Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Front Plant Sci ; 15: 1404271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39233912

RESUMEN

Maize lethal necrosis is attributed to the accumulation of maize chlorotic mottle virus (MCMV), an invasive virus transmitted by insect vectors. The western flower thrips (WFT) can shift host to maize, thus promoting the spread of MCMV. However, our understanding of the characteristics and interactions involved in the transmission of MCMV is still limited. This study finds that non-viruliferous WFTs showed a 57.56% higher preference for MCMV-infected maize plants compared to healthy maize plants, while viruliferous WFTs showed a 53.70% higher preference for healthy maize plants compared to MCMV-infected maize plants. We also show for the first time that both adults and larvae of WFT could successfully acquire MCMV after 1 min of acquisition access period (AAP), and after 48 h of AAP, WFT could transmit MCMV in an inoculation access period of 1 h without a latent period. Both adults and larvae of WFT can transmit MCMV for up to 2 days. Furthermore, the decreasing number of viruliferous WFTs and transmission rates as time progressed, together with the transcriptomic evidence, collectively suggest that WFTs transmit MCMV in a semi-persistent method, a mode of transmission requiring minutes to several hours for acquisition access and having a retention time of several hours to a few days. Additionally, ß-myrcene can attract WFTs significantly and is detected in Nicotiana benthamiana plants transiently expressing MCMV CP (coat protein), which is consistent with results in MCMV-infected maize plants through the metabolomic profiling and the preference analyses of WFT. Therefore, this study demonstrates the indirect interaction between MCMV and WFT by inducing maize to synthesize ß-myrcene to attract insect vectors. The exploration of specific interactions between MCMV and WFT could help to expand the mechanism studies of virus-vector-host plant interaction and put forward a new insight for the combined control of MCMV and WFT through the manipulation of plant volatiles and key insect genes.

2.
Mitochondrion ; 79: 101952, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39237068

RESUMEN

Succinate dehydrogenase (SDH) plays pivotal roles in maintaining cellular metabolism, modulating regulatory control over both the tricarboxylic acid cycle and oxidative phosphorylation to facilitate energy production within mitochondria. Given that SDH malfunction may serve as a hallmark triggering pseudo-hypoxia signaling and promoting tumorigenesis, elucidating the impact of SDH assembly defects on mitochondrial functions and cellular responses is of paramount importance. In this study, we aim to clarify the role of SDHAF2, one assembly factor of SDH, in mitochondrial respiratory activities. To achieve this, we utilize the CRISPR/Cas9 system to generate SDHAF2 knockout in HeLa cells and examine mitochondrial respiratory functions. Our findings demonstrate a substantial reduction in oxygen consumption rate in SDHAF2 knockout cells, akin to cells with inhibited SDH activity. In addition, in our in-gel activity assays reveal a significant decrease not only in SDH activity but also in cytochrome c oxidase (COX) activity in SDHAF2 knockout cells. The reduced COX activity is attributed to the assembly defect and remains independent of SDH inactivation or SDH complex disassembly. Together, our results indicate a critical role of SDHAF2 in regulating respiration by facilitating the assembly of COX.

3.
BMC Biol ; 22(1): 194, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256800

RESUMEN

BACKGROUND: DNA G-quadruplexes (G4s) represent a distinctive class of non-canonical DNA secondary structures. Despite their recognition as potential therapeutic targets in some cancers, the developmental role of G4 structures remains enigmatic. Mammalian embryonic myogenesis studies are hindered by limitations, prompting the use of chicken embryo-derived myoblasts as a model to explore G4 dynamics. This study aims to reveal the embryonic G4s landscape and elucidate the underlying mechanisms for candidate G4s that influence embryonic myogenesis. RESULTS: This investigation unveils a significant reduction in G4s abundance during myogenesis. G4s stabilizer pyridostatin impedes embryonic myogenesis, emphasizing the regulatory role of G4s in this process. G4 Cut&Tag sequencing and RNA-seq analyses identify potential G4s and DEGs influencing embryonic myogenesis. Integration of G4 and DEG candidates identifies 32 G4s located in promoter regions capable of modulating gene transcription. WGBS elucidates DNA methylation dynamics during embryonic myogenesis. Coordinating transcriptome data with DNA G4s and DNA methylation profiles constructs a G4-DMR-DEG network, revealing nine interaction pairs. Notably, the NFATC2 promoter region sequence is confirmed to form a G4 structure, reducing promoter mCpG content and upregulating NFATC2 transcriptional activity. CONCLUSIONS: This comprehensive study unravels the first embryonic genomic G4s landscape, highlighting the regulatory role of NFATC2 G4 in orchestrating transcriptional activity through promoter DNA methylation during myogenesis.


