Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(4): 404-409, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38813636

OBJECTIVE: To evaluate the effect of transnasal humidified rapid insufflation ventilatory exchange (THRIVE) on regional cerebral oxygen saturation (rScO2) during induction of general anesthesia in patients undergoing traumatic brain injury (TBI) emergency surgery. METHODS: A prospective randomized controlled trial was conducted. The TBI emergency general anesthesia patients who underwent intracranial hematoma removal surgery at the Northern Jiangsu People's Hospital from January to July in 2023 were enrolled. The patients were divided into a conventional mask ventilation group and a THRIVE group using a random number table method. The patients in the conventional mask ventilation group were anesthetized and induced to pre oxygenate without positive pressure ventilation in the front mask for 10 minutes, with an oxygen flow rate of 8 L/min and an fraction of inspired oxygen (FiO2) of 1.00. After anesthesia induction for about 90 s, tracheal intubation was performed after the muscle relaxant took effect (patient's jaw muscle was relaxed). The patients in the THRIVE group were pre oxygenated with THRIVE for 10 minutes, with an oxygen flow rate of 30 L/min and a FiO2 of 1.00. During anesthesia induction, the oxygen flow rate was increased to 50 L/min, and anesthesia induction medication was used. The lower jaw of patient was supported with both hands to maintain airway patency, and the patient's mouth was kept closed throughout the process. After the muscle relaxant took effect (the patient's jaw muscle was relaxed), tracheal intubation was performed. At the time of patient entering the operating room, 10 minutes of pre oxygenation, and immediately after successful intubation, rScO2 was measured on the surgical and non-surgical sides. At the same time, ultrasound was used to measure the cross-sectional area (CSA) of the gastric antrum and arterial blood gas analysis was performed. The partial pressure of end-tidal carbon dioxide (PETCO2) during the first mechanical ventilation after successful tracheal intubation, the incidence of hypoxemia [pulse oxygen saturation (SpO2) < 0.95] during tracheal intubation, as well as prognostic indicators such as the length of intensive care unit (ICU) stay, total length of hospital stay, and Glasgow outcome scale (GOS) score at discharge were recorded. RESULTS: During the study period, a total of 70 TBI patients underwent emergency general anesthesia surgery, of which 2 patients died postoperatively, 2 patients were unable to cooperate with closed mouth breathing, and 3 patients had poor ultrasound image acquisition in the gastric antrum, all of whom were excluded. A total of 63 patients were ultimately enrolled, including 32 in the conventional mask ventilation group and 31 in the THRIVE group. There were no statistically significant differences in gender, age, body mass index (BMI), American Society of Anesthesiologists (ASA) classification, Glasgow coma scale (GCS) score, optic nerve sheath diameter (ONSD), baseline vital signs, fasting situation, anesthesia time, surgical time, and intraoperative blood loss between the patients in the two groups, indicating comparability. When entering the operating room, there was no statistically significant difference in rScO2 on the surgical and non-surgical sides, and blood gas analysis indexes arterial partial pressure of oxygen (PaO2) and arterial partial pressure of carbon dioxide (PaCO2) between the patients in the two groups. When pre oxygenated for 10 minutes, both the surgical and non-surgical sides rScO2 levels in the THRIVE group were significantly higher than those in the conventional mask ventilation group (surgical side: 0.709±0.036 vs. 0.636±0.028, non-surgical side: 0.791±0.016 vs. 0.712±0.027, both P < 0.01), and the PaO2 was significantly increased [mmHg (1 mmHg ≈ 0.133 kPa): 450.23±60.99 vs. 264.88±49.33, P < 0.01], PaCO2 was significantly reduced (mmHg: 37.81±3.65 vs. 43.59±3.76, P < 0.01), and the advantage continues tilled immediately after successful intubation. There was no statistically significant difference in CSA at each time point of ultrasound examination between the two groups. Compared with the conventional mask ventilation group, the patients in the THRIVE group showed a significant decrease in PETCO2 during the first mechanical ventilation after successful tracheal intubation (mmHg: 43.10±2.66 vs. 49.22±3.31, P < 0.01), and the incidence of hypoxemia during tracheal intubation was also significantly reduced [0% (0/31) vs. 28.12% (9/32), P < 0.01]. In terms of prognostic indicators, there was no statistically significant difference in the length of ICU stay and total length of hospital stay between the patients in the conventional mask ventilation group and the THRIVE group [length of ICU stay (days): 10 (9, 10) vs. 10 (9, 11), total length of hospital stay (days): 28.00 (26.00, 28.75) vs. 28.00 (27.00, 29.00), both P > 0.05]. However, the proportion of patients in the THRIVE group with a good prognosis at discharge (GOS score > 3) was significantly higher than that in the conventional mask ventilation group [35.5% (11/31) vs. 12.5% (4/32), P < 0.05]. CONCLUSIONS: THRIVE can significantly increase rScO2 during anesthesia induction in TBI emergency surgery patients and improve their neurological function prognosis.


Anesthesia, General , Brain Injuries, Traumatic , Insufflation , Oxygen Saturation , Humans , Anesthesia, General/methods , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/surgery , Prospective Studies , Insufflation/methods , Oxygen , Male , Female , Respiration, Artificial/methods , Adult , Middle Aged
2.
Mol Neurobiol ; 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38388773

Traumatic brain injury (TBI) can lead to short-term and long-term physical and cognitive impairments, which have significant impacts on patients, families, and society. Currently, treatment outcomes for this disease are often unsatisfactory, due at least in part to the fact that the molecular mechanisms underlying the development of TBI are largely unknown. Here, we observed significant upregulation of Piezo2, a key mechanosensitive ion channel protein, in the injured brain tissue of a mouse model of TBI induced by controlled cortical impact. Pharmacological inhibition and genetic knockdown of Piezo2 after TBI attenuated neuronal death, brain edema, brain tissue necrosis, and deficits in neural function and cognitive function. Mechanistically, the increase in Piezo2 expression contributed to TBI-induced neuronal death and subsequent production of TNF-α and IL-1ß, likely through activation of the RhoA/ROCK1 pathways in the central nervous system. Our findings suggest that Piezo2 is a key player in and a potential therapeutic target for TBI.

