Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38315590

RESUMEN

Recently, the tensor nuclear norm (TNN)-based tensor robust principle component analysis (TRPCA) has achieved impressive performance in multidimensional data processing. The underlying assumption in TNN is the low-rankness of frontal slices of the tensor in the transformed domain (e.g., Fourier domain). However, the low-rankness assumption is usually violative for real-world multidimensional data (e.g., video and image) due to their intrinsically nonlinear structure. How to effectively and efficiently exploit the intrinsic structure of multidimensional data remains a challenge. In this article, we first suggest a kernelized TNN (KTNN) by leveraging the nonlinear kernel mapping in the transform domain, which faithfully captures the intrinsic structure (i.e., implicit low-rankness) of multidimensional data and is computed at a lower cost by introducing kernel trick. Armed with KTNN, we propose a tensor robust kernel PCA (TRKPCA) model for handling multidimensional data, which decomposes the observed tensor into an implicit low-rank component and a sparse component. To tackle the nonlinear and nonconvex model, we develop an efficient alternating direction method of multipliers (ADMM)-based algorithm. Extensive experiments on real-world applications collectively verify that TRKPCA achieves superiority over the state-of-the-art RPCA methods.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37027760

RESUMEN

Pansharpening refers to the fusion of a low spatial-resolution multispectral image with a high spatial-resolution panchromatic image. In this paper, we propose a novel low-rank tensor completion (LRTC)-based framework with some regularizers for multispectral image pansharpening, called LRTCFPan. The tensor completion technique is commonly used for image recovery, but it cannot directly perform the pansharpening or, more generally, the super-resolution problem because of the formulation gap. Different from previous variational methods, we first formulate a pioneering image super-resolution (ISR) degradation model, which equivalently removes the downsampling operator and transforms the tensor completion framework. Under such a framework, the original pansharpening problem is realized by the LRTC-based technique with some deblurring regularizers. From the perspective of regularizer, we further explore a local-similarity-based dynamic detail mapping (DDM) term to more accurately capture the spatial content of the panchromatic image. Moreover, the low-tubal-rank property of multispectral images is investigated, and the low-tubal-rank prior is introduced for better completion and global characterization. To solve the proposed LRTCFPan model, we develop an alternating direction method of multipliers (ADMM)-based algorithm. Comprehensive experiments at reduced-resolution (i.e., simulated) and full-resolution (i.e., real) data exhibit that the LRTCFPan method significantly outperforms other state-of-the-art pansharpening methods. The code is publicly available at: https://github.com/zhongchengwu/code_LRTCFPan.

3.
IEEE Trans Neural Netw Learn Syst ; 34(11): 9088-9101, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35263264

RESUMEN

Pansharpening refers to the fusion of a panchromatic (PAN) image with a high spatial resolution and a multispectral (MS) image with a low spatial resolution, aiming to obtain a high spatial resolution MS (HRMS) image. In this article, we propose a novel deep neural network architecture with level-domain-based loss function for pansharpening by taking into account the following double-type structures, i.e., double-level, double-branch, and double-direction, called as triple-double network (TDNet). By using the structure of TDNet, the spatial details of the PAN image can be fully exploited and utilized to progressively inject into the low spatial resolution MS (LRMS) image, thus yielding the high spatial resolution output. The specific network design is motivated by the physical formula of the traditional multi-resolution analysis (MRA) methods. Hence, an effective MRA fusion module is also integrated into the TDNet. Besides, we adopt a few ResNet blocks and some multi-scale convolution kernels to deepen and widen the network to effectively enhance the feature extraction and the robustness of the proposed TDNet. Extensive experiments on reduced- and full-resolution datasets acquired by WorldView-3, QuickBird, and GaoFen-2 sensors demonstrate the superiority of the proposed TDNet compared with some recent state-of-the-art pansharpening approaches. An ablation study has also corroborated the effectiveness of the proposed approach. The code is available at https://github.com/liangjiandeng/TDNet.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36367909

RESUMEN

Recently, the transform-based tensor nuclear norm (TNN) methods have shown promising performance and drawn increasing attention in tensor completion (TC) problems. The main idea of these methods is to exploit the low-rank structure of frontal slices of the tensor under the transform. However, the transforms in TNN methods usually treat all modes equally and do not consider the different traits of different modes (i.e., spatial and spectral/temporal modes). To address this problem, we suggest a new low-rank tensor representation based on the coupled nonlinear transform (called CoNoT) for a better low-rank approximation. Concretely, spatial and spectral/temporal transforms in the CoNoT, respectively, exploit the different traits of different modes and are coupled together to boost the implicit low-rank structure. Here, we use the convolutional neural network (CNN) as the CoNoT, which can be learned solely from an observed multidimensional image in an unsupervised manner. Based on this low-rank tensor representation, we build a new multidimensional image completion model. Moreover, we also propose an enhanced version (called Ms-CoNoT) to further exploit the spatial multiscale nature of real-world data. Extensive experiments on real-world data substantiate the superiority of the proposed models against many state-of-the-art methods both qualitatively and quantitatively.

5.
IEEE Trans Image Process ; 31: 984-999, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34971534

RESUMEN

Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal self-similarity (NSS); most existing works utilize one or two of them to implement completion. Naturally, there arises an interesting question: can one concurrently make use of multiple priors in a unified way, such that they can collaborate with each other to achieve better performance? This work gives a positive answer by formulating a novel tensor completion framework which can simultaneously take advantage of the global-local-nonlocal priors. In the proposed framework, the tensor train (TT) rank is adopted to characterize the global correlation; meanwhile, two Plug-and-Play (PnP) denoisers, including a convolutional neural network (CNN) denoiser and the color block-matching and 3 D filtering (CBM3D) denoiser, are incorporated to preserve local details and exploit NSS, respectively. Then, we design a proximal alternating minimization algorithm to efficiently solve this model under the PnP framework. Under mild conditions, we establish the convergence guarantee of the proposed algorithm. Extensive experiments show that these priors organically benefit from each other to achieve state-of-the-art performance both quantitatively and qualitatively.

6.
IEEE Trans Cybern ; 52(12): 13395-13410, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34543216

RESUMEN

The general tensor-based methods can recover missing values of multidimensional images by exploiting the low-rankness on the pixel level. However, especially when considerable pixels of an image are missing, the low-rankness is not reliable on the pixel level, resulting in some details losing in their results, which hinders the performance of subsequent image applications (e.g., image recognition and segmentation). In this article, we suggest a novel multiscale feature (MSF) tensorization by exploiting the MSFs of multidimensional images, which not only helps to recover the missing values on a higher level, that is, the feature level but also benefits subsequent image applications. By exploiting the low-rankness of the resulting MSF tensor constructed by the new tensorization, we propose the convex and nonconvex MSF tensor train rank minimization (MSF-TT) to conjointly recover the MSF tensor and the corresponding original tensor in a unified framework. We develop the alternating directional method of multipliers (ADMMs) to solve the convex MSF-TT and the proximal alternating minimization (PAM) to solve the nonconvex MSF-TT. Moreover, we establish the theoretical guarantee of convergence for the PAM algorithm. Numerical examples of real-world multidimensional images show that the proposed MSF-TT outperforms other compared approaches in image recovery and the recovered MSF tensor can benefit the subsequent image recognition.

7.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7251-7265, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34106864

RESUMEN

Hyperspectral images (HSIs) are of crucial importance in order to better understand features from a large number of spectral channels. Restricted by its inner imaging mechanism, the spatial resolution is often limited for HSIs. To alleviate this issue, in this work, we propose a simple and efficient architecture of deep convolutional neural networks to fuse a low-resolution HSI (LR-HSI) and a high-resolution multispectral image (HR-MSI), yielding a high-resolution HSI (HR-HSI). The network is designed to preserve both spatial and spectral information thanks to a new architecture based on: 1) the use of the LR-HSI at the HR-MSI's scale to get an output with satisfied spectral preservation and 2) the application of the attention and pixelShuffle modules to extract information, aiming to output high-quality spatial details. Finally, a plain mean squared error loss function is used to measure the performance during the training. Extensive experiments demonstrate that the proposed network architecture achieves the best performance (both qualitatively and quantitatively) compared with recent state-of-the-art HSI super-resolution approaches. Moreover, other significant advantages can be pointed out by the use of the proposed approach, such as a better network generalization ability, a limited computational burden, and the robustness with respect to the number of training samples. Please find the source code and pretrained models from https://liangjiandeng.github.io/Projects_Res/HSRnet_2021tnnls.html.

