Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Int J Nanomedicine ; 19: 4279-4295, 2024.
Article En | MEDLINE | ID: mdl-38766658

Ischemic stroke, being a prominent contributor to global disability and mortality, lacks an efficacious therapeutic approach in current clinical settings. Neural stem cells (NSCs) are a type of stem cell that are only found inside the nervous system. These cells can differentiate into various kinds of cells, potentially regenerating or restoring neural networks within areas of the brain that have been destroyed. This review begins by providing an introduction to the existing therapeutic approaches for ischemic stroke, followed by an examination of the promise and limits associated with the utilization of NSCs for the treatment of ischemic stroke. Subsequently, a comprehensive overview was conducted to synthesize the existing literature on the underlying processes of neural stem cell-derived small extracellular vesicles (NSC-sEVs) transplantation therapy in the context of ischemic stroke. These mechanisms encompass neuroprotection, inflammatory response suppression, and endogenous nerve and vascular regeneration facilitation. Nevertheless, the clinical translation of NSC-sEVs is hindered by challenges such as inadequate targeting efficacy and insufficient content loading. In light of these limitations, we have compiled an overview of the advancements in utilizing modified NSC-sEVs for treating ischemic stroke based on current methods of extracellular vesicle modification. In conclusion, examining NSC-sEVs-based therapeutic approaches is anticipated to be prominent in both fundamental and applied investigations about ischemic stroke.


Extracellular Vesicles , Ischemic Stroke , Neural Stem Cells , Humans , Ischemic Stroke/therapy , Animals , Stem Cell Transplantation/methods
2.
Int J Nanomedicine ; 19: 3715-3735, 2024.
Article En | MEDLINE | ID: mdl-38681090

Liposomes, noted for their tunable particle size, surface customization, and varied drug delivery capacities, are increasingly acknowledged in therapeutic applications. These vesicles exhibit surface flexibility, enabling the incorporation of targeting moieties or peptides to achieve specific targeting and avoid lysosomal entrapment. Internally, their adaptable architecture permits the inclusion of a broad spectrum of drugs, contingent on their solubility characteristics. This study thoroughly reviews liposome fabrication, surface modifications, and drug release mechanisms post-systemic administration, with a particular emphasis on drugs crossing the blood-brain barrier (BBB) to address lesions. Additionally, the review delves into recent developments in the use of liposomes in ischemic stroke models, offering a comparative evaluation with other nanocarriers like exosomes and nano-micelles, thereby facilitating their clinical advancement.


Blood-Brain Barrier , Drug Carriers , Ischemic Stroke , Liposomes , Liposomes/chemistry , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Ischemic Stroke/drug therapy , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Animals , Drug Delivery Systems/methods , Drug Liberation , Particle Size
3.
Expert Opin Drug Deliv ; 21(1): 91-110, 2024.
Article En | MEDLINE | ID: mdl-38258509

INTRODUCTION: Using engineered exosomes produced from stem cells is an experimental therapeutic approach for treating brain diseases. According to reports, preclinical research has demonstrated notable neurogenesis and angiogenesis effects using modified stem cell-derived exosomes. These biological nanoparticles have a variety of anti-apoptotic, anti-inflammatory, and antioxidant properties that make them very promising for treating nervous system disorders. AREAS COVERED: This review examines different ways to enhance the delivery of modified stem cell-derived exosomes, how they infiltrate the blood-brain barrier (BBB), and how they facilitate their access to the brain. We would also like to determine whether these nanoparticles have the most significant transmission rates through BBB when targeting brain lesions. EXPERT OPINION: Using engineered stem cell-derived exosomes for treating brain disorders has generated considerable attention toward clinical research and application. However, stem cell-derived exosomes lack consistency, and their mechanisms of action are uncertain. Therefore, upcoming research needs to prioritize examining the underlying mechanisms and strategies via which these nanoparticles combat neurological disorders.


Brain Diseases , Exosomes , Nervous System Diseases , Humans , Brain , Blood-Brain Barrier , Stem Cells , Nervous System Diseases/therapy
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(8): 1148-1154, 2020 Aug 30.
Article Zh | MEDLINE | ID: mdl-32895174

OBJECTIVE: To study the inhibitory effect of Biejiajian pills (BJJ) agaisnt diethylnitrosamine (DEN)-induced hepatocarcinogenesis and explore the relation between this effect and the inflammasome signaling pathway. METHODS: Sixty-five male SD rats were randomly divided into control group, DEN model group, and 3 BJJ treatment groups at low, medium and high dose (with daily dose of 0.55, 1.1 and 2.2 g/kg, respectively, for 12 consecutive weeks starting from the 5th week after modeling). The pathological changes of the liver tissue were observed with HE and Masson staining, and serum levels of alanine transaminase (ALT), glutamic oxaloacetic transaminase (AST), alkaline phosphatase (ALP) and total bilirubin (TBIL) of the rats were detected using ELISA. Oxidation stress in the liver tissue was assessed with ELISA, and Western blotting and ELISA were used to detect the molecular expressions of inflammasome-related pathway. RESULTS: BJJ significantly inhibited tumor growth in the liver of the rats. HE and Masson staining showed that BJJ treatment obviously ameliorated liver fibrosis and reduced cancer cell and inflammatory cell infiltration in the liver. BJJ significantly reduced elevations of serum ALT, AST, ALP and TBIL levels, increased the contents of superoxide dismutase, catalase and glutathione peroxidase in the liver and suppressed malondialdehyde in Den-treated rats. BJJ also dose-dependently decreased the expressions of NLRP3, apoptosis-associated speck-like protein (ASC), caspase-1, pro-IL-1ß, pro-IL-18, IL-1ß and IL-18 in the liver of Den-treated rats. CONCLUSIONS: BJJ treatment can dose-dependently inhibit DEN-induced hepatocarcinogenesis by enhancing antioxidant capacity and down-regulating inflammatory-related pathways in rats.


Liver Neoplasms , Animals , Aspartate Aminotransferases , Diethylnitrosamine , Liver , Male , Rats , Rats, Sprague-Dawley
...