3.
Toxicol Appl Pharmacol ; 482: 116789, 2024 01.
Article En | MEDLINE | ID: mdl-38103741

Esketamine, a widely used intravenous general anesthetic, is also employed for obstetric and pediatric anesthesia, and depression treatment. However, concerns regarding esketamine abuse have emerged. Moreover, the potential in vivo toxicity of esketamine on growth and development remains unclear. To address these concerns, we investigated the effects of esketamine exposure on developmental parameters, cell apoptosis, and gene expression in zebrafish. Esketamine exposure concentration-dependently decreased the heart rate and body length of zebrafish embryos/larvae while increasing the hatching rate and spontaneous movement frequency. Developmental retardation of zebrafish larvae, including shallow pigmentation, small eyes, and delayed yolk sac absorption, was also observed following esketamine treatment. Esketamine exposure altered the expression of apoptosis-related genes in zebrafish heads, primarily downregulating bax, caspase9, caspase3, caspase6, and caspase7. Intriguingly, BTSA1, a Bax agonist, reversed the anti-apoptotic and decelerated body growth effects of esketamine in zebrafish. Collectively, our findings suggest that esketamine may hinder embryonic development by inhibiting embryonic apoptosis via the Bax/Caspase9/Caspase3 pathway. To the best of our knowledge, this is the first study to report the lethal toxicity of esketamine in zebrafish. We have elucidated the developmental toxic effects of esketamine on zebrafish larvae and its potential apoptotic mechanisms. Further studies are warranted to evaluate the safety of esketamine in animals and humans.


Ketamine , Water Pollutants, Chemical , Zebrafish , Humans , Animals , Child , Embryo, Nonmammalian , bcl-2-Associated X Protein/metabolism , Yolk Sac , Larva , Water Pollutants, Chemical/toxicity
4.
Front Med (Lausanne) ; 10: 1212646, 2023.
Article En | MEDLINE | ID: mdl-37746088

Background: Reflux aspiration is a rare but serious complication during induction of anesthesia. The primary aim of this study is to compare the incidence of reflux and microaspiration in patients undergoing laparoscopic cholecystectomy during induction of general anesthesia using either a facemask or trans-nasal humidified rapid insufflation ventilatory exchange. Methods: We conducted a single-center, randomized, controlled trial. Thirty patients were allocated to either a facemask or a trans-nasal humidified rapid insufflation ventilatory exchange (THRIVE) group. Pre-oxygenation for 5 min with a facemask or THRIVE, positive pressure ventilation for 2 min or THRIVE for 2 min after anesthesia induction was followed. Before endotracheal intubation, the secretion above and below the glottis was collected to measure pepsin content and analyze blood gas. The ELISA assay for supra- and subglottic human pepsin content was used to detect the presence of reflux and microaspiration. The primary outcome was the incidence of reflux and microaspiration. Secondary outcomes were apnea time, PaO2 before tracheal intubation, and the end-expiratory carbon dioxide partial pressure. Results: Patients in the THRIVE group had a significantly longer apnea time (379.55 ± 94.12 s) compared to patients in the facemask group (172.96 ± 58.87 s; p < 0.001). There were no differences observed in PaO2 between the groups. A significant difference in gastric insufflation, reflux, and microaspiration was observed between the groups. Gastric insufflation was 6.9% in the THRIVE group vs. 28.57% kPa in the facemask group (p = 0.041); reflux was 10.34% in the THRIVE group vs. 32.14% kPa in the facemask group (p = 0.044); and microaspiration was 0% in the THRIVE group vs. 17.86% kPa in the facemask group (p = 0.023). Conclusion: The application of THRIVE during induction of general anesthesia reduced the incidence of reflux and microaspiration while ensuring oxygenation and prolonged apnea time in laparoscopic cholecystectomy patients. THRIVE may be an optimal way to administer oxygen during the induction of general anesthesia in laparoscopic cholecystectomy patients. Clinical trial registration: Chinese Clinical Trial Registry, No: ChiCTR2100054086, https://www.chictr.org.cn/indexEN.html.

5.
Front Med (Lausanne) ; 10: 1169912, 2023.
Article En | MEDLINE | ID: mdl-37636561

Background: To evaluate the ability of tidal volume challenge (VTC)-induced hemodynamic changes to predict fluid responsiveness in patients during one-lung ventilation (OLV). Methods: 80 patients scheduled for elective thoracoscopic surgery with OLV were enrolled. The inclusion criteria were: age ≥ 18 years, American Society of Anesthesiologists physical status I-III, normal right ventricular function, normal left ventricular systolic function (ejection fraction ≥55%), and normal or slightly impaired diastolic function. The study protocol was implemented 15 min after starting OLV. Simultaneous recordings were performed for hemodynamic variables of diameter of left ventricular outflow tract, velocity time integral (VTI) of aortic valve, and stroke volume (SV), and ΔSV-VTC, ΔVTI-VTC, and ΔMAP-VTC were calculated at four time points: with VT 5 mL/kg (T1); after VT increased from 5 mL/kg to 8 mL/kg and maintained at this level for 2 min (T2); after VT was adjusted back to 5 mL/kg for 2 min (T3); and after volume expansion (250 mL of 0.9% saline infused over 10-15 min) (T4). Patients were considered as responders to fluid administration if SV increased by ≥10%. Receiver operating characteristic (ROC) curves for percent decrease in SV, VTI, and MAP by VTC were generated to evaluate their ability to discriminate fluid responders from nonresponders. Results: Of the 58 patients analyzed, there were 32 responders (55%) and 26 nonresponders (45%). The basic characteristics were comparable between the two groups (p > 0.05). The area under the curve (AUC) for ΔSV-VTC, ΔVTI-VTC, and ΔMAP-VTC to discriminate responders from nonresponders were 0.81 (95% CI: 0.68-0.90), 0.79 (95% CI: 0.66-0.89), and 0.56 (95% CI: 0.42-0.69). The best threshold for ΔSV-VTC was -16.1% (sensitivity, 78.1%; specificity, 84.6%); the best threshold for ΔVTI-VTC was -14.5% (sensitivity, 78.1%; specificity, 80.8%). Conclusion: Tidal volume challenge-induced relative change of stroke volume and velocity time integral can predict fluid responsiveness in patients during one-lung ventilation.Clinical Trial Registration: Chinese Clinical Trial Registry, No: chictr210051310.