Asunto(s)
G-Cuádruplex , Desarrollo de Músculos , Desarrollo de Músculos/genética , Animales , Embrión de Pollo , Mioblastos/metabolismo , Metilación de ADN
4.
Research (Wash D C) ; 7: 0472, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268503

RESUMEN

Triple-negative breast cancer (TNBC) is currently the worst prognostic subtype of breast cancer, and there is no effective treatment other than chemotherapy. Processing of precursors 1 (POP1) is the most substantially up-regulated RNA-binding protein (RBP) in TNBC. However, the role of POP1 in TNBC remains clarified. A series of molecular biological experiments in vitro and in vivo and clinical correlation analyses were conducted to clarify the biological function and regulatory mechanism of POP1 in TNBC. Here, we identified that POP1 is significantly up-regulated in TNBC and associated with poor prognosis. We further demonstrate that POP1 promotes the cell cycle and proliferation of TNBC in vitro and vivo. Mechanistically, POP1 directly binds to the coding sequence (CDS) region of CDKN1A mRNA and degrades it. The degradation process depends on the N6-methyladenosine (m6A) modification at the 497th site of CDKN1A and the recognition of this modification by YTH N6-methyladenosine RNA binding protein 2 (YTHDF2). Moreover, the m6A inhibitor STM2457 potently impaired the proliferation of POP1-overexpressed TNBC cells and improved the sensitivity to paclitaxel. In summary, our findings reveal the pivotal role of POP1 in promoting TNBC proliferation by degrading the mRNA of CDKN1A and that inhibition of m6A with STM2457 is a promising therapeutic strategy for TNBC.

5.
Autophagy ; : 1-22, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39147386

RESUMEN

During tumor expansion, breast cancer (BC) cells often experience reactive oxygen species accumulation and mitochondrial damage because of glucose shortage. However, the mechanism by which BC cells deal with the glucose-shortage-induced oxidative stress remains unclear. Here, we showed that MANF (mesencephalic astrocyte derived neurotrophic factor)-mediated mitophagy facilitates BC cell survival under glucose-starvation conditions. MANF-mediated mitophagy also promotes fatty acid oxidation in glucose-starved BC cells. Moreover, during glucose starvation, SENP1-mediated de-SUMOylation of MANF increases cytoplasmic MANF expression through the inhibition of MANF's nuclear translocation and hence renders mitochondrial distribution of MANF. MANF mediates mitophagy by binding to PRKN (parkin RBR E3 ubiquitin protein ligase), a key mitophagy regulator, in the mitochondria. Under conditions of glucose starvation, protein oxidation inhibits PRKN activity; nevertheless, the CXXC motif of MANF alleviates protein oxidation in RING II-domain of PRKN and restores its E3 ligase activity. Furthermore, MANF-PRKN interactions are essential for BC tumor growth and metastasis. High MANF expression predicts poor outcomes in patients with BC. Our results highlight the prosurvival role of MANF-mediated mitophagy in BC cells during glucose starvation, suggesting MANF as a potential therapeutic target.Abbreviation: 2DG, 2-deoxy-D-glucose; 5TG, 5-thio-D-glucose; ACSL4/FACL4, acyl-CoA synthetase long chain family member 4; Baf A1, bafilomycin A1; BRCA, breast cancer; CHX, cycloheximide; DMF, distant metastasis-free; DMFS, distant metastasis-free survival; ECM, extracellular matrix; ER, endoplasmic reticulum; ERS, endoplasmic reticulum stress; F-1,6-BP, fructose-1,6-bisphosphate; FAO, fatty acid oxidation; GSH, reduced glutathione; GSVA, gene set variation analysis; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; IF, immunofluorescence; MANF, mesencephalic astrocyte derived neurotrophic factor; Mdivi-1, mitochondrial division inhibitor 1; MFI, mean fluorescence intensity; NAC, N-acetyl-L-cysteine; OCR, oxygen-consumption rate; OS, overall survival; PMI, SQSTM1/p62-mediated mitophagy inducer; PPP, pentose phosphate pathway; PRKN, parkin RBR E3 ubiquitin protein ligase; RBR, RING in between RING; RFS, relapse-free survival; ROS, reactive oxygen species; SAPLIPs, saposin-like proteins; TCGA, The Cancer Genome Atlas; TNBC, triple-negative breast cancer; WT, wild type.

6.
J Asian Nat Prod Res ; : 1-13, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958642

RESUMEN

Fuzheng Huayu recipe (FZHYR) is a Chinese patent medicine for the treatment of fibrosis. The effects of FZHYR on pulmonary fibrosis and macrophage polarization were investigated in vitro. FZHYR inhibited pulmonary inflammation and fibrosis and M2 polarization of macrophages in bleomycin-induced pulmonary fibrosis (BPF) of rat model. Differentially expressed genes were screened by high-throughput mRNA sequencing and GSEA showed that oxidative phosphorylation (OXPHOS) was correlated with BPF. FZHYR inhibited expressions of Ndufa2 and Ndufa6 in lung tissues of BPF rats. These findings suggest that OXPHOS pathway serves as a possible target for pulmonary fibrosis therapy by FZHYR.

7.
Biomed Mater ; 19(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38422539

RESUMEN

A novel biodegradable amphiphilic triblock copolymer, polyphosphate, polyethylene glycol, and polylactic acid (PAEEP-PEG-PLLA), was synthesized by twice ring-opening polymerization and triphenylphosphine (TPP) was grafted onto the block copolymer to synthesize a carrier material TPP-PAEEP-PEG-PLLA, which was identified by1H-nuclear magnetic resonance (1H-NMR) spectroscopy. The TPP-PAEEP-PEG-PLLA nanoparticles encapsulated with ursolic acid (UA) were prepared by the emulsion-solvent evaporation method and characterized by dynamic light scattering. The mitochondrial targeting ability of fluorescently labeled nanoparticles was evaluated by laser confocal microscopy. The average particle size and surface charge of the UA -loaded nanoparticle solution were 180.07 ± 1.67 nm and +15.57 ± 1.33 mV, respectively. The biocompatibility of nanoparticles was briefly evaluated by erythrocyte hemolysis assay.In vitrocell proliferation assay and scratch migration assay were performed to compare the difference in anti-tumor effect between UA and UA nanoparticles. The results showed that TPP-modified triblock copolymers had good mitochondrial targeting and improved the low bioavailability of UA, and UA nanoparticles exhibited more pronounced anti-tumor capabilities. In summary, the results suggested that our UA nanoparticles were a promising drug-targeted delivery system for the treatment of tumors.


Asunto(s)
Nanopartículas , Neoplasias , Compuestos Organofosforados , Humanos , Ácido Ursólico , Portadores de Fármacos/química , Polímeros/química , Polietilenglicoles/química , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Tamaño de la Partícula
8.
Cancer Lett ; 582: 216516, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052369

RESUMEN

Triple-negative breast cancer (TNBC) is highly aggressive and metastatic, and has the poorest prognosis among all breast cancer subtypes. Activated ß-catenin is enriched in TNBC and involved in Wnt signaling-independent metastasis. However, the underlying mechanisms of ß-catenin activation in TNBC remain unknown. Here, we found that SHC4 was upregulated in TNBC and high SHC4 expression was significantly correlated with poor outcomes. Overexpression of SHC4 promoted TNBC aggressiveness in vitro and facilitated TNBC metastasis in vivo. Mechanistically, SHC4 interacted with Src and maintained its autophosphorylated activation, which activated ß-catenin independent of Wnt signaling, and finally upregulated the transcription and expression of its downstream genes CD44 and MMP7. Furthermore, we determined that the PxPPxPxxxPxxP sequence on CH2 domain of SHC4 was critical for SHC4-Src binding and Src kinase activation. Overall, our results revealed the mechanism of ß-catenin activation independent of Wnt signaling in TNBC, which was driven by SHC4-induced Src autophosphorylation, suggesting that SHC4 might be a potential prognostic marker and therapeutic target in TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo , Línea Celular Tumoral , beta Catenina/genética , beta Catenina/metabolismo , Proliferación Celular , Vía de Señalización Wnt/genética , Proteínas Adaptadoras de la Señalización Shc/genética , Proteínas Adaptadoras de la Señalización Shc/metabolismo
9.
Gland Surg ; 12(11): 1459-1474, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38107499

RESUMEN

Background: The systemic inflammation response index (SIRI) has been reported to associate with survival outcomes in breast cancer patients. However, the effects of baseline SIRI and SIRI change after neoadjuvant chemotherapy (NACT) have not been thoroughly investigated. This study aimed to evaluate the role of baseline SIRI and SIRI change after NACT in predicting survival outcomes, and establish a nomogram based on SIRI. Methods: A total of 260 patients diagnosed with breast cancer who received NACT between January 2014 and December 2018 at our hospital were included. The clinical data were retrospectively collected from the medical records management system. The associations between clinicopathological factors and baseline SIRI, pathological complete response (pCR) were analyzed by Student's t-test, Chi-squared test, or Fisher's exact test. The association between clinicopathological factors and disease-free survival (DFS) was evaluated by univariate and multivariate Cox regression analyses. Results: Patients with a tumor-node-metastasis (TNM) stage of I, II, and III were 1.9%, 20.0%, and 78.1% respectively. The median follow-up time was 40 months, and 74 (28.5%) patients had cancer recurrence during the follow-up. Both in the univariate and multivariate analysis, Ki-67, pCR, and baseline SIRI were independent factors associated with DFS. Patients with low baseline SIRI had prolonged DFS compared with those with high baseline SIRI [≤1.6×109 vs. >1.6×109, hazard ratio (HR) =0.545, P=0.028]. In addition, SIRI change after NACT was also an independent factor associated with DFS, and patients with minor SIRI change had longer DFS than patients with major SIRI change (>50% or <-30% vs. ≤50% and ≥-30%, HR =1.721, P=0.037). Nomograms were established based on Ki-67, pCR, and baseline SIRI or SIRI change after NACT with a concordance index of 0.665 and 0.663 respectively, and the nomogram provided a convenient tool for predicting the probability of DFS. Conclusions: The baseline SIRI and SIRI change after NACT could act as potential biomarkers for predicting survival outcomes in breast cancer. Besides, the nomogram with SIRI is an economic and convenient tool for predicting DFS. Larger prospective studies are needed to verify the results.

10.
Heliyon ; 9(9): e19817, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809930

RESUMEN

In the context of cancer expansion, epithelial-mesenchymal transition (EMT) plays an essential role in driving invasion and metastasis potential of cancer cells. Tumor-associated macrophages (TAMs)-derived factors involved in the initiation and progression of EMT. We assess the role of M2 macrophage in suppressing lung tumors of a natural compound (-)-Guaiol by using macrophage depleted model. Bone marrow-derived monocytes (BMDMs) were extracted and induced to M2-like phenotype in vitro. The co-culture of M2 macrophage and lung cancer cells was established to observe that inhibition of lung tumor growth by (-)-Guaiol requires presence of macrophages. This suppressed effect of (-)-Guaiol was alleviated when mice macrophage was depleted. The expression of M2-like macrophages was strongly reduced by (-)-Guaiol treated mice, but not the changes of M1-like macrophages. In vitro studies, we demonstrated that (-)-Guaiol suppressed M2 polarization of BMDMs, as well as migration, invasion, and EMT of lung cancer cells in co-culture. M2 macrophage-derived interleukin 10 (IL-10) was investigated as a critical signaling molecule between M2 macrophage and lung cancer cells. We have also verified that the mechanism of (-)-Guaiol inhibiting the EMT process of lung cancer is related to the activation of IL-10-mediated signal transducer and activator of transcription 3 (STAT3). These results suggested that the suppressive effect role of (-)-Guaiol in M2 macrophage promoting EMT of lung cancer, which was associated with inhibition of IL-10 mediated STAT3 signaling pathway.

