Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ren Fail ; 46(2): 2361089, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38874156

RESUMEN

As a pattern recognition receptor, Toll-like receptor 4 (TLR4) is crucial for the development and progression of acute kidney injury (AKI). This study aims to explore whether the deubiquitinase Usp9x influences the TLR4/NF-B pathway to cause sepsis-induced acute kidney injury (S-AKI). The model of AKI was established in Sprague-Dawley rats using the cecal ligation and puncture (CLP) method, while renal tubular epithelial cell NRK-52E was stimulated with lipopolysaccharide (LPS) in vitro. All plasmids were transfected into NRK-52E cells according to the indicated group. The deubiquitinase of TLR4 was predicted by the online prediction software Ubibrowser. Subsequently, Western blot and Pearson correlation analysis identified Usp9x protein as a potential candidate. Co-IP analysis verified the interaction between TLR4 and Usp9x. Further research revealed that overexpression of Usp9x inhibited degradation of TLR4 protein by downregulating its ubiquitination modification levels. Both in vivo and in vitro experiments observed that interference with Usp9x effectively alleviated the inflammatory response and apoptosis of renal tubular epithelial cells (RTECs) induced by CLP or LPS, whereas overexpression of TLR4 reversed this situation. Transfection with sh-Usp9x in NRK-52E cells suppressed the expression of proteins associated with the TLR4/NF-κB pathway induced by LPS. Moreover, the overexpression of TLR4 reversed the effect of sh-Usp9x transfection. Therefore, the deubiquitinase Usp9x interacts with TLR4, leading to the upregulation of its expression through deubiquitination modification, and the activation of the TLR4/NF-κB signaling pathway, thereby promoting inflammation and apoptosis in renal tubular epithelial cells and contributing to sepsis-induced acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Apoptosis , Células Epiteliales , Inflamación , Túbulos Renales , FN-kappa B , Ratas Sprague-Dawley , Sepsis , Transducción de Señal , Receptor Toll-Like 4 , Ubiquitina Tiolesterasa , Animales , Receptor Toll-Like 4/metabolismo , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Sepsis/complicaciones , Sepsis/metabolismo , FN-kappa B/metabolismo , Ratas , Células Epiteliales/metabolismo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Túbulos Renales/citología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Masculino , Inflamación/metabolismo , Modelos Animales de Enfermedad , Línea Celular , Lipopolisacáridos , Ubiquitinación
2.
Angew Chem Int Ed Engl ; 63(12): e202318784, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38291557

RESUMEN

Plitidepsin (or dehydrodidemnin B), an approved anticancer drug, belongs to the didemnin family of cyclic depsipeptides, which are found in limited quantities in marine tunicate extracts. Herein, we introduce a new approach that integrates microbial and chemical synthesis to generate plitidepsin and its analogues. We screened a Tistrella strain library to identify a potent didemnin B producer, and then introduced a second copy of the didemnin biosynthetic gene cluster into its genome, resulting in a didemnin B titer of approximately 75 mg/L. Next, we developed two straightforward chemical strategies to convert didemnin B into plitidepsin, one of which involved a one-step synthetic route giving over 90 % overall yield. Furthermore, we synthesized 13 new didemnin derivatives and three didemnin probes, enabling research into structure-activity relationships and interactions between didemnin and proteins. Our study highlights the synergistic potential of biosynthesis and chemical synthesis in overcoming the challenge of producing complex natural products sustainably and at scale.


Asunto(s)
Antineoplásicos , Depsipéptidos , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Depsipéptidos/farmacología , Antineoplásicos/farmacología , Relación Estructura-Actividad
3.
J Diabetes Investig ; 14(10): 1221-1225, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37448194

RESUMEN

The term laminopathies refers to a group of congenital diseases characterized by accelerated degeneration of human tissues. Mutations in LMNA, LMNB, ZMPSTE24, and other genes lead to structural and functional abnormalities associated with lamins. One subtype of laminopathy is the generalized lipodystrophy-associated progeroid syndrome (GLPS), which occurs in patients with heterozygous mutations of the LMNA gene c.29C>T(p.T10I). This paper reports the first case of GLPS in China and compares the clinical features of other GLPS patients with literature reports. A 16-year-old male patient was treated for diabetic ketoacidosis, presenting with premature aging appearance, systemic lipodystrophy, severe fatty liver, and decreased bone density. After peripheral blood DNA extraction and second-generation sequencing, a heterozygous mutation of exon 1 of the LMNA gene c.29C>T(p.T10I) was detected. This case of GLPS may provide a diagnostic and therapeutic basis for potential patients.