6.
Front Immunol ; 14: 1174008, 2023.
Article En | MEDLINE | ID: mdl-37153564

Central poststroke pain (CPSP) induced by thalamic haemorrhage (TH) can be continuous or intermittent and is accompanied by paresthesia, which seriously affects patient quality of life. Advanced insights into CPSP mechanisms and therapeutic strategies require a deeper understanding of the molecular processes of the thalamus. Here, using single-nucleus RNA sequencing (snRNA-seq), we sequenced the transcriptomes of 32332 brain cells, which revealed a total of four major cell types within the four thalamic samples from mice. Compared with the control group, the experimental group possessed the higher sensitivity to mechanical, thermal, and cold stimuli, and increased microglia numbers and decreased neuron numbers. We analysed a collection of differentially expressed genes and neuronal marker genes obtained from bulk RNA sequencing (bulk RNA-seq) data and found that Apoe, Abca1, and Hexb were key genes verified by immunofluorescence (IF). Immune infiltration analysis found that these key genes were closely related to macrophages, T cells, related chemokines, immune stimulators and receptors. Gene Ontology (GO) enrichment analysis also showed that the key genes were enriched in biological processes such as protein export from nucleus and protein sumoylation. In summary, using large-scale snRNA-seq, we have defined the transcriptional and cellular diversity in the brain after TH. Our identification of discrete cell types and differentially expressed genes within the thalamus can facilitate the development of new CPSP therapeutics.


Neuralgia , Stroke , Mice , Animals , Stroke/complications , Stroke/genetics , Stroke/metabolism , RNA-Seq , Quality of Life , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/genetics , Thalamus/metabolism , RNA, Small Nuclear
7.
PLoS One ; 18(5): e0286391, 2023.
Article En | MEDLINE | ID: mdl-37253050

General anesthetics can cause neurological damage and long-term behavioral/cognitive impairment during fetal and early postnatal life. However, the adverse influence on embryo development induced by propofol is unclear. We used embryonic zebrafish to explore the effects of propofol on embryonic and larval growth and development, and the related apoptotic mechanism. Zebrafish embryos were immersed in propofol (1, 2, 3, 4, and 5 µg/ml) dissolved in E3 medium from 6 to 48 hours post fertilization (hpf). The survival rate, locomotion, heart rate, hatchability, deformity rate, and body length were analyzed at defined stages. Terminal deoxynucleotidyl transferase nick-end-labeling was used to detect zebrafish embryo apoptosis, and the expression levels of apoptosis-related genes were determined using quantitative real-time reverse transcription PCR and whole-mount in situ hybridization. Larvae at 48 hpf were anesthetized by immersion in E3 culture medium containing 2 µg/ml propofol, the reasonable anesthetic concentration for zebrafish embryos, which caused significant caudal fin dysplasia, light pigmentation, edema, hemorrhage, and spinal deformity, and decreased the hatchability, body length, and heart rate. The numbers of apoptotic cells in propofol-treated 12, 48 and 72 hpf embryos increased significantly, and the mRNA expression levels of intrinsic apoptosis pathway-related casp3a, casp3b, casp9, and baxb genes were upregulated, mainly in the head and tail. Propofol decreased apoptosis in the head and back of 24 hpf zebrafish, which was consistent with the mRNA expression analysis. Our findings demonstrated that zebrafish embryos and larvae exposed to propofol experienced developmental toxicity, which correlated with the intrinsic apoptosis pathway with casp3a, casp3b, casp9, and baxb as the key genes.


Propofol , Zebrafish , Animals , Zebrafish/genetics , Propofol/toxicity , Embryo, Nonmammalian/metabolism , Apoptosis , RNA, Messenger/metabolism , Larva/metabolism
8.
Front Genet ; 14: 1032639, 2023.
Article En | MEDLINE | ID: mdl-37077541

Background: Intracerebral hemorrhage (ICH) is a stroke syndrome with high mortality and disability rates, but autophagy's mechanism in ICH is still unclear. We identified key autophagy genes in ICH by bioinformatics methods and explored their mechanisms. Methods: We downloaded ICH patient chip data from the Gene Expression Omnibus (GEO) database. Based on the GENE database, differentially expressed genes (DEGs) for autophagy were identified. We identified key genes through protein-protein interaction (PPI) network analysis and analyzed their associated pathways in Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene-motif rankings, miRWalk and ENCORI databases were used to analyze the key gene transcription factor (TF) regulatory network and ceRNA network. Finally, relevant target pathways were obtained by gene set enrichment analysis (GSEA). Results: Eleven autophagy-related DEGs in ICH were obtained, and IL-1B, STAT3, NLRP3 and NOD2 were identified as key genes with clinical predictive value by PPI and receiver operating characteristic (ROC) curve analysis. The candidate gene expression level was significantly correlated with the immune infiltration level, and most of the key genes were positively correlated with the immune cell infiltration level. The key genes are mainly related to cytokine and receptor interactions, immune responses and other pathways. The ceRNA network predicted 8,654 interaction pairs (24 miRNAs and 2,952 lncRNAs). Conclusion: We used multiple bioinformatics datasets to identify IL-1B, STAT3, NLRP3 and NOD2 as key genes that contribute to the development of ICH.

9.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(2): 135-139, 2023 Feb.
Article Zh | MEDLINE | ID: mdl-36916372

OBJECTIVE: To observe the effect of ventilator-induced lung injury (VILI) on blood-brain barrier permeability in rats. METHODS: Forty-eight healthy clean male Sprague-Dawley (SD) rats were randomly divided into sham operation (Sham) group, low tidal volume (LVT) mechanical ventilation group (LVT group), normal tidal volume (NVT) mechanical ventilation group (NVT group) and high tidal volume (HVT) mechanical ventilation group (HVT group) with 12 rats in each group. After anesthesia, rats in the Sham group were intubated and kept spontaneous breathing. The rats in different tidal volume (VT) groups were mechanically ventilated by endotracheal intubation with VT of 6 mL/kg (LVT group), 10 mL/kg (NVT group), and 20 mL/kg (HVT group), respectively. The inspiration-expiration ratio of the three groups was 1:1, the ventilation frequency was 40 times/min, and the ventilation time was 3 hours. At the end of the experiment, the bronchoalveolar lavage fluid (BALF) of rats was collected, and the levels of pro-inflammatory factors [tumor necrosis factor-α (TNF-α), interleukins (IL-1ß and IL-6)] in BALF were detected by enzyme-linked immunosorbent assay (ELISA). The lung tissues of rats were collected, and the lung wet/dry weight (W/D) ratio was calculated. The pathological changes of lung tissues were observed under light microscopy after hematoxylin-eosin (HE) staining, and lung injury scores were performed. The brain tissue of rats was taken to measure the brain water content, and the Evans blue (EB) content of brain tissue was measured to reflect the permeability of the blood-brain barrier. The tight junction proteins in the brain tissues were detected by Western blotting. RESULTS: After 3 hours of mechanical ventilation, with the increase of VT, the degree of lung injury in VILI rats gradually increased. When VT reached 20 mL/kg, lung tissue structure was significantly injured, alveolar wall edema, alveolar congestion, lung interstitial thickening, a large number of inflammatory cells infiltrated, and the lung injury score, lung W/D ratio, and the levels of TNF-α, IL-1ß and IL-6 in BALF were significantly higher than those in the Sham group [lung injury score: 10.6±1.1 vs. 1.4±1.0, lung W/D ratio: 6.6±0.8 vs. 3.7±0.6, TNF-α (ng/L): 832.9±97.9 vs. 103.8±23.3, IL-1ß (ng/L): 68.9±14.1 vs. 15.7±2.6, IL-6 (ng/L): 70.8±16.4 vs. 20.3±5.4, all P < 0.05]. Lung injury in rats was accompanied by aggravating brain injury. When VT reached 20 mL/kg, brain water content and EB content in brain tissue were significantly higher than those in the Sham group [brain water content: (85.4±3.6)% vs. (68.7±2.7)%, EB content in brain tissue (µg/g): 887±78 vs. 97±14, both P < 0.05], and the protein expressions of claudin-5, occluding and zonula occluden-1 (ZO-1) in the brain tissue were significantly lower than those in the Sham group [claudin-5 protein (claudin-5/ß-actin): 0.67±0.12 vs. 1.45±0.19, occludin protein (occludin/ß-actin): 0.48±0.11 vs. 0.99±0.21, ZO-1 protein (ZO-1/ß-actin): 0.13±0.03 vs. 0.63±0.12, all P < 0.05]. CONCLUSIONS: VILI can induce brain edema and increase blood-brain barrier permeability in rats, which may be related to the down-regulation of tight junction protein expression in the brain tissue.


Tumor Necrosis Factor-alpha , Ventilator-Induced Lung Injury , Rats , Male , Animals , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Actins/metabolism , Claudin-5/metabolism , Occludin/metabolism , Lung/metabolism , Ventilator-Induced Lung Injury/pathology
10.
Crit Care ; 27(1): 45, 2023 02 02.
Article En | MEDLINE | ID: mdl-36732851

BACKGROUND: Pulse pressure variation (PPV) has been widely used in hemodynamic assessment. Nevertheless, PPV is limited in low tidal volume ventilation. We conducted this systematic review and meta-analysis to evaluate whether the tidal volume challenge (TVC) could improve the feasibility of PPV in patients ventilated at low tidal volumes. METHODS: PubMed, Embase and Cochrane Library inception to October 2022 were screened for diagnostic researches relevant to the predictability of PPV change after TVC in low tidal volume ventilatory patients. Summary receiving operating characteristic curve (SROC), pooled sensitivity and specificity were calculated. Subgroup analyses were conducted for possible influential factors of TVC. RESULTS: Ten studies with a total of 429 patients and 457 measurements were included for analysis. The predictive performance of PPV was significantly lower than PPV change after TVC in low tidal volume, with mean area under the receiving operating characteristic curve (AUROC) of 0.69 ± 0.13 versus 0.89 ± 0.10. The SROC of PPV change yielded an area under the curve of 0.96 (95% CI 0.94, 0.97), with overall pooled sensitivity and specificity of 0.92 (95% CI 0.83, 0.96) and 0.88 (95% CI 0.76, 0.94). Mean and median cutoff value of the absolute change of PPV (△PPV) were 2.4% and 2%, and that of the percentage change of PPV (△PPV%) were 25% and 22.5%. SROC of PPV change in ICU group, supine or semi-recumbent position group, lung compliance less than 30 cm H2O group, moderate positive end-expiratory pressure (PEEP) group and measurements devices without transpulmonary thermodilution group yielded 0.95 (95%0.93, 0.97), 0.95 (95% CI 0.92, 0.96), 0.96 (95% CI 0.94, 0.97), 0.95 (95% CI 0.93, 0.97) and 0.94 (95% CI 0.92, 0.96) separately. The lowest AUROCs of PPV change were 0.59 (95% CI 0.31, 0.88) in prone position and 0.73 (95% CI 0.60, 0.84) in patients with spontaneous breathing activity. CONCLUSIONS: TVC is capable to help PPV overcome limitations in low tidal volume ventilation, wherever in ICU or surgery. The accuracy of TVC is not influenced by reduced lung compliance, moderate PEEP and measurement tools, but TVC should be cautious applied in prone position and patients with spontaneous breathing activity. Trial registration PROSPERO (CRD42022368496). Registered on 30 October 2022.


Positive-Pressure Respiration , Respiration, Artificial , Humans , Blood Pressure , Tidal Volume , Feasibility Studies , Hemodynamics , Stroke Volume , Fluid Therapy
11.
Front Surg ; 9: 1031010, 2022.
Article En | MEDLINE | ID: mdl-36263091

Background: Emergence agitation (EA) is a common postoperative behavioral disorder, predominantly in pediatric patients, after sevoflurane general anesthesia. This study was aimed at assessing propofol's efficacy and clinical conditions established for preventing EA in children under sevoflurane anesthesia. Methods: Randomized controlled trials (RCTs) that comparatively investigated propofol and control treatment in terms of efficacy and safety on administration at the end of surgery and examinations to prevent EA in children under sevoflurane anesthesia were searched. The sources accessed included PubMed, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov. Furthermore, manual searches were performed to identify studies; the last review was conducted on March 21, 2022. When the risk of bias assessment of trials was performed with the Cochrane Risk of Bias Tool, we calculated risk ratios (RRs) with 95% confidence intervals (CIs) for EA incidence and mean differences (MDs) with 95% CI for continuous data. Results: We included 12 RCTs with 1103 children. EA incidence (RR: 0.51, 95% CI: 0.39 to 0.67) and Pediatric Anesthesia Emergence Delirium scores (MD: -3.14, 95% CI: -4.37 to -1.92) were lower in the propofol group. Subgroup analyses showed lower EA incidences with 3 mg/kg propofol (RR: 0.22, 95% CI: 0.13 to 0.38) without extension of the PACU time (MD: 4.97, 95% CI: -0.84 to 10.78) in the laryngeal mask airway (LMA; RR: 0.52, 95% CI: 0.36 to 0.77) and spontaneous breathing (RR: 0.36, 95% CI: 0.21 to 0.62) groups. Discussion: We confirmed that a prophylactic dose of propofol prevented EA and decreased its severity in children under sevoflurane anesthesia. Furthermore, several conditions such as 3 mg/kg propofol, LMA, and spontaneous breathing, potentially contributed to EA prevention. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=274692, identifier: PROSPERO (No. CRD42021274692).

12.
Exp Ther Med ; 23(5): 353, 2022 May.
Article En | MEDLINE | ID: mdl-35493427

Central poststroke pain (CPSP) is a central neuropathic pain syndrome that occurs following a stroke and mainly manifests as pain and paresthesia in the body region corresponding to the brain injury area. At present, due to the lack of clinical attention given to CPSP, patients suffer from long-term pain that seriously affects their quality of life. Current literature indicates that microRNA (miR)-223 can impede inflammation and prevent collateral damage. The NLR family pyrin domain containing 3 (NLRP3) inflammasome induces IL-18 and IL-1ß secretion and maturation and participates in the inflammatory response. Previous evidence has confirmed that miR-223 can negatively regulate NLRP3 in the development of inflammatory responses. However, whether the miR-223 targeting of NLRP3 is involved in CPSP remains unclear. In the present study, the expression of miR-223 was detected by reverse transcription-quantitative PCR analysis. The expression levels of NLRP3, caspase-1, ASC, IL-18, IL-1ß, ERK1/2, p-ERK1/2 and GFAP were detected by western blot analysis. The results demonstrated that thalamic hemorrhagic stroke triggered by microinjection of collagenase Ⅳ (Coll IV) into the ventral posterior lateral (VPL) nucleus results in pain hypersensitivity. miR-223 expression level were significantly reduced in the CPSP model. The expression levels of NLRP3, caspase-1, ASC, IL-18 and IL-1ß were significantly increased in the CPSP model. The expression level of GFAP was detected to determine astrocyte activation. The results demonstrated that astrocyte activation induced by Coll IV produced a CPSP model. The p-ERK1/2 expression level was demonstrated to be significantly increased in the CPSP model. The introduction of an miR-223 agomir significantly attenuated thalamic pain and significantly decreased the levels of NLRP3, caspase-1, ASC and proinflammatory cytokines (IL-18 and IL-1ß). Furthermore, introducing a miR-223 antagomir into the VPL nucleus of naïve mice mimicked thalamic pain and significantly increased the levels of NLRP3, caspase-1, ASC and proinflammatory cytokine levels (IL-18 and IL-1ß). These results indicated that miR-223 inhibited NLRP3 inflammasome activity (caspase-1, NLRP3 and ASC), which ameliorated thalamus hemorrhage-induced CPSP in mice via NLRP3 downregulation. In conclusion, these results may determine the mechanisms underlying CPSP and facilitate development of targeted therapy for CPSP.

13.
Bioengineered ; 13(1): 1518-1529, 2022 01.
Article En | MEDLINE | ID: mdl-34986734

Acute lung injury (ALI) is classified as a moderate or mild acute respiratory distress syndrome and is a prominent cause of morbidity and mortality among the critically ill population. Ramelteon is a melatonin receptor agonist with anti-inflammatory and antioxidant effects. The current study investigated the role of ramelteon in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMECs) and its potential regulatory mechanisms. A CCK-8 assay was used to examine the effect of ramelteon on the viability of LPS-induced HPMECs, HPMECs treated with ML385 [a Nrf2 inhibitor] and HPMECs treated with SnPP [a HO-1 inhibitor]. The Nrf2/HO-1 signaling pathway was additionally assessed by performing Western blotting. The levels of oxidative stress and inflammatory cytokines in HPMECs were detected using kits and reverse transcription-quantitative PCR. Cell apoptosis was evaluated via TUNEL staining. Furthermore, cell permeability was assessed using a FITC-dextran fluorescent probe, ZO-1 and occludin expression was determined via Western blotting. The results demonstrated that ramelteon elevated HPMEC viability after LPS stimulation. Additionally, ramelteon markedly reduced LPS-induced oxidative stress, inflammation and apoptosis. Moreover, cell permeability was notably decreased in ramelteon-treated groups and was accompanied by upregulated ZO-1 and occludin expression. Ramelteon treatment also activated the Nrf2/HO-1 signaling pathway in LPS-induced HPMECs. Furthermore, the addition of ML385 or SnPP reversed the protective effects of ramelteon on LPS-induced oxidative stress, inflammation, apoptosis and cell dysfunction in HPMECs. Collectively, the results suggested that ramelteon alleviated LPS-induced HPMEC damage by activating the Nrf2/HO-1 signaling pathway, making it an effective treatment for ALI.


Anti-Inflammatory Agents/pharmacology , Endothelial Cells/cytology , Heme Oxygenase-1/metabolism , Indenes/pharmacology , Lipopolysaccharides/adverse effects , NF-E2-Related Factor 2/metabolism , Animals , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Lung , Occludin/metabolism , Oxidative Stress/drug effects , Signal Transduction , Zonula Occludens-1 Protein/metabolism
14.
Inflammopharmacology ; 29(6): 1751-1760, 2021 Dec.
Article En | MEDLINE | ID: mdl-34643849

BACKGROUND: Thalamic pain, a neuropathic pain syndrome, frequently occurs after stroke. This research aimed to investigate the effect of dexmedetomidine (DEX) on thalamic pain. METHODS: The cellular localization of the TLR4 protein was determined by immunostaining. The expression of Iba1, GFAP and protein associated with the TLR4/NF-κB/ERK1/2 pathway was measured by Western blotting. Continuous pain hypersensitivity was evaluated by behavioural tests. The results were analysed by one-way ANOVA, two-way ANOVA and Tukey's post hoc test. RESULTS: The results demonstrated that DEX obviously alleviated thalamic pain induced by haemorrhage on the ipsilateral side and delayed the development of pain hypersensitivity. Furthermore, the expression levels of Iba1, GFAP and proteins associated with the TLR4/NF-κB/ERK1/2 signalling pathway were greatly increased in mice with thalamic pain, but these effects were reversed by DEX. CONCLUSION: Our findings suggest that DEX alleviates the inflammatory response during thalamic pain through the TLR4/NF-κB/ERK1/2 signalling pathway and might be a potential therapeutic agent for thalamic pain.


Analgesics, Non-Narcotic/pharmacology , Dexmedetomidine/pharmacology , Inflammation/drug therapy , Neuralgia/drug therapy , Animals , Disease Models, Animal , Hemorrhage/complications , Inflammation/pathology , MAP Kinase Signaling System/drug effects , Male , Mice , NF-kappa B/metabolism , Neuralgia/pathology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
15.
Respir Res ; 22(1): 250, 2021 Sep 21.
Article En | MEDLINE | ID: mdl-34548087

BACKGROUND: Mechanical ventilation can induce or aggravate lung injury, which is termed ventilator-induced lung injury (VILI). Piezo1 is a key element of the mechanotransduction process and can transduce mechanical signals into biological signals by mediating Ca2+ influx, which in turn regulates cytoskeletal remodeling and stress alterations. We hypothesized that it plays an important role in the occurrence of VILI, and investigated the underlying mechanisms. METHODS: High tidal volume mechanical ventilation and high magnitude cyclic stretch were performed on Sprague-Dawley rats, and A549 and human pulmonary microvascular endothelial cells, respectively, to establish VILI models. Immunohistochemical staining, flow cytometry, histological examination, enzyme-linked immunosorbent assay, western blotting, quantitative real-time polymerase chain reaction and survival curves were used to assess the effect of Piezo1 on induction of lung injury, as well as the signaling pathways involved. RESULTS: We observed that Piezo1 expression increased in the lungs after high tidal volume mechanical ventilation and in cyclic stretch-treated cells. Mechanistically, we observed the enhanced expression of RhoA/ROCK1 in both cyclic stretch and Yoda1-treated cells, while the deficiency or inhibition of Piezo1 dramatically antagonized RhoA/ROCK1 expression. Furthermore, blockade of RhoA/ROCK1 signaling using an inhibitor did not affect Piezo1 expression. GSMTx4 was used to inhibit Piezo1, which alleviated VILI-induced pathologic changes, water content and protein leakage in the lungs, and the induction of systemic inflammatory mediators, and improved the 7-day mortality rate in the model rats. CONCLUSIONS: These findings indicate that Piezo1 affects the development and progression of VILI through promotion of RhoA/ROCK1 signaling.


Mechanotransduction, Cellular/physiology , Membrane Proteins/biosynthesis , Respiration, Artificial/adverse effects , Ventilator-Induced Lung Injury/metabolism , rho GTP-Binding Proteins/biosynthesis , rho-Associated Kinases/biosynthesis , A549 Cells , Animals , Humans , Male , Rats , Rats, Sprague-Dawley , Tidal Volume/physiology , Ventilator-Induced Lung Injury/pathology
16.
Stroke ; 52(7): 2393-2403, 2021 07.
Article En | MEDLINE | ID: mdl-34102854

