades. Dynamic Covalent Chemistry (DCvC), which deals with reversible covalent bond formation reactions, has emerged as an efficient synthetic approach for constructing these well-defined molecular architectures. Among various dynamic linkages, the formation of ethynylene linkages through dynamic alkyne metathesis is of particular interest due to their high chemical stability, linearity, and rigidity. In this review, we focus on the synthetic strategies of discrete molecular architectures (e.g., macrocycles, molecular cages) containing ethynylene linkages using alkyne metathesis as the key step, and their applications. We will introduce the history and challenges in the synthesis of those architectures via alkyne metathesis, the development of alkyne metathesis catalysts, the reported novel macrocycle structures, molecular cage structures, and their applications. In the end, we offer an outlook of this field and remaining challenges.

15.
Nat Commun ; 12(1): 1136, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602910

RESUMEN

Alkyne metathesis represents a rapidly emerging synthetic method that has shown great potential in small molecule and polymer synthesis. However, its practical use has been impeded by the limited availability of user-friendly catalysts and their generally high moisture/air sensitivity. Herein, we report an alkyne metathesis catalyst system that can operate under open-air conditions with a broad substrate scope and excellent yields. These catalysts are composed of simple multidentate tris(2-hydroxyphenyl)methane ligands, which can be easily prepared in multi-gram scale. The catalyst substituted with electron withdrawing cyano groups exhibits the highest activity at room temperature with excellent functional group tolerance (-OH, -CHO, -NO2, pyridyl). More importantly, the catalyst provides excellent yields (typically >90%) in open air, comparable to those operating under argon. When dispersed in paraffin wax, the active catalyst can be stored on a benchtop under ambient conditions without any decrease in activity for one day (retain 88% after 3 days). This work opens many possibilities for developing highly active user-friendly alkyne metathesis catalysts that can function in open air.

16.
ACS Appl Mater Interfaces ; 12(46): 51517-51522, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33158360

RESUMEN

A series of covalent organic frameworks substituted with azo groups (AzoCOFs) have been synthesized via imine condensation. The obtained frameworks show crystallinity and high stability. More importantly, the AzoCOFs exhibit exceptionally high ideal adsorption solution theory (IAST) selectivity in adsorption of C2H2 (35-2891) over CH4 at 273 K and 1 bar, owing to the favorable interactions between azo groups and acetylene molecules. The dependence of the gas adsorption property on pore size and polarity of the frameworks was also studied. The triethylene glycol substituted Tg-AzoCOF shows the highest C2H2/CH4 selectivity (IAST selectivity of 2891), which represents the highest reported for all porous materials. The AzoCOFs also exhibit high IAST adsorption selectivity of C2H4/CH4 (11-20), C2H6/CH4 (15-22), and CO2/CH4 (12-37), which is comparable with most porous materials, thus showing their great potential in gas separation applications.

17.
Angew Chem Int Ed Engl ; 59(46): 20385-20389, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-32722860

RESUMEN

All-solid-state lithium ion batteries (LIBs) are ideal for energy storage given their safety and long-term stability. However, there is a limited availability of viable electrode active materials. Herein, we report a truxenone-based covalent organic framework (COF-TRO) as cathode materials for all-solid-state LIBs. The high-density carbonyl groups combined with the ordered crystalline COF structure greatly facilitate lithium ion storage via reversible redox reactions. As a result, a high specific capacity of 268 mAh g-1 , almost 97.5 % of the calculated theoretical capacity was achieved. To the best of our knowledge, this is the highest capacity among all COF-based cathode materials for all-solid-state LIBs reported so far. Moreover, the excellent cycling stability (99.9 % capacity retention after 100 cycles at 0.1 C rate) shown by COF-TRO suggests such truxenone-based COFs have great potential in energy storage applications.

18.
Chem Soc Rev ; 49(14): 4637-4666, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32597423

RESUMEN

Given their modular synthesis, unique structural features and rich functionality, structurally ordered covalent organic frameworks (COFs) and covalent monolayers have shown great potential in a broad range of applications, such as catalysis, molecular separation, energy storage, light harvesting, etc. The synthesis of COF thin films and covalent monolayers mainly utilizes dynamic covalent chemistry (DCvC), which relies on the reversible formation and breaking of rather strong covalent bonds within molecules under certain external stimuli. Such reversible reaction conditions enable a self-correction mechanism, which can selectively resolve defect sites leading to the formation of highly ordered COF films under thermodynamic control. Novel techniques to obtain single-layer covalent nanosheets have spread throughout recent literature. Emerging interfacial polymerization techniques (e.g., air-water, liquid-liquid, liquid-solid, etc.) have been employed to successfully synthesize crystalline COF thin films from a variety of starting building blocks. Although the growth of ordered frameworks at the interface represents a rapidly developing field, the reversible reactions suitable for the synthesis of thin films or monolayers are still very limited. The identification and development of new dynamic reactions and interfacial polymerization conditions would be critical for the further development of COF thin films and covalent monolayer materials. This review covers the recent design and synthesis of COF thin films and covalent monolayers as well as their property study. The fundamental working mechanisms of different surface and interfacial polymerization and the current challenges and opportunities in this rapidly growing field are presented.

19.
Nanoscale ; 12(4): 2596-2602, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31939958

RESUMEN

The hydrogen evolution reaction (HER) is one of the most effective and sustainable ways to produce hydrogen gas as an alternative clean fuel. The rate of this electrocatalytic reaction is highly dependent on the properties (dispersity and stability) of electrocatalysts. Herein, we developed well-dispersed and highly stable platinum nanoparticles (PtNPs) supported on a covalent organic framework (COF-bpyTPP), which exhibit excellent catalytic activities toward HER as well as the hydride reduction reaction. The nanoparticles have an average size of 2.95 nm and show superior catalytic performance compared to the commercially available Pt/C under the same alkaline conditions, producing 13 times more hydrogen with a far more positive onset potential (-0.13 V vs.-0.63 V) and ca. 100% faradaic efficiency. The reaction rate of the hydride reduction of 4-nitrophenol was also 10 times faster in the case of PtNPs@COF compared to the commercial Pt/C under the same loading and conditions. More importantly, the PtNPs@COF are highly stable under the aqueous reactions conditions and can be reused without showing noticeable aggregation and activity degradation.

20.
J Am Chem Soc ; 141(18): 7518-7525, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30986353

RESUMEN

Ionic covalent organic frameworks (ICOFs) have recently emerged as promising candidates for solid-state electrolytes. Herein, we report the first example of a series of crystalline imidazolate-containing ICOFs as single-ion conducting COF solid electrolyte materials, where lithium cations freely travel through the intrinsic channels with outstanding ion conductivity (up to 7.2 × 10-3 S cm-1) and impressively low activation energy (as low as 0.10 eV). These properties are attributed to the weak Li ion-imidazolate binding interactions and well-defined porous 2D framework structures of such ICOFs. We also investigated the structure-property relationship by varying the electronic properties of substituents (electron donating/withdrawing) that covalently attached to the imidazolate groups. We found electron-withdrawing substituents significantly improve the ion-conducting ability of imidazolate-ICOF by weakening ion-pair interactions. Our study provides a convenient bottom-up approach toward a novel class of highly efficient single-ion conducting ICOFs which could be used in all solid-state electrolytic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...