Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 187
1.
Nat Rev Chem ; 8(5): 376-400, 2024 May.
Article En | MEDLINE | ID: mdl-38693313

Electrification to reduce or eliminate greenhouse gas emissions is essential to mitigate climate change. However, a substantial portion of our manufacturing and transportation infrastructure will be difficult to electrify and/or will continue to use carbon as a key component, including areas in aviation, heavy-duty and marine transportation, and the chemical industry. In this Roadmap, we explore how multidisciplinary approaches will enable us to close the carbon cycle and create a circular economy by defossilizing these difficult-to-electrify areas and those that will continue to need carbon. We discuss two approaches for this: developing carbon alternatives and improving our ability to reuse carbon, enabled by separations. Furthermore, we posit that co-design and use-driven fundamental science are essential to reach aggressive greenhouse gas reduction targets.

2.
Integr Cancer Ther ; 23: 15347354241242120, 2024.
Article En | MEDLINE | ID: mdl-38590244

OBJECTIVES: To evaluate the effects of Reishimmune-S, a fungal immunomodulatory peptide, on the quality of life (QoL) and natural killer (NK) cell subpopulations in patients receiving adjuvant endocrine therapy (ET) for breast cancer (BC). METHODS: Patients who received adjuvant ET for stage I-III hormone receptor-positive BC without active infection were enrolled in this prospective pilot study. Reishimmune-S was administered sublingually daily for 6 months. QoL scores, circulating immune cell levels, including lymphocyte/NK cell subpopulations, and plasma levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were measured at baseline and every 4 weeks. Data were analyzed using linear mixed-effect regression models. RESULTS: Nineteen participants were included in the analyses. One patient with underlying asthma did not complete the study owing to the occurrence of skin rashes 15 days after the initiation of Reishimmune-S. No other adverse events were reported. Reishimmune-S supplementation significantly improved the cognitive function at 3 months and significantly decreased the fatigue and insomnia levels at 3 and 6 months, respectively. There was no significant change in the global health/QoL score between baseline and week 4 of treatment. The proportion of CD19+ lymphocytes was significantly higher at 3 and 6 months, and that of NKG2A+ and NKp30+ NK cells was significantly lower at 6 months than at baseline. In addition, fatigue positively correlated with the proportion of NKp30+ NK cells (ß ± standard error: 24.48 ± 8.75, P = .007 in the mixed-effect model). CONCLUSIONS: Short-term supplementation with Reishimmune-S affected the circulating immune cell composition and exerted positive effects on cognitive function, fatigue, and insomnia in patients with BC undergoing adjuvant ET, providing a potential approach for the management of treatment-related adverse reactions in this patient population.


Breast Neoplasms , Sleep Initiation and Maintenance Disorders , Humans , Female , Breast Neoplasms/psychology , Quality of Life , Prospective Studies , Pilot Projects , Tumor Necrosis Factor-alpha , Killer Cells, Natural , Dietary Supplements , Fatigue/chemically induced
3.
Head Neck ; 46(5): 1009-1019, 2024 May.
Article En | MEDLINE | ID: mdl-38441255

OBJECTIVE: To enhance the accuracy in predicting lymph node metastasis (LNM) preoperatively in patients with papillary thyroid microcarcinoma (PTMC), refining the "low-risk" classification for tailored treatment strategies. METHODS: This study involves the development and validation of a predictive model using a cohort of 1004 patients with PTMC undergoing thyroidectomy along with central neck dissection. The data was divided into a training cohort (n = 702) and a validation cohort (n = 302). Multivariate logistic regression identified independent LNM predictors in PTMC, leading to the construction of a predictive nomogram model. The model's performance was assessed through ROC analysis, calibration curve analysis, and decision curve analysis. RESULTS: Identified LNM predictors in PTMC included age, tumor maximum diameter, nodule-capsule distance, capsular contact length, bilateral suspicious lesions, absence of the lymphatic hilum, microcalcification, and sex. Especially, tumors larger than 7 mm, nodules closer to the capsule (less than 3 mm), and longer capsular contact lengths (more than 1 mm) showed higher LNM rates. The model exhibited AUCs of 0.733 and 0.771 in the training and validation cohorts respectively, alongside superior calibration and clinical utility. CONCLUSION: This study proposes and substantiates a preoperative predictive model for LNM in patients with PTMC, honing the precision of "low-risk" categorization. This model furnishes clinicians with an invaluable tool for individualized treatment approach, ensuring better management of patients who might be proposed observation or ablative options in the absence of such predictive information.