11.
Biochem Pharmacol ; 212: 115575, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37334787

RESUMEN

Age-related hearing loss (ARHL) is a most widespread neurodegenerative disease affecting the elderly population, but effective pharmacological treatments remain limited. Curcumin is a bioactive compound of Curcuma longa with antioxidant properties. Herein, we looked into the effects of curcumin on the H2O2-induced oxidative stress in cochlear hair cells and hearing function in an ARHL animal model (C57BL/6J mice). We found that pretreatment of curcumin could attenuate H2O2-induced apoptosis and cell senescence in auditory hair cells and prevent mitochondrial function dysfunction. More specifically, Western blot and luciferase activity assay showed that curcumin activated the nuclear translocation of Nrf2, which in turn triggered the activation of its downstream target gene Heme Oxygenase1 (HO-1). The enhanced Nrf2 and HO-1 activity by curcumin was blocked by the AKT inhibitor LY294002, indicating the protective effect of curcumin was mainly achieved by activating Nrf2/HO-1 through the AKT pathway. Furthermore, the knockdown of Nrf2 with siRNA diminished the protective effects of Nrf2 against apoptosis and senescence, consolidating the pivotal role of Nrf2 in the protective effect of curcumin on auditory hair cells. More importantly, curcumin (10 mg/kg/d) could attenuate progressive hearing loss in C57BL/6J mice, as evident from the reduced threshold of auditory nerve brainstem response. Administration of curcumin also elevated the expression of Nrf2 and reduced the expression of cleaved-caspase-3, p21, and γ-H2AX in cochlear. This study is the first to demonstrate that curcumin can prevent oxidative stress-induced auditory hair cell degeneration through Nrf2 activation, highlighting its potential therapeutic value in preventing ARHL.


Asunto(s)
Curcumina , Pérdida Auditiva , Enfermedades Neurodegenerativas , Anciano , Ratones , Animales , Humanos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Curcumina/farmacología , Curcumina/uso terapéutico , Peróxido de Hidrógeno/farmacología , Ratones Endogámicos C57BL , Pérdida Auditiva/prevención & control , Apoptosis , Células Ciliadas Auditivas/metabolismo
12.
Biosci Microbiota Food Health ; 42(2): 104-113, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37016686

RESUMEN

Fermented soy sauce consists of microorganisms that exert beneficial effects. However, the microbial community dynamics during the fermentation course is poorly characterized. Soy sauce production is classified into the stages of mash fermentation with koji (S0), brine addition (S1), microbial transformation (S2), flavor creation (S3), and fermentation completion (S4). In this study, microbial succession was investigated across stages at different temperatures using metagenomics analyses. During mash fermentation, Aspergillus dominated the fungal microbiota in all stages, while the bacterial composition was dominated by Bacillus at room temperature and by a diverse composition of enriched lactic acid bacteria (LAB) at a controlled temperature. Compared with a stable fungal composition, bacterial dynamics were mostly attributable to fluctuations of LAB, which break down carbohydrates into lactic acid. After adding brine, increased levels of Enterococcus and decreased levels of Lactococcus from S1 to S4 may reflect differences in salinity tolerance. Staphylococcus, as a fermentation starter at S0, stayed predominant throughout fermentation and hydrolyzed soybean proteins. Meanwhile, Rhizopus and Penicillium may improve the flavor. The acidification of soy sauce was likely attributable to production of organic acids by Bacillus and LAB under room temperature and controlled temperature conditions, respectively. Metagenomic analysis revealed that microbial succession was associated with the fermentation efficiency and flavor enhancement. Controlled temperature nurture more LAB than uncontrolled temperatures and may ensure the production of lactic acid for the development of soy sauce flavor.

13.
Front Immunol ; 14: 1151800, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36999020

RESUMEN

Introduction: Compared to other types of breast cancer, triple-negative breast cancer (TNBC) does not effectively respond to hormone therapy and HER2 targeted therapy, showing a poor prognosis. There are currently a limited number of immunotherapeutic drugs available for TNBC, a field that requires additional development. Methods: Co-expressing genes with M2 macrophages were analyzed based on the infiltration of M2 macrophages in TNBC and the sequencing data in The Cancer Genome Atlas (TCGA) database. Consequently, the influence of these genes on the prognoses of TNBC patients was analyzed. GO analysis and KEGG analysis were performed for exploring potential signal pathways. Lasso regression analysis was conducted for model construction. The TNBC patients were scored by the model, and patients were divided into high- and low-risk groups. Subsequently, the accuracy of model was further verified using GEO database and patients information from the Cancer Center of Sun Yat-sen University. On this basis, we analyzed the accuracy of prognosis prediction, correlation with immune checkpoint, and immunotherapy drug sensitivity in different groups. Results: Our findings revealed that OLFML2B, MS4A7, SPARC, POSTN, THY1, and CD300C genes significantly influenced the prognosis of TNBC. Moreover, MS4A7, SPARC, and CD300C were finally determined for model construction, and the model showed good accuracy in prognosis prediction. And 50 immunotherapy drugs with therapeutic significance in different groups were screened, which were assessed possible immunotherapeutics that have potential application and demonstrated the high precision of our prognostic model for predictive analysis. Conclusion: MS4A7, SPARC, and CD300C, the three main genes used in our prognostic model, offer good precision and clinical application potential. Fifty immune medications were assessed for their ability to predict immunotherapy drugs, providing a novel approach to immunotherapy for TNBC patients and a more reliable foundation for applying drugs in subsequent treatments.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Genes Reguladores , Inmunoterapia , Factores de Transcripción , Macrófagos , Antígenos de Superficie , Glicoproteínas de Membrana
14.
Sci Total Environ ; 872: 162240, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36796701

RESUMEN

Sulfoxaflor, an important alternative insecticide in integrated pest management (IPM) strategies, can effectively control sap-feeding insect pests such as Aphis gossypii. Although the side effects of sulfoxaflor have recently attracted widespread attention, its toxicological characteristics and mechanisms are still largely undefined. Therefore, the biological characteristics, life table and feeding behaviour of A. gossypii were studied to evaluate the hormesis effect of sulfoxaflor. Then, the potential mechanisms of induced fecundity associated with the vitellogenin (Ag. Vg) and vitellogenin receptor (Ag. VgR) genes were investigated. Although the LC10 and LC30 concentrations of sulfoxaflor significantly reduced the fecundity and net reproduction rate (R0) of the directly exposed sulfoxaflor-resistant and susceptible aphids, hormesis effects on fecundity and R0 were observed in the F1 generation of Sus A. gossypii when the parental generation was exposed to the LC10 of sulfoxaflor. Moreover, the hormesis effects of sulfoxaflor on phloem feeding were observed in both A. gossypii strains. Additionally, enhanced expression levels and protein content of Ag. Vg and Ag. VgR were observed in progeny generations when F0 was subjected to the trans- and multigenerational sublethal sulfoxaflor exposure. Therefore, sulfoxaflor-induced resurgence might occur in A. gossypii after exposure to sublethal concentrations. Our study could contribute to a comprehensive risk assessment and provide convincing reference to optimize sulfoxaflor in IPM strategies.


Asunto(s)
Áfidos , Insecticidas , Animales , Áfidos/metabolismo , Hormesis , Insecticidas/metabolismo , Reproducción
15.
J Agric Food Chem ; 71(3): 1713-1726, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36634352

RESUMEN

The widespread use of titanium dioxide nanoparticles (TiO2 NPs) in the food industry has brought about human safety risks related to nanotoxicity. In this study, food-related TiO2 NPs (anatase, 40 nm) were given to rats by oral gavage for 90 days at doses of 10, 100, and 1000 mg/kg bw. An additional two satellite groups underwent the same protocol for 45 days and for 90 days followed by a 28 day recovery. TiO2 NPs tended to agglomerate together in H2O, AGJ, and AIJ. No systemic toxicity was observed after 90 day agglomerated TiO2 NP exposure with no Ti distribution in major tissues/organs. Furthermore, TiO2 NP consumption for 90 days had no impact on microbiota diversity; the community structure of the gut microbiota is shifted to some extent at the genus level. Collectively, the NOAEL of agglomerated TiO2 NPs for 90 days of oral administration was 1000 mg/kg bw, the highest dose tested in male and female rats.


Asunto(s)
Microbioma Gastrointestinal , Nanopartículas del Metal , Nanopartículas , Humanos , Ratas , Masculino , Femenino , Animales , Titanio/toxicidad , Titanio/química , Distribución Tisular , Nanopartículas/toxicidad , Administración Oral , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química
16.
Environ Toxicol ; 38(5): 1022-1037, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36715182

RESUMEN

Microvascular invasion (MVI) is a crucial risk factor related to the metastasis of hepatocellular carcinoma (HCC), but the underlying mechanisms remain to be revealed. Characterizing the inherent mechanisms of MVI may aid in the development of effective treatment strategies to improve the prognosis of HCC patients with metastasis. Through the Gene Expression Omnibus (GEO) database, we identified that small nuclear ribonucleoprotein polypeptide A (SNRPA) was related to MVI in HCC. SNRPA was overexpressed in MVI-HCC and correlated with poor patient survival. Mechanistically, SNRPA promoted the epithelial-mesenchymal transition (EMT)-like process for HCC cells to accelerate metastasis by activating the NOTCH1/Snail pathway in vitro and in vivo. Importantly, circSEC62 upregulated SNRPA expression in HCC cells via miR-625-5p sponging. Taking these results together, our study identified a novel regulatory mechanism among SNRPA, miR-625-5p, circSEC62 and the NOTCH1/Snail pathway in HCC, which promoted metastasis of HCC and may provide effective suggestions for improving the prognosis of HCC patients with metastasis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Metástasis de la Neoplasia , Factores de Empalme de ARN , ARN Circular , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , MicroARNs/genética , Péptidos/genética , Péptidos/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Circular/metabolismo
17.
Microb Ecol ; 85(1): 197-208, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35034142

RESUMEN

The 2,3,7,8-tetrachlorodibenzodioxin (TCDD), a contaminant in Agent Orange released during the US-Vietnam War, led to a severe environmental crisis. Approximately, 50 years have passed since the end of this war, and vegetation has gradually recovered from the pollution. Soil bacterial communities were investigated by 16S metagenomics in habitats with different vegetation physiognomies in Central Vietnam, namely, forests (S0), barren land (S1), grassland (S2), and developing woods (S3). Vegetation complexity was negatively associated with TCDD concentrations, revealing the reasoning behind the utilization of vegetation physiognomy as an indicator for ecological succession along the gradient of pollutants. Stark changes in bacterial composition were detected between S0 and S1, with an increase in Firmicutes and a decrease in Acidobacteria and Bacteroidetes. Notably, dioxin digesters Arthrobacter, Rhodococcus, Comamonadaceae, and Bacialles were detected in highly contaminated soil (S1). Along the TCDD gradients, following the dioxin decay from S1 to S2, the abundance of Firmicutes and Actinobacteria decreased, while that of Acidobacteria increased; slight changes occurred at the phylum level from S2 to S3. Although metagenomics analyses disclosed a trend toward bacterial communities before contamination with vegetation recovery, non-metric multidimensional scaling analysis unveiled a new trajectory deviating from the native state. Recovery of the bacterial community may have been hindered, as indicated by lower bacterial diversity in S3 compared to S0 due to a significant loss of bacterial taxa and recruitment of fewer colonizers. The results indicate that dioxins significantly altered the soil microbiomes into a state of disorder with a deviating trajectory in restoration.


Asunto(s)
Dioxinas , Microbiota , Dibenzodioxinas Policloradas , Agente Naranja , Suelo , Dibenzodioxinas Policloradas/análisis , Bacterias/genética , Acidobacteria/genética , Firmicutes , Microbiología del Suelo , ARN Ribosómico 16S/genética
18.
Pest Manag Sci ; 79(1): 464-473, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36209490

RESUMEN

BACKGROUND: Fall armyworm (Spodoptera frugiperda) is one of the major invasive pests in China, and has been widely controlled by labor-intensive foliar sprays of agrochemicals in maize (Zea mays L.). RESULTS: Systemic bioassay showed that mixtures of chlorantraniliprole (Chlor) and carbaryl (Carb) had dramatically synergistic effect on toxicity to S. frugiperda. Particularly, a mixture of Chlor with Carb at a mass ratio of 2:1 (MCC) exhibited the highest toxicity to S. frugiperda. Therefore, seed treatment of Chlor mixed with Carb was studied as a simple, accurate, efficient and low-cost control technology. Our results showed that MCC treatment shortened the median lethal time and 90% lethal time to S. frugiperda compared to Chlor- and Carb-alone treatments. Meanwhile, smaller leaf consumption by S. frugiperda was recorded under MCC treatment compared to Chlor- and Carb-alone treatments. In field trial, maize-seed treatment with MCC showed efficacy up to 39 days post-emergence in preventing S. frugiperda foliar damage at a low infestation pressure. Moreover, chemical quantification by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) showed that Chlor residues were more absorbed and concentrated in maize leaves of MCC treatment, compared to that of Chlor-alone treatment. CONCLUSION: These results suggested that seed treatment with MCC can be applied to increase the control efficacy and reduce the cost of Chlor-alone treatment for controlling S. frugiperda. The present study provided evidence of an enhanced translocation and accumulation of Chlor residues in maize leaves under MCC treatment, which likely contributed to a synergistic effect against S. frugiperda. © 2022 Society of Chemical Industry.


Asunto(s)
Carbaril , Zea mays , Carbaril/farmacología , Cromatografía Liquida , Espectrometría de Masas en Tándem , Semillas
19.
J Cancer Res Clin Oncol ; 149(8): 4367-4380, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36109402

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is resistant to targeted therapy with HER2 monoclonal antibodies and endocrine therapy, because it lacks the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). TNBC is a subtype of breast cancer with the worst prognosis and the highest mortality rate compared to other subtypes. N6-methyladenosine (m6A) modification is significant in cancer and metastasis, because it can alter gene expression and function at numerous levels, such as RNA splicing, stability, translocation, and translation. There are limited investigations into the connection between TNBC and m6A. MATERIALS AND METHODS: Breast cancer-related data were retrieved from the Cancer Genome Atlas (TCGA) database, and 116 triple-negative breast cancer cases were identified from the data. The GSE31519 data set, which included 68 cases of TNBC, was obtained from the Gene Expression Omnibus (GEO) database. Survival analysis was used to determine the prognosis of distinct m6A types based on their m6A group, gene group, and m6A score. To investigate the potential mechanism, GO and KEGG analyses were performed on the differentially expressed genes. RESULTS: The expression of m6A-related genes and their impact on prognosis in TNBC patients were studied. According to the findings, m6A was crucial in determining the prognosis of TNBC patients, and the major m6A-linked genes in this process were YTHDF2, RBM15B, IGFBP3, and WTAP. YTHDF2, RBM15B and IGFBP3 are associated with poor prognosis, while WTAP is associated with good prognosis. By cluster analysis, the gene cluster and the m6A cluster were beneficial in predicting the prognosis of TNBC patients. The m6A score based on m6A and gene clusters was more effective in predicting the prognosis of TNBC patients. Furthermore, the tumor microenvironment may play an important role in the process of m6A, influencing TNBC prognosis. CONCLUSIONS: N6-adenylic acid methylation (m6A) was important in altering the prognosis of TNBC patients, and the key m6A-associated genes in this process were YTHDF2, RBM15B, IGFBP3, and WTAP. Furthermore, the comprehensive typing based on m6A and gene clusters was useful in predicting TNBC patients' prognosis, showing potential as valuable evaluating tools for TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Pronóstico , Familia de Multigenes , Factores de Transcripción , Mama , Microambiente Tumoral
20.
Pest Manag Sci ; 78(12): 5463-5470, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36067017

RESUMEN

BACKGROUND: Aphis gossypii is a notorious pest worldwide, and evidence of resistance of A. gossypii to various insecticides has been documented. Diagnostic tools for the rapid and accurate assessment of insecticide resistance are urgently needed to implement effective pest control and insecticide resistance management strategies. RESULTS: Using this diagnostic kit based on the glass vial bioassay, detection results can be obtained in 3 h and the values of 897.86, 133.57, 12 037.45, 2849.26, 19 457.33 and 215.60 ng/cm2 were finally identified as the actual diagnostic doses of imidacloprid, acetamiprid, thiamethoxam, nitenpyram, dinotefuran and sulfoxaflor, respectively. The regression equation between mortalities under diagnostic doses and actual resistance ratios tested by the leaf-dipping method were conducted in different strains of A. gossypii, and the diagnostic mortality of A. gossypii was negatively correlated with the resistance ratio to imidacloprid (r = -0.986, P = 0.002), acetamiprid (r = -0.964, P = 0.008), thiamethoxam (r = -0.930, P = 0.022), nitenpyram (r = -0.950, P = 0.013), dinotefuran (r = -0.976, P = 0.004) and sulfoxaflor (r = -0.937, P = 0.019). Moreover, four A. gossypii field populations were selected to apply the diagnostic kit in the field. CONCLUSIONS: A diagnostic kit based on the glass vial bioassay for the rapid detection of resistance to imidacloprid, acetamiprid, thiamethoxam, nitenpyram, dinotefuran and sulfoxaflor in A. gossypii was developed. The insecticide diagnostic kit for A. gossypii can be a useful screening tool to determine effective insecticides quickly and accurately. © 2022 Society of Chemical Industry.


Asunto(s)
Áfidos , Insecticidas , Animales , Resistencia a los Insecticidas , Insecticidas/farmacología , Tiametoxam , Neonicotinoides/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA