Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Pattern Anal Mach Intell ; 46(5): 3637-3652, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38145535

RESUMEN

In multi-view environment, it would yield missing observations due to the limitation of the observation process. The most current representation learning methods struggle to explore complete information by lacking either cross-generative via simply filling in missing view data, or solidative via inferring a consistent representation among the existing views. To address this problem, we propose a deep generative model to learn a complete generative latent representation, namely Complete Multi-view Variational Auto-Encoders (CMVAE), which models the generation of the multiple views from a complete latent variable represented by a mixture of Gaussian distributions. Thus, the missing view can be fully characterized by the latent variables and is resolved by estimating its posterior distribution. Accordingly, a novel variational lower bound is introduced to integrate view-invariant information into posterior inference to enhance the solidative of the learned latent representation. The intrinsic correlations between views are mined to seek cross-view generality, and information leading to missing views is fused by view weights to reach solidity. Benchmark experimental results in clustering, classification, and cross-view image generation tasks demonstrate the superiority of CMVAE, while time complexity and parameter sensitivity analyses illustrate the efficiency and robustness. Additionally, application to bioinformatics data exemplifies its practical significance.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35584066

RESUMEN

Behavioral assessment of sound localization in the Coma Recovery Scale-Revised (CRS-R) poses a significant challenge due to motor disability in patients with disorders of consciousness (DOC). Brain-computer interfaces (BCIs), which can directly detect brain activities related to external stimuli, may thus provide an approach to assess DOC patients without the need for any physical behavior. In this study, a novel audiovisual BCI system was developed to simulate sound localization evaluation in CRS-R. Specifically, there were two alternatively flashed buttons on the left and right sides of the graphical user interface, one of which was randomly chosen as the target. The auditory stimuli of bell sounds were simultaneously presented by the ipsilateral loudspeaker during the flashing of the target button, which prompted patients to selectively attend to the target button. The recorded electroencephalography data were analyzed in real time to detect event-related potentials evoked by the target and further to determine whether the target was attended to or not. A significant BCI accuracy for a patient implied that he/she had sound localization. Among eighteen patients, eleven and four showed sound localization in the BCI and CRS-R, respectively. Furthermore, all patients showing sound localization in the CRS-R were among those detected by our BCI. The other seven patients who had no sound localization behavior in CRS-R were identified by the BCI assessment, and three of them showed improvements in the second CRS-R assessment after the BCI experiment. Thus, the proposed BCI system is promising for assisting the assessment of sound localization and improving the clinical diagnosis of DOC patients.


Asunto(s)
Interfaces Cerebro-Computador , Personas con Discapacidad , Trastornos Motores , Localización de Sonidos , Coma/diagnóstico , Estado de Conciencia , Trastornos de la Conciencia/diagnóstico , Electroencefalografía , Femenino , Humanos
3.
Front Hum Neurosci ; 11: 462, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28966581

RESUMEN

Brain-Computer Interface (BCI) techniques hold a great promise for neuroprosthetic applications. A desirable BCI system should be portable, minimally invasive, and feature high classification accuracy and efficiency. As two commonly used non-invasive brain imaging modalities, Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) BCI system have often been incorporated in the development of hybrid BCI systems, largely due to their complimentary properties. In this study, we aimed to investigate whether the early temporal information extracted from singular EEG and fNIRS channels on each hemisphere can be used to enhance the accuracy and efficiency of a hybrid EEG-fNIRS BCI system. Eleven healthy volunteers were recruited and underwent simultaneous EEG-fNIRS recording during a motor execution task that included left and right hand movements. Singular EEG and fNIRS channels corresponding to the motor cortices of each hemisphere were selected using a general linear model. Early temporal information was extracted from the EEG channel (0-1 s) along with initial hemodynamic dip information from fNIRS (0-2 s) for classification using a support vector machine (SVM). Results demonstrated a lofty classification accuracy using a minimal number of channels and features derived from early temporal information. In conclusion, a hybrid EEG-fNIRS BCI system can achieve higher classification accuracy (91.02 ± 4.08%) and efficiency by integrating their complimentary properties, compared to using EEG (85.64 ± 7.4%) or fNIRS alone (85.55 ± 10.72%). Such a hybrid system can also achieve minimal response lag in application by focusing on rapidly-evolving brain dynamics.

4.
Front Neurol ; 8: 221, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28611725

RESUMEN

The performance of the masticatory muscle is frequently affected and presents high heterogeneity poststroke. Surface electromyography (EMG) is widely used to quantify muscle movement patterns. However, only a few studies applied EMG analysis on the research of masticatory muscle activities poststroke, and most of which used single parameter-root mean squares (RMS). The aim of this study was to fully investigate the performance of masticatory muscle at different head positions in healthy subjects and brainstem stroke patients with multiparameter EMG analysis. In this study, 15 healthy subjects and six brainstem stroke patients were recruited to conduct maximum voluntary clenching at five different head positions: upright position, left rotation, right rotation, dorsal flexion, and ventral flexion. The EMG signals of bilateral temporalis anterior and masseter muscles were recorded, and parameters including RMS, median frequency, and fuzzy approximate entropy of the EMG signals were calculated. Two-way analysis of variance (ANOVA) with repeated measures and Bonferroni post hoc test were used to evaluate the effects of muscle and head position on EMG parameters in the healthy group, and the non-parametric Wilcoxon signed rank test was conducted in the patient group. The Welch-Satterthwaite t-test was used to compare the between-subject difference. We found a significant effect of subject and muscles but no significant effect of head positions, and the masticatory muscles of patients after brainstem stroke performed significantly different from healthy subjects. Multiparameter EMG analysis might be an informative tool to investigate the neural activity related movement patterns of the deficient masticatory muscles poststroke.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...