Carcinoma, Papillary , Thyroid Neoplasms , Humans , Thyroid Neoplasms/surgery , Thyroid Neoplasms/pathology , Carcinoma, Papillary/surgery , Carcinoma, Papillary/pathology , Neck Dissection , Thyroidectomy , Lymphatic Metastasis/pathology , Retrospective Studies , Lymph Nodes/pathology , Risk Factors
4.
J Am Chem Soc ; 146(12): 8618-8629, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38471106

Atomically dispersed first-row transition metals embedded in nitrogen-doped carbon materials (M-N-C) show promising performance in catalytic hydrogenation but are less well-studied for reactions with more complex mechanisms, such as hydrogenolysis. Their ability to catalyze selective C-O bond cleavage of oxygenated hydrocarbons such as aryl alcohols and ethers is enhanced with the participation of ligands directly bound to the metal ion as well as longer-range contributions from the support. In this article, we describe how Fe-N-C catalysts with well-defined local structures for the Fe sites catalyze C-O bond hydrogenolysis. The reaction is facilitated by the N-C support. According to spectroscopic analyses, the as-synthesized catalysts contain mostly pentacoordinated FeIII sites, with four in-plane nitrogen donor ligands and one axial hydroxyl ligand. In the presence of 20 bar of H2 at 170-230 °C, the hydroxyl ligand is lost when N4FeIIIOH is reduced to N4FeII, assisted by the H2 chemisorbed on the support. When an alcohol binds to the tetracoordinated FeII sites, homolytic cleavage of the O-H bond is accompanied by reoxidation to FeIII and H atom transfer to the support. The role of the N-C support in catalytic hydrogenolysis is analogous to the behavior of chemically and redox-non-innocent ligands in molecular catalysts based on first-row transition metal ions and enhances the ability of M-N-Cs to achieve the types of multistep activations of strong bonds needed to upgrade renewable and recycled feedstocks.

5.
J Transl Med ; 22(1): 125, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38303030

BACKGROUND: Previous studies have shown that changes in the microbial community of the female urogenital tract are associated with Human papillomavirus (HPV) infection. However, research on this association was mostly focused on a single site, and there are currently few joint studies on HPV infection and multiple sites in the female urogenital tract. METHODS: We selected 102 healthy women from Yunnan Province as the research object, collected cervical exfoliation fluid, vaginal, urethral, and rectal swabs for microbial community analysis, and measured bacterial load, and related cytokine content. The link between HPV, microbiota, and inflammation was comprehensively evaluated using bioinformatics methods. FINDINGS: The impact of HPV infection on the microbial composition of different parts varies. We have identified several signature bacterial genera that respond to HPV infection in several detection sites, such as Corynebacterium, Lactobacillus, Campylobacter, and Cutibacterium have been detected in multiple sites, reflecting their potential significance in cross body sites HPV infection responses. There was a solid microbial interaction network between the cervix, vagina, and urethra. The interrelationships between inflammatory factors and different bacterial genera might also affect the immune system's response to HPV infection. INTERPRETATION: It might be an effective strategy to prevent and treat HPV infection by simultaneously understanding the correlation between the microbial changes in multiple parts of the female urogenital tract and rectum and HPV infection, and controlling the microbial network related to HPV infection in different parts.


Papillomavirus Infections , Rectum , Female , Humans , China , Vagina/microbiology , Bacteria , RNA, Ribosomal, 16S , Papillomaviridae
6.
Langmuir ; 40(8): 4096-4107, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38350109

Many polymer upcycling efforts aim to convert plastic waste into high-value liquid hydrocarbons. However, the subsequent cleavage of middle distillates to light gases can be problematic. The reactor often contains a vapor phase (light gases and middle distillates) and a liquid phase (molten polymers and waxes with a suspended or dissolved catalyst). Because the catalyst resides in the liquid phase, middle distillates that partition into the vapor phase are protected against further cleavage into light gases. In this paper, we consider a simple reactive separation strategy, in which a gas outflow removes the volatile products as they form. We combine vapor-liquid equilibrium models and population balance equations (PBEs) to describe polymer upcycling in a two-phase semibatch reactor. The results suggest that the temperature, headspace volume, and flow rate of the reactor can be used to tune selectivity toward the middle distillates, in addition to the molecular mechanism of catalysis. We anticipate that two-phase reactor models will be important in many polymer upcycling processes and that reactive separation strategies will provide ways to boost the yield of the desired products in these cases.

7.
Front Endocrinol (Lausanne) ; 15: 1337322, 2024.
Article En | MEDLINE | ID: mdl-38362277

Background: Robotic assistance in thyroidectomy is a developing field that promises enhanced surgical precision and improved patient outcomes. This study investigates the impact of the da Vinci Surgical System on operative efficiency, learning curve, and postoperative outcomes in thyroid surgery. Methods: We conducted a retrospective cohort study of 104 patients who underwent robotic thyroidectomy between March 2018 and January 2022. We evaluated the learning curve using the Cumulative Sum (CUSUM) analysis and analyzed operative times, complication rates, and postoperative recovery metrics. Results: The cohort had a mean age of 36 years, predominantly female (68.3%). The average body mass index (BMI) was within the normal range. A significant reduction in operative times was observed as the series progressed, with no permanent hypoparathyroidism or recurrent laryngeal nerve injuries reported. The learning curve plateaued after the 37th case. Postoperative recovery was consistent, with no significant difference in hospital stay duration. Complications were minimal, with a noted decrease in transient vocal cord palsy as experience with the robotic system increased. Conclusion: Robotic thyroidectomy using the da Vinci system has demonstrated a significant improvement in operative efficiency without compromising safety. The learning curve is steep but manageable, and once overcome, it leads to improved surgical outcomes and high patient satisfaction. Further research with larger datasets and longer follow-up is necessary to establish the long-term benefits of robotic thyroidectomy.


Robotic Surgical Procedures , Robotics , Thyroid Neoplasms , Humans , Female , Adult , Male , Retrospective Studies , Thyroid Neoplasms/surgery
8.
Phytochemistry ; 220: 114037, 2024 Apr.
Article En | MEDLINE | ID: mdl-38387725

Five undescribed bisabosqual-type meroterpenoids, bisabosquals E (1) and F (2), stachybisbins J-L (4-6), together with two known ones, were isolated from a novel endophytic fungus KMU22001 within the Stachybotryaceae family. Their structures with absolute configurations were elucidated by detailed interpretation of NMR spectroscopy, mass spectrometry, single-crystal X-ray diffraction and electronic circular dichroism calculations. Compounds 2, 4 and 6 exhibited significant cytotoxicities against five human cancer cell lines with IC50 values ranging from 1.80 ± 0.08 to 17.76 ± 0.97 µM.


Antineoplastic Agents , Delphinium , Humans , Molecular Structure , Antineoplastic Agents/pharmacology , Crystallography, X-Ray , Circular Dichroism
9.
ACS Appl Mater Interfaces ; 16(9): 11361-11376, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38393744

Supported platinum nanoparticle catalysts are known to convert polyolefins to high-quality liquid hydrocarbons using hydrogen under relatively mild conditions. To date, few studies using platinum grafted onto various metal oxide (MxOy) supports have been undertaken to understand the role of the acidity of the oxide support in the carbon-carbon bond cleavage of polyethylene under consistent catalytic conditions. Specifically, two Pt/MxOy catalysts (MxOy = SrTiO3 and SiO2-Al2O3; Al = 3.0 wt %, target Pt loading 2 wt % Pt ∼1.5 nm), under identical catalytic polyethylene hydrogenolysis conditions (T = 300 °C, P(H2) = 170 psi, t = 24 h; Mw = ∼3,800 g/mol, Mn = ∼1,100 g/mol, D = 3.45, Nbranch/100C = 1.0), yielded a narrow distribution of hydrocarbons with molecular weights in the range of lubricants (Mw = < 600 g/mol; Mn < 400 g/mol; D = 1.5). While Pt/SrTiO3 formed saturated hydrocarbons with negligible branching, Pt/SiO2-Al2O3 formed partially unsaturated hydrocarbons (<1 mol % alkenes and ∼4 mol % alkyl aromatics) with increased branch density (Nbranch/100C = 5.5). Further investigations suggest evidence for a competitive hydrocracking mechanism occurring alongside hydrogenolysis, stemming from the increased acidity of Pt/SiO2-Al2O3 compared to Pt/SrTiO3. Additionally, the products of these polymer deconstruction reactions were found to be independent of the polyethylene feedstock, allowing the potential to upcycle polyethylenes with various properties into a value-added product.

10.
Quant Imaging Med Surg ; 14(2): 1860-1872, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38415146

Background: For patients with suspected simultaneous coronary and cerebrovascular atherosclerosis, conventional single-site computed tomography angiography (CTA) for both sites can result in nonnegligible radiation and contrast agent dose. The purpose of this study was to validate the feasibility of one-stop coronary and carotid-cerebrovascular CTA (C&CC-CTA) with a "double-low" (low radiation and contrast) dose protocol reconstructed with deep learning image reconstruction with high setting (DLIR-H) algorithm. Methods: From February 2018 to January 2019, 60 patients referred to C&CC-CTA simultaneously in West China Hospital were recruited in this prospective cohort study. By random assignment, patients were divided into two groups: double-low dose group (n=30) used 80 kVp and 24 mgI/kg/s contrast dose with images reconstructed using DLIR-H; and routine-dose group (n=30) used 100 kVp and 32 mgI/kg/s contrast dose with images reconstructed using 50% adaptive statistical iterative reconstruction-V (ASIR-V50%). Radiation and contrast doses, subjective image quality score, CT attenuation values, noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured and compared between the groups. Results: The DLIR-H group used 30% less contrast dose (35.80±4.85 vs. 51.13±6.91 mL) and 48% less overall radiation dose (1.00±0.09 vs. 1.91±0.42 mSv) than the ASIR-V50% group (both P<0.001). There was no statistically significant difference on subjective quality score between the two groups (C-CTA: 4.38±0.67 vs. 4.17±0.81, P=0.337 and CC-CTA: 4.18±0.87 vs. 4.08±0.79, P=0.604). For coronary CTA, lower background noise (18.93±1.43 vs. 22.86±3.75 HU) was reached in DLIR-H group, and SNR and CNR at all assessed branches were significantly increased compared to ASIR-V50% group (all P<0.05), except SNR of left anterior descending (P>0.05). For carotid-cerebrovascular CTA, DLIR-H group was comparable in background noise (19.25±1.42 vs. 20.23±2.40 HU), SNR and CNR at all assessed branches with ASIR-V50% group (all P>0.05). Conclusions: The "double-low" dose one-stop C&CC-CTA with DLIR-H obtained higher image quality compared with the routine-dose protocol with ASIR-V50% while achieving 48% and 30% reduction in radiation and contrast dose, respectively.

11.
Head Neck ; 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38348564

BACKGROUND: The preservation of parathyroid glands is crucial in endoscopic thyroid surgery to prevent hypocalcemia and related complications. However, current methods for identifying and protecting these glands have limitations. We propose a novel technique that has the potential to improve the safety and efficacy of endoscopic thyroid surgery. PURPOSE: Our study aims to develop a deep learning model called PTAIR 2.0 (Parathyroid gland Artificial Intelligence Recognition) to enhance parathyroid gland recognition during endoscopic thyroidectomy. We compare its performance against traditional surgeon-based identification methods. MATERIALS AND METHODS: Parathyroid tissues were annotated in 32 428 images extracted from 838 endoscopic thyroidectomy videos, forming the internal training cohort. An external validation cohort comprised 54 full-length videos. Six candidate algorithms were evaluated to select the optimal one. We assessed the model's performance in terms of initial recognition time, identification duration, and recognition rate and compared it with the performance of surgeons. RESULTS: Utilizing the YOLOX algorithm, we developed PTAIR 2.0, which demonstrated superior performance with an AP50 score of 92.1%. The YOLOX algorithm achieved a frame rate of 25.14 Hz, meeting real-time requirements. In the internal training cohort, PTAIR 2.0 achieved AP50 values of 94.1%, 98.9%, and 92.1% for parathyroid gland early prediction, identification, and ischemia alert, respectively. Additionally, in the external validation cohort, PTAIR outperformed both junior and senior surgeons in identifying and tracking parathyroid glands (p < 0.001). CONCLUSION: The AI-driven PTAIR 2.0 model significantly outperforms both senior and junior surgeons in parathyroid gland identification and ischemia alert during endoscopic thyroid surgery, offering potential for enhanced surgical precision and patient outcomes.

12.
Anal Chem ; 96(6): 2500-2505, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38252963

Understanding the host-guest interactions in porous materials is of great importance in the field of separation science. Probing it at the single-molecule level uncovers the inter- and intraparticle inhomogeneity and establishes structure-property relationships for guiding the design of porous materials for better separation performance. In this work, we investigated the dynamics of host-guest interactions in core-shell mesoporous silica particles under in situ conditions by using a fluorogenic reaction-initiated single-molecule tracking (riSMT) approach. Taking advantage of the low fluorescence background, three-dimensional (3D) tracking of the dynamics of the molecules inside the mesoporous silica pore was achieved with high spatial precision. Compared to the commonly used two-dimensional (2D) tracking method, the 3D tracking results show that the diffusion coefficients of the molecules are three times larger on average. Using riSMT, we quantitatively analyzed the mass transfer of probe molecules in the mesoporous silica pore, including the fraction of adsorption versus diffusion, diffusion coefficients, and residence time. Large interparticle inhomogeneity was revealed and is expected to contribute to the peak broadening for separation application at the ensemble level. We further investigated the impact of electrostatic interaction on the mass transfer of molecules in the mesoporous silica pore and discovered that the primary effect is on the fraction rather than their diffusion rates of resorufin molecules undergoing diffusion.

13.
J Am Chem Soc ; 145(50): 27459-27470, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38059480

Doping, or incremental substitution of one element for another, is an effective way to tailor a compound's structure as well as its physical and chemical properties. Herein, we replaced up to 30% of Ni with Co in members of the family of layered LiNiB compounds, stabilizing the high-temperature polymorph of LiNiB while the room-temperature polymorph does not form. By studying this layered boride with in situ high-temperature powder diffraction, we obtained a distorted variant of LiNi0.7Co0.3B featuring a perfect interlayer placement of [Ni0.7Co0.3B] layers on top of each other─a structural motif not seen before in other borides. Because of the Co doping, LiNi0.7Co0.3B can undergo a nearly complete topochemical Li deintercalation under ambient conditions, resulting in a metastable boride with the formula Li0.04Ni0.7Co0.3B. Heating of Li0.04Ni0.7Co0.3B in anaerobic conditions led to yet another metastable boride, Li0.01Ni0.7Co0.3B, with a CoB-type crystal structure that cannot be obtained by simple annealing of Ni, Co, and B. No significant alterations of magnetic properties were detected upon Co-doping in the temperature-independent paramagnet LiNi0.7Co0.3B or its Li-deintercalated counterparts. Finally, Li0.01Ni0.7Co0.3B stands out as an exceptional catalyst for the selective hydrogenation of the vinyl C═C bond in 3-nitrostyrene, even in the presence of other competing functional groups. This research showcases an innovative approach to heterogeneous catalyst design by meticulously synthesizing metastable compounds.

14.
Chem Sci ; 14(48): 14166-14175, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38098721

Substrate-support interactions play an important role in the catalytic hydrogenation of phenolic compounds by ceria-supported palladium (Pd/CeO2). Here, we combine surface contrast solution NMR methods and reaction kinetic assays to investigate the role of substrate-support interactions in phenol (PhOH) hydrogenation catalyzed by titania-supported palladium (Pd/TiO2). We show that PhOH adsorbs on the catalyst via a weak hydrogen-bonding interaction between the -OH group of the substrate and one oxygen atom on the support. Interestingly, we observe that the addition of 20 mM inorganic phosphate results in a ∼2-fold destabilization of the PhOH-support interaction and a corresponding ∼2-fold inhibition of the catalytic reaction, suggesting an active role of the PhOH-TiO2 hydrogen bond in catalysis. A comparison of the data measured here with the results previously reported for a Pd/CeO2 catalyst indicates that the efficiency of the Pd-supported catalysts is correlated to the amount of PhOH hydrogen bonded to the metal oxide support. Since CeO2 and TiO2 have similar ability to uptake activated hydrogen from a noble metal site, these data suggest that hydrogen spillover is the main mechanism by which Pd-activated hydrogens are shuttled to the PhOH adsorbed on the surface of the support. Consistent with this hypothesis, Pd supported on a non-reducible metal oxide (silica) displays negligible hydrogenation activity. Therefore, we conclude that basic and reducible metal oxides are active supports for the efficient hydrogenation of phenolic compounds due to their ability to hydrogen bond to the substrate and mediate the addition of the activated hydrogens to the adsorbed aromatic ring.

15.
ACS Appl Mater Interfaces ; 15(46): 54192-54201, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37934618

We studied the mechanism underlying the solid-phase adsorption of a heavy rare-earth element (HREE, Yb) from acidic solutions employing MCM-22 zeolite, serving as both a layered synthetic clay mimic and a new platform for the mechanistic study of HREE adsorption on aluminosilicate materials. Mechanistic studies revealed that the adsorption of Yb(III) at the surface adsorption site occurs primarily through the electrostatic interaction between the site and Yb(III) species. The dependence of Yb adsorption on the pH of the solution indicated the role of surface charge, and the content of framework Al suggested that the Brønsted acid sites (BAS) are involved in the adsorption of Yb(III) ions, which was further scrutinized by spectroscopic analysis and theoretical calculations. Our findings have illuminated the roles of surface sites in the solid-phase adsorption of HREEs from acidic solutions.

16.
Environ Technol ; : 1-17, 2023 Nov 27.
Article En | MEDLINE | ID: mdl-38009063

Selecting a suitable pretreatment process for pharmaceutical wastewater that is difficult to treat biochemically so that it can enter the subsequent biochemical treatment. In this study, pharmaceutical wastewater consisting of 45 g/L sodium bisulfate, 9 g/L 3-hydroxyacetophenone (3-HAP), and 36.75 g/L sulfuric acids,which is a kind of typical pharmaceutical wastewater, was used for the pretreatment case study, and the process was screened by technology. A salting-out crystallization+Fenton system(SC-F) was developed for the treatment of this wastewater. The salting-out agent is formed by the pH adjustment process without additional additions and the salting-out crystallization effect is significant for the precipitation of 3-HAP from the wastewater. Subsequently, the optimal operating conditions for SC-F were derived from experiments as H2O2 of 0.4692 mol/L, n(H2O2):n(Fe2+)=30:1, pH=3. Under optimal conditions, the reaction time of 2 h achieved a COD removal rate of 90% and a BOD/COD value of 0.56, confirming the effectiveness of the technology in treating this wastewater. Additionally, it was discovered that the Fenton treatment was not significantly impacted by the inorganic components of the effluent. Analysis of effluent properties and possible effects on subsequent treatment by LC-MS and toxicity analysis. The results show that the biodegradability are enhanced by the pretreatment technology. However, the effluent still suffers from high acidity and high salt content, and this study proposes a solution to this problem. Furthermore, research on the treatment of 3-HAP wastewater has not been reported and this study provides a new case study in the field of wastewater treatment.

17.
Atherosclerosis ; 387: 117394, 2023 12.
Article En | MEDLINE | ID: mdl-38029611

BACKGROUND AND AIMS: Observational studies suggest potential nonlinear associations of low-density lipoprotein cholesterol (LDL-C) with cardio-renal diseases and mortality, but the causal nature of these associations is unclear. We aimed to determine the shape of causal relationships of LDL-C with incident chronic kidney disease (CKD), atherosclerotic cardiovascular disease (ASCVD) and all-cause mortality, and to evaluate the absolute risk of adverse outcomes contributed by LDL-C itself. METHODS: Observational analysis and one-sample Mendelian randomization (MR) with linear and nonlinear assumptions were performed using the UK Biobank of >0.3 million participants with no reported prescription of lipid-lowering drugs. Two-sample MR on summary-level data from the Global Lipid Genetics Consortium (N = 296,680) and the CKDGen (N = 625,219) was employed to replicate the relationship for kidney traits. The 10-year probabilities of the outcomes was estimated by integrating the MR and Cox models. RESULTS: Observationally, participants with low LDL-C were significantly associated with a decreased risk of ASCVD, but an increased risk of CKD and all-cause mortality. Univariable MR showed an inverse total effect of LDL-C on incident CKD (HR [95% CI]:0.84 [0.73-0.96]; p = 0.011), a positive effect on ASCVD (1.41 [1.29-1.53]; p<0.001), and no significant causal effect on all-cause mortality. Multivariable MR, controlling for high-density lipoprotein cholesterol (HDL-C) and triglycerides, identified a positive direct effect on ASCVD (1.32 [1.18-1.47]; p<0.001), but not on CKD and all-cause mortality. These results indicated that genetically predicted low LDL-C had an inverse indirect effect on CKD mediated by HDL-C and triglycerides, which was validated by a two-sample MR analysis using summary-level data from the Global Lipid Genetics Consortium (N = 296,680) and the CKDGen consortium (N = 625,219). Suggestive evidence of a nonlinear causal association between LDL-C and CKD was found. The 10-year probability curve showed that LDL-C concentrations below 3.5 mmol/L were associated with an increased risk of CKD. CONCLUSIONS: In the general population, lower LDL-C was causally associated with lower risk of ASCVD, but appeared to have a trade-off for an increased risk of CKD, with not much effect on all-cause mortality. LDL-C concentration below 3.5 mmol/L may increase the risk of CKD.