Asunto(s)
Laminopatías , Lipodistrofia Generalizada Congénita , Lipodistrofia , Progeria , Masculino , Humanos , Adolescente , Lipodistrofia Generalizada Congénita/complicaciones , Lipodistrofia Generalizada Congénita/diagnóstico , Lipodistrofia Generalizada Congénita/genética , Progeria/complicaciones , Progeria/genética , Mutación , Lipodistrofia/genética , Lipodistrofia/complicaciones , Laminopatías/complicaciones , Lamina Tipo A/genética
4.
J Org Chem ; 88(15): 11069-11082, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37458502

RESUMEN

A one-pot cascade reaction for 2,3-dihydropyridinone synthesis was accomplished with 3-fluoro-2-iodo-1-methylpyridinium triflate as the halogen bond catalyst. The desired [4+2] cycloaddition products, bearing aryl, heteroaryl, alkyl, and alicyclic substituents, were successfully furnished in 28-99% yields. Mechanistic investigations proved that a strong halogen-bonding interaction forged between the iodopyridinium catalyst and imine intermediate was essential to dynamically masking the vulnerable C-I bond on the catalyst and accelerating the following aza-Diels-Alder reaction.

5.
Ann Transl Med ; 10(20): 1097, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36388798

RESUMEN

Background: Cerebral ischemic stroke is a serious condition with high incidence, mortality, and associated disability. Currently, effective therapeutic options are available for ischemic stroke are limited. Accumulating evidence indicates that sodium Danshensu, mono sodium compound derived from Salvia miltiorrhiza, plays protective roles in ischemic stroke. However, the underlying protective mechanism of sodium Danshensu in cerebral ischemic stroke remains unknown. Methods: In the current study, we explored the role and mechanism of sodium Danshensu on astrocytes exposed to oxygen-glucose deprivation/reoxygenation (OGD/R), which mimics the process of ischemia-reperfusion. The impact of sodium Danshensu on cell viability and apoptosis after OGD/R were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-dophenyl tetrazolium bromide (MTT) assay and flow cytometry. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were used to detect the expression of target messenger RNA (mRNA) and proteins associated with apoptosis and autophagy. The release of lactate dehydrogenase (LDH) was determined, and the production of proinflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA) kits. Results: It was found that sodium Danshensu could significantly increase cell viability and decrease LDH release and apoptosis. Besides, it inhibited the production of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6. Sodium Danshensu also dose-dependently decreased protein and mRNA levels of nucleotide binding oligomerization NOD-like receptor pyrin domain containing 3 (NLRP3) and high mobility group box 1 (HMGB1), which play a crucial role in promoting ischemic stroke-induced cell injury. Moreover, sodium Danshensu dose-dependently upregulated Beclin 1 expression, downregulated P62 protein expression, and further increased LC3B-II/LC3B-I ratio through inducing autophagy in astrocytes. Additionally, we noticed that sodium Danshensu dose-dependently increased tuberous sclerosis complex-2 (TSC2) protein expression, while significantly reduced the levels of mammalian target of rapamycin (mTOR) in the presence of OGD/R insult. Conclusions: These findings suggest that sodium Danshensu protects against OGD/R-induced injury by modulating the NLRP3 inflammasome and TSC2/mTOR pathways.

6.
Cell Death Discov ; 8(1): 79, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210431

RESUMEN

F-box and WD repeat domain-containing 5 (FBXW5), with WD40 repeats, can bind to the PPxY sequence of the large tumor suppressor kinases 1/2 (LATS1/2) kinase domain, resulting in ubiquitination. Ubiquitination and the subsequent degradation of LATS1/2 abrogate the Hippo pathway and worsen gastric cancer (GC). However, the effects and molecular mechanisms of FBXW5 in GC remain unexplored. To elucidate the clinical significance of FBXW5, immunohistochemistry was conducted to reveal the positive correlation between FBXW5 expression and lymph node metastasis (p < 0.001) and TNM stage (training cohort: p = 0.018; validation cohort: p = 0.001). Further, patients with high FBXW5 expression were found to have poor prognosis (training cohort: log-rank p = 0.020; validation cohort: log-rank p = 0.025). Cell experiments revealed the promoting effects of FBXW5 on the proliferation, invasion, metastasis, and chemoresistance of GC cells. Blocking LATS1-YAP1 leads to the loss of FBXW5-mediated regulation of the Hippo pathway and partial functions. Further, co-immunoprecipitation and in vivo ubiquitination assays revealed the interaction between FBXW5 and LATS1, which promoted the ubiquitination and degradation of LATS1. Based on mouse xenograft assays, FBXW5 silencing attenuated the growth of subcutaneous tumor xenografts. Altogether, FBXW5 was found to inactivate the Hippo signaling pathway by enhancing LATS1 ubiquitination and degradation, which promoted the invasion, metastasis, and drug resistance of GC cells.

7.
Med Sci Monit ; 27: e930638, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34650025

RESUMEN

BACKGROUND This study was designed to study the serum metabolites of patients with liver failure. MATERIAL AND METHODS The study included 50 patients with liver failure, 30 patients with chronic hepatitis B treated with an artificial liver, 11 patients with an artificial liver, and 32 healthy controls. Clinical data were recorded, and blood samples were analyzed by gas chromatography-mass spectrometry (GC-MS). The random forest algorithm was used to construct a multidimensional scale map to preliminarily reflect the differences between samples. The data were then analyzed to obtain the correlation of different variables among samples, from which the differential metabolites were screened. RESULTS Thirty-five metabolites were identified by GC-MS. There were significant differences in serum metabolites levels before and after treatment in the liver failure group and in the chronic hepatitis group, healthy control group, and artificial liver group. Different metabolites were screened according to the importance of different variables among samples. Significant differences were found between the liver failure group, the chronic hepatitis group, and the healthy control group. In addition, there were significant differences in the liver group before and after treatment with an artificial liver, including differences in boric acid, 2-(methoxyamino)-propionic acid, glycine, l-methionine, aminopropionic acid, glyceryl monostearate, cholesterol, and other substances. CONCLUSIONS A variety of differences in metabolites were found in each group, some of which revealed possible metabolic pathways leading to differences between groups. Blood metabolomics analysis has great potential in real-time dynamic monitoring of liver failure and evaluation of artificial liver therapy.


Asunto(s)
Fallo Hepático/terapia , Hígado Artificial , Adulto , Biomarcadores/sangre , Biomarcadores/metabolismo , Estudios de Casos y Controles , Femenino , Cromatografía de Gases y Espectrometría de Masas , Voluntarios Sanos , Hepatitis B Crónica/sangre , Hepatitis B Crónica/diagnóstico , Hepatitis B Crónica/metabolismo , Humanos , Fallo Hepático/sangre , Fallo Hepático/diagnóstico , Fallo Hepático/metabolismo , Masculino , Metabolómica/métodos , Persona de Mediana Edad , Resultado del Tratamiento
8.
Adv Clin Exp Med ; 30(2): 153-156, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33571404

RESUMEN

BACKGROUND: The new coronavirus pneumonia (NCP, COVID-19) outbreak began in Wuhan in December 2019. The new coronavirus (2019 novel coronavirus (2019-nCoV)) can cause multiple organ damage, mainly to lung tissue, and induce inflammation in the body. OBJECTIVES: To investigate the changes of high-density lipoprotein (HDL) level in patients with COVID-19 and assess its value in the evaluation and prognosis of this disease. MATERIAL AND METHODS: This paper is a cross-sectional retrospective study. Eighty-six severe COVID-19 patients, 132 non-severe COVID-19 patients and 76 healthy individuals (control group) were recruited to measure triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) using enzyme-coupled colorimetry. RESULTS: The serum HDL-C level in COVID-19 group was 1.02 ±0.28 mmol/L which was significantly lower than in control group (1.52 ±0.55 mmol/L) (p < 0.05). In addition, the serum HDL-C level in severe COVID-19 group was 0.83 ±1.67 mmol/L, which was significantly lower than that in non-severe COVID-19 group (1.15 ±0.27 mmol/L) (p < 0.05). CONCLUSIONS: Changes in HDL levels in patients with COVID-19 can reflect the severity of the disease and have a clinical significance in establishing the prognosis.


Asunto(s)
COVID-19/epidemiología , HDL-Colesterol/sangre , Lipoproteínas HDL/sangre , Adulto , Anciano , COVID-19/sangre , Estudios de Casos y Controles , Enfermedad Crítica , Estudios Transversales , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...