8.
IEEE Trans Image Process ; 30: 3581-3596, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33684037

RESUMEN

This paper addresses the tensor completion problem, which aims to recover missing information of multi-dimensional images. How to represent a low-rank structure embedded in the underlying data is the key issue in tensor completion. In this work, we suggest a novel low-rank tensor representation based on coupled transform, which fully exploits the spatial multi-scale nature and redundancy in spatial and spectral/temporal dimensions, leading to a better low tensor multi-rank approximation. More precisely, this representation is achieved by using two-dimensional framelet transform for the two spatial dimensions, one/two-dimensional Fourier transform for the temporal/spectral dimension, and then Karhunen-Loéve transform (via singular value decomposition) for the transformed tensor. Based on this low-rank tensor representation, we formulate a novel low-rank tensor completion model for recovering missing information in multi-dimensional visual data, which leads to a convex optimization problem. To tackle the proposed model, we develop the alternating directional method of multipliers (ADMM) algorithm tailored for the structured optimization problem. Numerical examples on color images, multispectral images, and videos illustrate that the proposed method outperforms many state-of-the-art methods in qualitative and quantitative aspects.

9.
IEEE Trans Neural Netw Learn Syst ; 32(8): 3664-3676, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32822310

RESUMEN

Recently emerged deep learning methods have achieved great success in single image rain streaks removal. However, existing methods ignore an essential factor in the rain streaks generation mechanism, i.e., the motion blur leading to the line pattern appearances. Thus, they generally produce overderaining or underderaining results. In this article, inspired by the generation mechanism, we propose a novel rain streaks removal framework using a kernel-guided convolutional neural network (KGCNN), achieving state-of-the-art performance with a simple network architecture. More precisely, our framework consists of three steps. First, we learn the motion blur kernel by a plain neural network, termed parameter network, from the detail layer of a rainy patch. Then, we stretch the learned motion blur kernel into a degradation map with the same spatial size as the rainy patch. Finally, we use the stretched degradation map together with the detail patches to train a deraining network with a typical ResNet architecture, which produces the rain streaks with the guidance of the learned motion blur kernel. Experiments conducted on extensive synthetic and real data demonstrate the effectiveness of the proposed KGCNN, in terms of rain streaks removal and image detail preservation.

10.
IEEE/ACM Trans Comput Biol Bioinform ; 17(5): 1671-1681, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30762565

RESUMEN

Schizophrenia (SZ) is a complex disease. Single nucleotide polymorphism (SNP), brain activity measured by functional magnetic resonance imaging (fMRI) and DNA methylation are all important biomarkers that can be used for the study of SZ. To our knowledge, there has been little effort to combine these three datasets together. In this study, we propose a group sparse joint nonnegative matrix factorization (GSJNMF) model to integrate SNP, fMRI, and DNA methylation for the identification of multi-dimensional modules associated with SZ, which can be used to study regulatory mechanisms underlying SZ at multiple levels. The proposed GSJNMF model projects multiple types of data onto a common feature space, in which heterogeneous variables with large coefficients on the same projected bases are used to identify multi-dimensional modules. We also incorporate group structure information available from each dataset. The genomic factors in such modules have significant correlations or functional associations with several brain activities. At the end, we have applied the method to the analysis of real data collected from the Mind Clinical Imaging Consortium (MCIC) for the study of SZ and identified significant biomarkers. These biomarkers were further used to discover genes and corresponding brain regions, which were confirmed to be significantly associated with SZ.


Asunto(s)
Algoritmos , Genómica de Imágenes/métodos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Adulto , Encéfalo/diagnóstico por imagen , Metilación de ADN/genética , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
11.
IEEE Trans Cybern ; 50(8): 3556-3570, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31484156

RESUMEN

Mixed noise (such as Gaussian, impulse, stripe, and deadline noises) contamination is a common phenomenon in hyperspectral imagery (HSI), greatly degrading visual quality and affecting subsequent processing accuracy. By encoding sparse prior to the spatial or spectral difference images, total variation (TV) regularization is an efficient tool for removing the noises. However, the previous TV term cannot maintain the shared group sparsity pattern of the spatial difference images of different spectral bands. To address this issue, this article proposes a group sparsity regularization of the spatial difference images for HSI restoration. Instead of using l1 - or l2 -norm (sparsity) on the difference image itself, we introduce a weighted l2,1 -norm to constrain the spatial difference image cube, efficiently exploring the shared group sparse pattern. Moreover, we employ the well-known low-rank Tucker decomposition to capture the global spatial-spectral correlation from three HSI dimensions. To summarize, a weighted group sparsity-regularized low-rank tensor decomposition (LRTDGS) method is presented for HSI restoration. An efficient augmented Lagrange multiplier algorithm is employed to solve the LRTDGS model. The superiority of this method for HSI restoration is demonstrated by a series of experimental results from both simulated and real data, as compared with the other state-of-the-art TV-regularized low-rank matrix/tensor decomposition methods.

12.
Artículo en Inglés | MEDLINE | ID: mdl-30418906

RESUMEN

Rain streaks removal is an important issue in outdoor vision systems and has recently been investigated extensively. In this paper, we propose a novel video rain streak removal approach FastDeRain, which fully considers the discriminative characteristics of rain streaks and the clean video in the gradient domain. Specifically, on the one hand, rain streaks are sparse and smooth along the direction of the raindrops, whereas on the other hand, clean videos exhibit piecewise smoothness along the rain-perpendicular direction and continuity along the temporal direction. Theses smoothness and continuity results in the sparse distribution in the different directional gradient domain, respectively. Thus, we minimize 1) the ℓ1 norm to enhance the sparsity of the underlying rain streaks, 2) two ℓ1 norm of unidirectional Total Variation (TV) regularizers to guarantee the anisotropic spatial smoothness, and 3) an ℓ1 norm of the time-directional difference operator to characterize the temporal continuity. A split augmented Lagrangian shrinkage algorithm (SALSA) based algorithm is designed to solve the proposed minimization model. Experiments conducted on synthetic and real data demonstrate the effectiveness and efficiency of the proposed method. According to comprehensive quantitative performance measures, our approach outperforms other state-of-the-art methods, especially on account of the running time. The code of FastDeRain can be downloaded at https://github.com/TaiXiangJiang/FastDeRain.

13.
PLoS One ; 13(1): e0182240, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29329298

RESUMEN

One method of solving the single-image super-resolution problem is to use Heaviside functions. This has been done previously by making a binary classification of image components as "smooth" and "non-smooth", describing these with approximated Heaviside functions (AHFs), and iteration including l1 regularization. We now introduce a new method in which the binary classification of image components is extended to different degrees of smoothness and non-smoothness, these components being represented by various classes of AHFs. Taking into account the sparsity of the non-smooth components, their coefficients are l1 regularized. In addition, to pick up more image details, the new method uses an iterative refinement for the residuals between the original low-resolution input and the downsampled resulting image. Experimental results showed that the new method is superior to the original AHF method and to four other published methods.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Modelos Teóricos
14.
Comput Intell Neurosci ; 2017: 5317850, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28781592

RESUMEN

We have proposed a patch-based principal component analysis (PCA) method to deal with face recognition. Many PCA-based methods for face recognition utilize the correlation between pixels, columns, or rows. But the local spatial information is not utilized or not fully utilized in these methods. We believe that patches are more meaningful basic units for face recognition than pixels, columns, or rows, since faces are discerned by patches containing eyes and noses. To calculate the correlation between patches, face images are divided into patches and then these patches are converted to column vectors which would be combined into a new "image matrix." By replacing the images with the new "image matrix" in the two-dimensional PCA framework, we directly calculate the correlation of the divided patches by computing the total scatter. By optimizing the total scatter of the projected samples, we obtain the projection matrix for feature extraction. Finally, we use the nearest neighbor classifier. Extensive experiments on the ORL and FERET face database are reported to illustrate the performance of the patch-based PCA. Our method promotes the accuracy compared to one-dimensional PCA, two-dimensional PCA, and two-directional two-dimensional PCA.