Atherosclerosis , Cardiovascular Diseases , Renal Insufficiency, Chronic , Humans , Cholesterol, LDL/genetics , Cardiovascular Diseases/epidemiology , Prospective Studies , Mendelian Randomization Analysis , Atherosclerosis/genetics , Triglycerides , Cholesterol, HDL , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics , Genome-Wide Association Study
18.
Chem Commun (Camb) ; 59(94): 13962-13965, 2023 Nov 23.
Article En | MEDLINE | ID: mdl-37930239

Competing models exist to explain the differences in the activity of zeolites and amorphous silica-aluminas. Some postulate that silica-alumina contains dilute zeolitic bridging acid sites, while others favor a pseudo-bridging silanol model. We employed a selective isotope labeling strategy to assess the existence of Si-O(H)-Al bonds using NMR-based distance measurements.

19.
Nat Commun ; 14(1): 7514, 2023 Nov 18.
Article En | MEDLINE | ID: mdl-37980344

Balancing kinetics, a crucial priority in catalysis, is frequently achieved by sacrificing activity of elementary steps to suppress side reactions and enhance catalyst stability. Dry reforming of methane (DRM), a process operated at high temperature, usually involves fast C-H activation but sluggish carbon removal, resulting in coke deposition and catalyst deactivation. Studies focused solely on catalyst innovation are insufficient in addressing coke formation efficiently. Herein, we develop coke-free catalysts that balance kinetics of elementary steps for overall thermodynamics optimization. Beginning from a highly active cobalt aluminum oxide (CoAl2O4) catalyst that is susceptible to severe coke formation, we substitute aluminum (Al) with gallium (Ga), reporting a CoAl0.5Ga1.5O4-R catalyst that performs DRM stably over 1000 hours without observable coke deposition. We find that Ga enhances DRM stability by suppressing C-H activation to balance carbon removal. A series of coke-free DRM catalysts are developed herein by partially substituting Al from CoAl2O4 with other metals.

20.
Quant Imaging Med Surg ; 13(10): 6456-6467, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37869326

Background: Computed tomography angiography (CTA) is the recommended diagnostic and follow-up imaging modality for acute aortic dissection (AD). However, the high-contrast medium burden associated with repeated CT aortography follow-ups remains a significant concern. This prospective study aimed to assess whether an ultra-low contrast dose (75% cutoff) aortic CTA protocol on dual-layer spectral CT could achieve comparable image quality with the full dose protocol. We also investigated the image quality of the virtual noncontrast (VNC) images derived from the ultra-low dose protocol. Methods: This study included 37 consecutive patients who were referred to aortic CTA from May 2022 to August 2022. The enrolled patients underwent full-dose contrast CTA and ultra-low dose (reduced to 25% of conventional) contrast CTA on dual-layer spectral CT in 1 day. Virtual monochromatic images (VMIs) were reconstructed with 40 and 70 keV. The VNC images were reconstructed for both protocols. Objective image quality evaluation, recorded as signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs), was compared between the groups using 1-way analysis of variance and post hoc analysis with Bonferroni correction. Subjective image quality was also compared between the groups. Finally, VNC images derived from the low-dose (VNClow) and full-dose (VNCfull) protocols were compared to the true noncontrast (TNC) images. Results: Neither CNR nor SNR was lower for the 40-keV images reconstructed from the ultra-low dose group compared to the conventional images. Both were significantly higher than those of the 70-keV images. Regarding subjective image quality, vessel enhancement was not significantly different between the 40-keV VMI and full-dose images [ascending aorta (AAO): 4.37±0.46 vs. 4.57±0.48, P=0.096; brachiocephalic arteries: 4.34±0.45 vs. 4.51±0.49, P=0.152; abdominal aortic side branch: 4.42±0.48 vs. 4.51±0.49, P=0.480]. The VNClow images were similar to the TNC images but significantly different from the VNCfull images (P<0.001). Conclusions: Ultra-low contrast aortic CTA with a 75%-reduced iodine dose using dual-layer spectral CT and the derived VNC achieved image quality comparable to that of conventional CTA and TNC images.

...