Background and Purpose: Hemorrhage-caused gene changes in the thalamus likely contribute to thalamic pain genesis. RNA N6-methyladenosine modification is an additional layer of gene regulation. Whether FTO (fat-mass and obesity-associated protein), an N6-methyladenosine demethylase, participates in hemorrhage-induced thalamic pain is unknown. Methods: Expression of Fto mRNA and protein was assessed in mouse thalamus after hemorrhage caused by microinjection of Coll IV (type IV collagenase) into unilateral thalamus. Effect of intraperitoneal administration of meclofenamic acid (a FTO inhibitor) or microinjection of adeno-associated virus 5 (AAV5) expressing Cre into the thalamus of Ftofl/fl mice on the Coll IV microinjection­induced TLR4 (Toll-like receptor 4) upregulation and nociceptive hypersensitivity was examined. Effect of thalamic microinjection of AAV5 expressing Fto (AAV5-Fto) on basal thalamic TLR4 expression and nociceptive thresholds was also analyzed. Additionally, level of N6-methyladenosine in Tlr4 mRNA and its binding to FTO or YTHDF2 (YTH N6-methyladenosine RNA binding protein 2) were observed. Results: FTO was detected in neuronal nuclei of thalamus. Level of FTO protein, but not mRNA, was time-dependently increased in the ipsilateral thalamus on days 1 to 14 after Coll IV microinjection. Intraperitoneal injection of meclofenamic acid or adeno-associated virus-5 expressing Cre microinjection into Ftofl/fl mouse thalamus attenuated the Coll IV microinjection­induced TLR4 upregulation and tissue damage in the ipsilateral thalamus and development and maintenance of nociceptive hypersensitivities on the contralateral side. Thalamic microinjection of AAV5-Fto increased TLR4 expression and elicited hypersensitivities to mechanical, heat and cold stimuli. Mechanistically, Coll IV microinjection produced an increase in FTO binding to Tlr4 mRNA, an FTO-dependent loss of N6-methyladenosine sites in Tlr4 mRNA and a reduction in the binding of YTHDF2 to Tlr4 mRNA in the ipsilateral thalamus. Conclusions: Our findings suggest that FTO participates in hemorrhage-induced thalamic pain by stabilizing TLR4 upregulation in thalamic neurons. FTO may be a potential target for the treatment of this disorder.


Alpha-Ketoglutarate-Dependent Dioxygenase FTO/biosynthesis , Cerebral Hemorrhage/metabolism , Neuralgia/metabolism , Neurons/metabolism , Thalamus/metabolism , Toll-Like Receptor 4/biosynthesis , Adenosine/administration & dosage , Adenosine/analogs & derivatives , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Animals , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/pathology , Gene Knockdown Techniques/methods , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microinjections/methods , Neuralgia/genetics , Neuralgia/pathology , Neurons/pathology , Thalamus/pathology , Toll-Like Receptor 4/genetics
17.
Biochem Biophys Res Commun ; 556: 79-86, 2021 06 04.
Article En | MEDLINE | ID: mdl-33839418

OBJECTIVE: This study aimed to investigate the role of endothelial Piezo1 in mediating ventilator-induced lung injury secondary to acute respiratory distress syndrome (ARDS). METHODS: Rats and lung endothelial cells (ECs) were transfected with Piezo1 shRNA (shPiezo1) and Piezo1 siRNA, respectively, to knock down Piezo1. Intratracheal instillation or incubation with lipopolysaccharide (LPS) was used to establish an ARDS model, and high tidal volume (HVT) ventilation or 20% cyclic stretch (CS) was administered to simulate a two-hit injury. Lung injury, alterations in lung endothelial barrier, disruption of adherens junctions (AJs), and Ca2+ influx were assessed. RESULTS: Lung vascular hyperpermeability was further increased in ARDS rats following HVT ventilation, which was abrogated in shPiezo1-treated rats. 20% CS led to severer rupture of AJs following LPS stimulation as indicated by immunofluorescence staining. The internalization and degradation of VE-cadherin were blocked by knockdown of Piezo1. Additionally, 20% CS induced Piezo1 activation, manifesting as elevated intracellular Ca2+ concentration in LPS-treated ECs, and subsequently increased calcium-dependent calpain activity. Pharmacological inhibition of calpain or Piezo1 knockdown prevented the loss of VE-cadherin, p120-catenin, and ß-catenin in ARDS rats undergoing HVT ventilation and LPS-treated ECs exposed to 20% CS. CONCLUSION: Excessive mechanical stretch during ARDS induces the activation of Piezo1 channel and its downstream target, calpain, via Ca2+ influx. This results in the disassembly of endothelial AJs and further facilitates lung endothelial barrier breakdown and vascular hyperpermeability.


Adherens Junctions/metabolism , Adherens Junctions/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Membrane Proteins/metabolism , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Ventilator-Induced Lung Injury/metabolism , Animals , Antigens, CD/metabolism , Cadherins/metabolism , Calcium/metabolism , Calpain/antagonists & inhibitors , Calpain/metabolism , Down-Regulation , Gene Knockdown Techniques , Male , Membrane Proteins/deficiency , Protein Aggregates , Proteolysis , Rats , Rats, Wistar , Tidal Volume , Ventilator-Induced Lung Injury/pathology
18.
JCI Insight ; 5(20)2020 10 15.
Article En | MEDLINE | ID: mdl-33055425

Thalamic pain, a type of central poststroke pain, frequently occurs following ischemia/hemorrhage in the thalamus. Current treatment of this disorder is often ineffective, at least in part due to largely unknown mechanisms that underlie thalamic pain genesis. Here, we report that hemorrhage caused by microinjection of type IV collagenase or autologous whole blood into unilateral ventral posterior lateral nucleus and ventral posterior medial nucleus of the thalamus increased the expression of Fgr, a member of the Src family nonreceptor tyrosine kinases, at both mRNA and protein levels in thalamic microglia. Pharmacological inhibition or genetic knockdown of thalamic Fgr attenuated the hemorrhage-induced thalamic injury on the ipsilateral side and the development and maintenance of mechanical, heat, and cold pain hypersensitivities on the contralateral side. Mechanistically, the increased Fgr participated in hemorrhage-induced microglial activation and subsequent production of TNF-α likely through activation of both NF-κB and ERK1/2 pathways in thalamic microglia. Our findings suggest that Fgr is a key player in thalamic pain and a potential target for the therapeutic management of this disorder.


Hemorrhagic Stroke/genetics , Hyperalgesia/genetics , Neuralgia/genetics , Pain Measurement/methods , Proto-Oncogene Proteins/genetics , src-Family Kinases/genetics , Animals , Collagenases/toxicity , Disease Models, Animal , Hemorrhagic Stroke/chemically induced , Hemorrhagic Stroke/pathology , Humans , Hyperalgesia/chemically induced , Hyperalgesia/pathology , MAP Kinase Signaling System/genetics , Mice , Mice, Knockout , NF-kappa B/genetics , Neuralgia/chemically induced , Neuralgia/pathology , Thalamus/drug effects , Thalamus/metabolism , Thalamus/pathology
19.
Ying Yong Sheng Tai Xue Bao ; 30(12): 4071-4081, 2019 Dec.
Article Zh | MEDLINE | ID: mdl-31840451

To uncover adaptation mechanism of Cyclobalanopsis glauca to the arid environment of Karst areas, current-year seedlings of C. glauca were potted and grown under four soil water conditions: Normal water supply (-0.1 MPa), light drought stress (-0.5 MPa), moderate drought stress (-0.9 MPa), and severe drought stress (-1.5 MPa). We measured leaf growth and parameters of fast chlorophyll fluorescence induction dynamics after treated by 15, 30, 45, 60 and 90 days. With the increase of drought stress intensity, leaf area, number of green leaves, leaf water content, the contents of chlorophyll a+b and carotenoids, the maximum fluorescence, maximum photochemical quantum yield and potential photochemical efficiency significantly decreased, while the number of dead leaves and the initial fluorescence significantly increased. There was no significant difference in these parameters between light drought and normal water treatments. There were no significant difference in the absorption flux per reaction center (ABS/RC), captured light energy used to restore qA (TRo/RC), number of active reaction centers per unit area (RC/CS), light energy captured per unit area (TRo/CS) and light energy used for electron transfer per unit area (ETo/CS) between light drought and normal water treatments. Among these parameters, RC/CS was slightly higher under light drought treatment than that of normal water treatment. TRo/CS and ETo/CS reached peaks at the 45th day, being 606.12 and 440.78, respectively. Leaf ABS/RC, TRo/RC, ETo/RC, DIRo/RC, RC/CS, TRo/CS and ETo/CS of C. glauca seedlings under mode-rate drought and severe drought treatment were lower than those of normal water treatment, and the parameters under severe drought stress decreased more significantly with the extension of drought stress time. With increasing intensity and duration of drought stress, the maximum quantum efficiency, probability of other electron acceptors, and quantum ratio of electron transfer decreased, but quantum yield for energy dissipation increased. These results demonstrated that C. glauca seedlings under light drought condition showed some degree of adaptability and resistance to drought. Mode-rate drought treatment caused a decline in chlorophyll fluorescence and photosynthetic pigments, leading to slow growth of seedlings. Severe drought had a serious impact on growth of C. glauca seedlings, but did not lead to seedling death. Therefore, C. glauca seedlings showed strong drought tolerance, which were suitable for the application of vegetation restoration and reforestation projects in Karst areas.


Droughts , Seedlings , Chlorophyll , Chlorophyll A , Fluorescence , Kinetics , Photosynthesis , Plant Leaves , Water
20.
Exp Mol Pathol ; 110: 104295, 2019 10.
Article En | MEDLINE | ID: mdl-31419406

BACKGROUND: We used a two-hit lung injury rat model that involves mechanical ventilation (MV) following lipopolysaccharide exposure to investigate the effects of propofol on the expression of GABAA receptors (GABAAR) and cytokine responses, and we then determined the specific effects of GABA on cytokine responses in vitro in alveolar epithelial cells (AECs). METHODS: Forty-eight adult male Wister rats were equally and randomly divided into the following 4 groups (n = 12) using a random number table: sham group, sham+propofol group, lipopolysaccharide (LPS) + VILI group, and LPS + VILI + propofol group. All animals were anesthetized, and the animals received a 3.75 mg/kg intratracheal instillation of endotoxins or phosphate-buffered saline (PBS) as the control, as described previously. After 30 min, rats were ventilated for 5 h in a volume-controlled ventilation mode. In the LPS + VILI group, animals were ventilated with a tidal volume (Vt) of 22 ml/kg and zero positive end-expiratory pressure (PEEP) at a respiratory rate of 16-18 breaths/min, whereas control (sham) rats were ventilated with a Vt of 6 ml/kg and PEEP of 5 cmH2O at a rate of 45-55 breaths/min. The FiO2 remained constant as 0.4, propofol was administered intravenously in the LPS + VILI + propofol and sham + propofol groups at a rate of 10 mg·kg-1·h-1 while normal saline at the same rate was intravenously administered in the LPS + VILI and sham groups during the entire mechanical ventilation period. Five hours after mechanical ventilation, the rats were killed. Survival rates, histopathology, concentrations of inflammatory mediators in bronchoalveolar lavage fluid (BALF), wet weight/dry weight (W/D) ratio of the lung, myeloperoxidase (MPO) activity in lung tissues, and expression of GAD and GABAAR by immunohistochemical detection and Western blotting were assessed. Then, human type II-like alveolar epithelial cells (A549 cells) were cultured to full confluence and incubated with GABA (100 nM) alone, picrotoxin alone, a GABAAR antagonist (PTX, 50 nM), or GABA + PTX for 10 min, followed by stimulation with LPS (control) at 100 ng/ml for 4 h. The concentrations of IL-1ß, IL-2, IL-8, and IL-10 were then measured. RESULTS: Administration of propofol in a two-hit lung injury rat model can increase survival rates and the expression of GAD and GABAAR (P < .05). The administration of propofol can attenuate the release of pro-inflammatory cytokines both in vivo and in vitro, and the administration of propofol can attenuate histopathological changes, the W/D ratio, and MPO activity (P < .05). CONCLUSIONS: In this study, we found that the administration of propofol improved lung function, alleviated lung injury, and up-regulated the GAD and GABAAR expressions in a two-hit model of acute lung injury (ALI) characterized by intratracheal instillation of an endotoxin and prolonged MV. Therefore, the protective effects of propofol may be associated with the up-regulation of GABAA receptors in AECs.


Acute Lung Injury/prevention & control , Gene Expression Regulation/drug effects , Propofol/pharmacology , Receptors, GABA-A/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Cytokines/metabolism , Lipopolysaccharides/toxicity , Male , Rats , Rats, Wistar , Receptors, GABA-A/genetics , Up-Regulation
...