Asunto(s)
Reconocimiento Facial , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Análisis de Componente Principal , Femenino , Humanos , Aumento de la Imagen , Aprendizaje Automático , Masculino
15.
Cytometry A ; 91(6): 622-632, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27144669

RESUMEN

Multiplex-fluorescence in situ hybridization (M-FISH) is a chromosome imaging technique which can be used to detect chromosomal abnormalities such as translocations, deletions, duplications, and inversions. Chromosome classification from M-FISH imaging data is a key step to implement the technique. In the classified M-FISH image, each pixel in a chromosome is labeled with a class index and drawn with a pseudo-color so that geneticists can easily conduct diagnosis, for example, identifying chromosomal translocations by examining color changes between chromosomes. However, the information of pixels in a neighborhood is often overlooked by existing approaches. In this work, we assume that the pixels in a patch belong to the same class and use the patch to represent the center pixel's class information, by which we can use the correlations of neighboring pixels and the structural information across different spectral channels for the classification. On the basis of assumption, we propose a patch-based classification algorithm by using higher order singular value decomposition (HOSVD). The developed method has been tested on a comprehensive M-FISH database that we established, demonstrating improved performance. When compared with other pixel-wise M-FISH image classifiers such as fuzzy c-means clustering (FCM), adaptive fuzzy c-means clustering (AFCM), improved adaptive fuzzy c-means clustering (IAFCM), and sparse representation classification (SparseRC) methods, the proposed method gave the highest correct classification ratio (CCR), which can translate into improved diagnosis of genetic diseases and cancers. © 2016 International Society for Advancement of Cytometry.


Asunto(s)
Algoritmos , Cromosomas Humanos/ultraestructura , Interpretación de Imagen Asistida por Computador/métodos , Hibridación Fluorescente in Situ/métodos , Cariotipificación/métodos , Aberraciones Cromosómicas/clasificación , Color , Bases de Datos Factuales , Humanos , Coloración y Etiquetado/métodos
16.
PLoS One ; 11(9): e0162041, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27583683

RESUMEN

Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction.


Asunto(s)
Algoritmos , Compresión de Datos/métodos
17.
Springerplus ; 5(1): 1109, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27478726

RESUMEN

In this paper, an implicit finite difference scheme with the shifted Grünwald formula, which is unconditionally stable, is used to discretize the fractional diffusion equations with constant diffusion coefficients. The coefficient matrix possesses the Toeplitz structure and the fast Toeplitz matrix-vector product can be utilized to reduce the computational complexity from [Formula: see text] to [Formula: see text], where N is the number of grid points. Two preconditioned iterative methods, named bi-conjugate gradient method for Toeplitz matrix and bi-conjugate residual method for Toeplitz matrix, are proposed to solve the relevant discretized systems. Finally, numerical experiments are reported to show the effectiveness of our preconditioners.

18.
IEEE Trans Circuits Syst Video Technol ; 26(11): 2001-2014, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28603404

RESUMEN

Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.

19.
J Opt Soc Am A Opt Image Sci Vis ; 32(11): 2237-46, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26560939

RESUMEN

In this paper, by employing the cosine function to express the so-called data fitting term in traditional active contour models, we propose an active contour model with the global cosine fitting energy for segmenting synthetic and real-world images. After that, in order to segment the image with intensity inhomogeneity, we extend the proposed global model to the local cosine fitting energy. In addition, we introduce level set regularization terms into the proposed models to avoid the expensive computational cost which is usually caused by the reinitialization of the evolving level set function. Experimental results indicate that the proposed models are accurate and effective when applied to segment different types of images. Moreover, our models are more efficient and robust for segmenting the images with strong noise and clutter than the Chan-Vese model and the local binary fitting model.

20.
PLoS One ; 10(10): e0141199, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26492491

RESUMEN

Exemplar-based algorithms are a popular technique for image inpainting. They mainly have two important phases: deciding the filling-in order and selecting good exemplars. Traditional exemplar-based algorithms are to search suitable patches from source regions to fill in the missing parts, but they have to face a problem: improper selection of exemplars. To improve the problem, we introduce an independent strategy through investigating the process of patches propagation in this paper. We first define a new separated priority definition to propagate geometry and then synthesize image textures, aiming to well recover image geometry and textures. In addition, an automatic algorithm is designed to estimate steps for the new separated priority definition. Comparing with some competitive approaches, the new priority definition can recover image geometry and textures well.


Asunto(s)
Algoritmos , Gráficos por Computador , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Procesamiento de Señales Asistido por Computador , Almacenamiento y Recuperación de la Información
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA