Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Arterioscler Thromb Vasc Biol ; 44(1): 108-123, 2024 01.
Article En | MEDLINE | ID: mdl-37942609

BACKGROUND: Weibel-Palade bodies (WPBs) are endothelial cell-specific cigar-shaped secretory organelles containing various biologically active molecules. WPBs play crucial roles in thrombosis, hemostasis, angiogenesis, and inflammation. The main content of WPBs is the procoagulant protein vWF (von Willebrand factor). Physical contacts and functional cross talk between mitochondria and other organelles have been demonstrated. Whether an interorganellar connection exists between mitochondria and WPBs is unknown. METHODS: We observed physical contacts between mitochondria and WPBs in human umbilical vein endothelial cells by electron microscopy and living cell confocal microscopy. We developed an artificial intelligence-assisted method to quantify the duration and length of organelle contact sites in live cells. RESULTS: We found there existed physical contacts between mitochondria and WPBs. Disruption of mitochondrial function affected the morphology of WPBs. Furthermore, we found that Rab3b, a small GTPase on the WPBs, was enriched at the mitochondrion-WPB contact sites. Rab3b deficiency reduced interaction between the two organelles and impaired the maturation of WPBs and vWF multimer secretion. CONCLUSIONS: Our results reveal that Rab3b plays a crucial role in mediating the mitochondrion-WPB contacts, and that mitochondrion-WPB coupling is critical for the maturation of WPBs in vascular endothelial cells.


Weibel-Palade Bodies , von Willebrand Factor , Humans , Weibel-Palade Bodies/metabolism , von Willebrand Factor/metabolism , Artificial Intelligence , Exocytosis , Human Umbilical Vein Endothelial Cells/metabolism , Mitochondria/metabolism , Cells, Cultured
2.
Light Sci Appl ; 12(1): 298, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38097537

In fluorescence microscopy, computational algorithms have been developed to suppress noise, enhance contrast, and even enable super-resolution (SR). However, the local quality of the images may vary on multiple scales, and these differences can lead to misconceptions. Current mapping methods fail to finely estimate the local quality, challenging to associate the SR scale content. Here, we develop a rolling Fourier ring correlation (rFRC) method to evaluate the reconstruction uncertainties down to SR scale. To visually pinpoint regions with low reliability, a filtered rFRC is combined with a modified resolution-scaled error map (RSM), offering a comprehensive and concise map for further examination. We demonstrate their performances on various SR imaging modalities, and the resulting quantitative maps enable better SR images integrated from different reconstructions. Overall, we expect that our framework can become a routinely used tool for biologists in assessing their image datasets in general and inspire further advances in the rapidly developing field of computational imaging.

3.
Nat Cell Biol ; 25(11): 1625-1636, 2023 Nov.
Article En | MEDLINE | ID: mdl-37945830

Mitochondrial export into the extracellular space is emerging as a fundamental cellular process implicated in diverse physiological activities. Although a few studies have shed light on the process of discarding damaged mitochondria, how mitochondria are exported and the functions of mitochondrial release remain largely unclear. Here we describe mitopherogenesis, a formerly unknown process that specifically secretes mitochondria through a unique extracellular vesicle termed a 'mitopher'. We observed that during sperm development in male Caenorhabditis elegans, healthy mitochondria are exported out of the spermatids through mitopherogenesis and each of the generated mitophers harbours only one mitochondrion. In mitopherogenesis, the plasma membrane first forms mitochondrion-embedding outward buds, which then promptly bud off and thereby result in the generation of mitophers. Mechanistically, extracellular protease signalling in the testis triggers mitopher formation from spermatids, which is partially mediated by the tyrosine kinase SPE-8. Moreover, mitopherogenesis requires normal microfilament dynamics, whereas myosin VI antagonizes mitopher generation. Strikingly, our three-dimensional electron microscopy analyses indicate that mitochondrial quantity requires precise modulation during sperm development, which is critically mediated by mitopherogenesis. Inhibition of mitopherogenesis causes accumulation of mitochondria in sperm, which may lead to sperm motility and fertility defects. Our findings identify mitopherogenesis as a previously undescribed process for mitochondria-specific ectocytosis, which may represent a fundamental branch of mechanisms underlying mitochondrial quantity control to regulate cell functions during development.


Semen , Sperm Motility , Animals , Male , Semen/metabolism , Spermatozoa/metabolism , Fertility , Caenorhabditis elegans/genetics , Mitochondria/metabolism
4.
Nat Commun ; 13(1): 2673, 2022 05 13.
Article En | MEDLINE | ID: mdl-35562374

The folded mitochondria inner membrane-cristae is the structural foundation for oxidative phosphorylation (OXPHOS) and energy production. By mechanically simulating mitochondria morphogenesis, we speculate that efficient sculpting of the cristae is organelle non-autonomous. It has long been inferred that folding requires buckling in living systems. However, the tethering force for cristae formation and regulation has not been identified. Combining electron tomography, proteomics strategies, super resolution live cell imaging and mathematical modeling, we reveal that the mitochondria localized actin motor-myosin 19 (Myo19) is critical for maintaining cristae structure, by associating with the SAM-MICOS super complex. We discover that depletion of Myo19 or disruption of its motor activity leads to altered mitochondria membrane potential and decreased OXPHOS. We propose that Myo19 may act as a mechanical tether for effective ridging of the mitochondria cristae, thus sustaining the energy homeostasis essential for various cellular functions.


Mitochondrial Membranes , Oxidative Phosphorylation , Actins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Myosins/metabolism
5.
Nat Biotechnol ; 40(4): 606-617, 2022 04.
Article En | MEDLINE | ID: mdl-34782739

A main determinant of the spatial resolution of live-cell super-resolution (SR) microscopes is the maximum photon flux that can be collected. To further increase the effective resolution for a given photon flux, we take advantage of a priori knowledge about the sparsity and continuity of biological structures to develop a deconvolution algorithm that increases the resolution of SR microscopes nearly twofold. Our method, sparse structured illumination microscopy (Sparse-SIM), achieves ~60-nm resolution at a frame rate of up to 564 Hz, allowing it to resolve intricate structures, including small vesicular fusion pores, ring-shaped nuclear pores formed by nucleoporins and relative movements of inner and outer mitochondrial membranes in live cells. Sparse deconvolution can also be used to increase the three-dimensional resolution of spinning-disc confocal-based SIM, even at low signal-to-noise ratios, which allows four-color, three-dimensional live-cell SR imaging at ~90-nm resolution. Overall, sparse deconvolution will be useful to increase the spatiotemporal resolution of live-cell fluorescence microscopy.


Algorithms , Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods
6.
J Transl Med ; 19(1): 321, 2021 07 28.
Article En | MEDLINE | ID: mdl-34321016

BACKGROUND: Early prediction of acute kidney injury (AKI) after liver transplantation (LT) facilitates timely recognition and intervention. We aimed to build a risk predictor of post-LT AKI via supervised machine learning and visualize the mechanism driving within to assist clinical decision-making. METHODS: Data of 894 cases that underwent liver transplantation from January 2015 to September 2019 were collected, covering demographics, donor characteristics, etiology, peri-operative laboratory results, co-morbidities and medications. The primary outcome was new-onset AKI after LT according to Kidney Disease Improving Global Outcomes guidelines. Predicting performance of five classifiers including logistic regression, support vector machine, random forest, gradient boosting machine (GBM) and adaptive boosting were respectively evaluated by the area under the receiver-operating characteristic curve (AUC), accuracy, F1-score, sensitivity and specificity. Model with the best performance was validated in an independent dataset involving 195 adult LT cases from October 2019 to March 2021. SHapley Additive exPlanations (SHAP) method was applied to evaluate feature importance and explain the predictions made by ML algorithms. RESULTS: 430 AKI cases (55.1%) were diagnosed out of 780 included cases. The GBM model achieved the highest AUC (0.76, CI 0.70 to 0.82), F1-score (0.73, CI 0.66 to 0.79) and sensitivity (0.74, CI 0.66 to 0.8) in the internal validation set, and a comparable AUC (0.75, CI 0.67 to 0.81) in the external validation set. High preoperative indirect bilirubin, low intraoperative urine output, long anesthesia time, low preoperative platelets, and graft steatosis graded NASH CRN 1 and above were revealed by SHAP method the top 5 important variables contributing to the diagnosis of post-LT AKI made by GBM model. CONCLUSIONS: Our GBM-based predictor of post-LT AKI provides a highly interoperable tool across institutions to assist decision-making after LT.


Acute Kidney Injury , Liver Transplantation , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Adult , Humans , Liver Transplantation/adverse effects , Living Donors , Machine Learning , Risk Assessment , Supervised Machine Learning
7.
Nat Commun ; 12(1): 1413, 2021 03 03.
Article En | MEDLINE | ID: mdl-33658493

pH-sensitive fluorescent proteins (FPs) are highly advantageous for the non-invasive monitoring of exocytosis events. Superecliptic pHluorin (SEP), a green pH-sensitive FP, has been widely used for imaging single-vesicle exocytosis. However, the docking step cannot be visualized using this FP, since the fluorescence signal inside vesicles is too low to be observed during docking process. Among the available red pH-sensitive FPs, none is comparable to SEP for practical applications due to unoptimized pH-sensitivity and fluorescence brightness or severe photochromic behavior. In this study, we engineer a bright and photostable red pH-sensitive FP, named pHmScarlet, which compared to other red FPs has higher pH sensitivity and enables the simultaneous detection of vesicle docking and fusion. pHmScarlet can also be combined with SEP for dual-color imaging of two individual secretory events. Furthermore, although the emission wavelength of pHmScarlet is red-shifted compared to that of SEP, its spatial resolution is high enough to show the ring structure of vesicle fusion pores using Hessian structured illumination microscopy (Hessian-SIM).


Exocytosis/physiology , Luminescent Proteins/metabolism , Animals , Cell Line , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hippocampus/cytology , Humans , Hydrogen-Ion Concentration , Luminescent Proteins/genetics , Mutation , Neurons/cytology , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Synaptic Vesicles/physiology , Time-Lapse Imaging , Vesicle-Associated Membrane Protein 2/genetics , Vesicle-Associated Membrane Protein 2/metabolism , Red Fluorescent Protein
8.
Cell Death Dis ; 11(10): 940, 2020 10 31.
Article En | MEDLINE | ID: mdl-33130824

Mitochondrial cristae are the main site for oxidative phosphorylation, which is critical for cellular energy production. Upon different physiological or pathological stresses, mitochondrial cristae undergo remodeling to reprogram mitochondrial function. However, how mitochondrial cristae are formed, maintained, and remolded is still largely unknown due to the technical challenges of tracking mitochondrial crista dynamics in living cells. Here, using live-cell Hessian structured illumination microscopy combined with transmission electron microscopy, focused ion beam/scanning electron microscopy, and three-dimensional tomographic reconstruction, we show, in living cells, that mitochondrial cristae are highly dynamic and undergo morphological changes, including elongation, shortening, fusion, division, and detachment from the mitochondrial inner boundary membrane (IBM). In addition, we find that OPA1, Yme1L, MICOS, and Sam50, along with the newly identified crista regulator ATAD3A, control mitochondrial crista dynamics. Furthermore, we discover two new types of mitochondrial crista in dysfunctional mitochondria, "cut-through crista" and "spherical crista", which are formed due to incomplete mitochondrial fusion and dysfunction of the MICOS complex. Interestingly, cut-through crista can convert to "lamellar crista". Overall, we provide a direct link between mitochondrial crista formation and mitochondrial crista dynamics.


Cell Death/genetics , GTP Phosphohydrolases/metabolism , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/genetics , HeLa Cells , Humans
9.
Opt Express ; 28(10): 14859-14873, 2020 May 11.
Article En | MEDLINE | ID: mdl-32403520

Deep learning-based reconstruction has emerged as an effective tool in fluorescence microscopy, with the potential to resolve diffraction-limited structures. However, most deep-learning reconstruction methods employed an end-to-end strategy, which ignored physical laws in the imaging process and made the preparation of training data highly challenging as well. In this study, we have proposed a novel deconvolution algorithm based on an imaging model, deep-learning priors and the alternating direction method of multipliers. This scheme decouples the reconstruction into two separate sub-problems, one for deblurring and one for restraining noise and artifacts. As a result of the decoupling, we are able to introduce deep-learning image priors and a variance stabilizing transform against targeted image degeneration due to the low photon budget. Deep-learning priors are learned from the general image dataset, in which biological images do not have to be involved, and are more powerful than hand-designed ones. Moreover, the use of the imaging model ensures high fidelity and generalization. Experiments on various kinds of measurement data show that the proposed algorithm outperforms existing state-of-the-art deconvolution algorithms in resolution enhancement and generalization.

10.
EMBO J ; 39(12): e103955, 2020 06 17.
Article En | MEDLINE | ID: mdl-32338401

Cytoskeletal-based molecular motors produce force perpendicular to their direction of movement. However, it remains unknown whether and why motor proteins generate sidesteps movement along their filamentous tracks in vivo. Using Hessian structured illumination microscopy, we located green fluorescent protein (GFP)-labeled intraflagellar transport (IFT) particles inside sensory cilia of live Caenorhabditis elegans with 3-6-nanometer accuracy and 3.4-ms resolution. We found that IFT particles took sidesteps along axoneme microtubules, demonstrating that IFT motors generate torque in a living animal. Kinesin-II and OSM-3-kinesin collaboratively drive anterograde IFT. We showed that the deletion of kinesin-II, a torque-generating motor protein, reduced sidesteps, whereas the increase of neck flexibility of OSM-3-kinesin upregulated sidesteps. Either increase or decrease of sidesteps of IFT kinesins allowed ciliogenesis to the regular length, but changed IFT speeds, disrupted axonemal ninefold symmetry, and inhibited sensory cilia-dependent animal behaviors. Thus, an optimum level of IFT kinesin sidestepping is associated with the structural and functional fidelity of cilia.


Animals, Genetically Modified/metabolism , Axoneme/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cilia/metabolism , Kinesins/metabolism , Animals , Animals, Genetically Modified/genetics , Axoneme/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cilia/genetics , Kinesins/genetics
11.
Light Sci Appl ; 9: 11, 2020.
Article En | MEDLINE | ID: mdl-32025294

The emergence of super-resolution (SR) fluorescence microscopy has rejuvenated the search for new cellular sub-structures. However, SR fluorescence microscopy achieves high contrast at the expense of a holistic view of the interacting partners and surrounding environment. Thus, we developed SR fluorescence-assisted diffraction computational tomography (SR-FACT), which combines label-free three-dimensional optical diffraction tomography (ODT) with two-dimensional fluorescence Hessian structured illumination microscopy. The ODT module is capable of resolving the mitochondria, lipid droplets, the nuclear membrane, chromosomes, the tubular endoplasmic reticulum, and lysosomes. Using dual-mode correlated live-cell imaging for a prolonged period of time, we observed novel subcellular structures named dark-vacuole bodies, the majority of which originate from densely populated perinuclear regions, and intensively interact with organelles such as the mitochondria and the nuclear membrane before ultimately collapsing into the plasma membrane. This work demonstrates the unique capabilities of SR-FACT, which suggests its wide applicability in cell biology in general.

12.
J Colloid Interface Sci ; 564: 28-36, 2020 Mar 22.
Article En | MEDLINE | ID: mdl-31896425

As for electrocatalysis, single-atom metal catalysts have been proved to lower the cost and utilize precious metals more efficiently. Herein, single-atom Pt catalyst supported on holey ultrathin g-C3N4 nanosheets (Pt-CNHS) was synthesized via a facile liquid-phase reaction of g-C3N4 and H2PtCl6. The single-atom Pt can achieve high dispersibility and stability, which can promote the utilization efficiency as well as enhance the electrochemical activity. When employed as Li-O2 batteries' cathode catalyst, Pt-CNHS exhibits excellent electrocatalytic activity. Li-O2 batteries utilizing Pt-CNHS show much higher discharge specific capacities than those with pure CNHS. Li-O2 batteries with Pt-CNHS cathode can be cycled stably for 100 times under the discharge capacity of 600 mAh g-1. Based on experimental results and density functional theory calculations, the superior electrocatalytic activity of Pt-CNHS can be ascribed to the large surface area, the enhanced electrical conductivity and the efficient interfacial mass transfer through Pt atoms and porous structure of CNHS.

13.
Chem Sci ; 11(32): 8506-8516, 2020 Jul 27.
Article En | MEDLINE | ID: mdl-34094186

Modern fluorescence-imaging methods promise to unveil organelle dynamics in live cells. Phototoxicity, however, has become a prevailing issue when boosted illumination applies. Mitochondria are representative organelles whose research heavily relies on optical imaging, yet these membranous hubs of bioenergy are exceptionally vulnerable to photodamage. We report that cyclooctatetraene-conjugated cyanine dyes (PK Mito dyes), are ideal mitochondrial probes with remarkably low photodynamic damage for general use in fluorescence cytometry. In contrast, the nitrobenzene conjugate of Cy3 exhibits enhanced photostability but unaffected phototoxicity compared to parental Cy3. PK Mito Red, in conjunction with Hessian-structural illumination microscopy, enables 2000-frame time-lapse imaging with clearly resolvable crista structures, revealing rich mitochondrial dynamics. In a rigorous stem cell sorting and transplantation assay, PK Mito Red maximally retains the stemness of planarian neoblasts, exhibiting excellent multifaceted biocompatibility. Resonating with the ongoing theme of reducing photodamage using optical approaches, this work advocates the evaluation and minimization of phototoxicity when developing imaging probes.

15.
Biochem Soc Trans ; 47(6): 1635-1650, 2019 12 20.
Article En | MEDLINE | ID: mdl-31829403

Taking advantage of high contrast and molecular specificity, fluorescence microscopy has played a critical role in the visualization of subcellular structures and function, enabling unprecedented exploration from cell biology to neuroscience in living animals. To record and quantitatively analyse complex and dynamic biological processes in real time, fluorescence microscopes must be capable of rapid, targeted access deep within samples at high spatial resolutions, using techniques including super-resolution fluorescence microscopy, light sheet fluorescence microscopy, and multiple photon microscopy. In recent years, tremendous breakthroughs have improved the performance of these fluorescence microscopies in spatial resolution, imaging speed, and penetration. Here, we will review recent advancements of these microscopies in terms of the trade-off among spatial resolution, sampling speed and penetration depth and provide a view of their possible applications.


Cells/ultrastructure , Microscopy, Fluorescence/methods , Animals , Light , Photons
16.
Anal Chem ; 91(24): 15777-15783, 2019 12 17.
Article En | MEDLINE | ID: mdl-31718148

The power factories in cells, mitochondria, play important roles in all physiological processes. It is reported that progressive mitochondrial swelling and outer mitochondrial membrane rupture could be induced by a wide variety of apoptotic and necrotic stimuli. Regrettably, although a variety of mitochondrial probes have been developed, most of them are based on the detection of active species in mitochondria. Probes that can monitor the status and distribution of mitochondria for a long time are still urgently needed. In this study, a fluorescent sensor with excellent properties, EtNBEn, is described. Outstanding performance allows it to be observed not only in cells but also in living Daphnia and zebrafish under confocal microscopy for a long time. Moreover, the swelling process of mitochondria under light stimulation is also visualized under super-resolution (SR) microscopy. All these results suggest that EtNBEn could be employed for tagging mitochondria in various physiological processes, which makes a great contribution to the cure of diseases.


Fluorescent Dyes/chemistry , Microscopy, Confocal/methods , Mitochondria/chemistry , Animals , Daphnia/chemistry , Daphnia/metabolism , Fluorescent Dyes/metabolism , Humans , MCF-7 Cells , Mitochondria/metabolism , Optical Imaging , Photolysis , Zebrafish/metabolism
17.
PLoS Biol ; 17(7): e3000369, 2019 07.
Article En | MEDLINE | ID: mdl-31299042

Cilia are remarkable cellular devices that power cell motility and transduce extracellular signals. To assemble a cilium, a cylindrical array of 9 doublet microtubules push out an extension of the plasma membrane. Membrane tension regulates cilium formation; however, molecular pathways that link mechanical stimuli to ciliogenesis are unclear. Using genome editing, we introduced hereditary elliptocytosis (HE)- and spinocerebellar ataxia (SCA)-associated mutations into the Caenorhabditis elegans membrane skeletal protein spectrin. We show that these mutations impair mechanical support for the plasma membrane and change cell shape. RNA sequencing (RNA-seq) analyses of spectrin-mutant animals uncovered a global down-regulation of ciliary gene expression, prompting us to investigate whether spectrin participates in ciliogenesis. Spectrin mutations affect intraflagellar transport (IFT), disrupt axonemal microtubules, and inhibit cilium formation, and the endogenous spectrin periodically distributes along cilia. Mammalian spectrin also localizes in cilia and regulates ciliogenesis. These results define a previously unrecognized yet conserved role of spectrin-based mechanical support for cilium biogenesis.


Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Cell Membrane/metabolism , Cilia/genetics , Mutation , Spectrin/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans/embryology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Cilia/metabolism , Cilia/ultrastructure , Gene Expression Regulation, Developmental , Microscopy, Confocal , Microscopy, Electron, Transmission , Sequence Analysis, RNA , Spectrin/metabolism
18.
J Cell Biol ; 218(6): 1908-1927, 2019 06 03.
Article En | MEDLINE | ID: mdl-31010855

In the conserved autophagy pathway, autophagosomes (APs) engulf cellular components and deliver them to the lysosome for degradation. Before fusing with the lysosome, APs have to close via an unknown mechanism. We have previously shown that the endocytic Rab5-GTPase regulates AP closure. Therefore, we asked whether ESCRT, which catalyzes scission of vesicles into late endosomes, mediates the topologically similar process of AP sealing. Here, we show that depletion of representative subunits from all ESCRT complexes causes late autophagy defects and accumulation of APs. Focusing on two subunits, we show that Snf7 and the Vps4 ATPase localize to APs and their depletion results in accumulation of open APs. Moreover, Snf7 and Vps4 proteins complement their corresponding mutant defects in vivo and in vitro. Finally, a Rab5-controlled Atg17-Snf7 interaction is important for Snf7 localization to APs. Thus, we unravel a mechanism in which a Rab5-dependent Atg17-Snf7 interaction leads to recruitment of ESCRT to open APs where ESCRT catalyzes AP closure.


Autophagosomes/physiology , Autophagy , Endosomal Sorting Complexes Required for Transport/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , rab5 GTP-Binding Proteins/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Intracellular Membranes , Lysosomes/metabolism , Protein Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , rab5 GTP-Binding Proteins/genetics
19.
Org Lett ; 21(9): 3382-3386, 2019 05 03.
Article En | MEDLINE | ID: mdl-30990049

Ten subphthalocyanine triimides (SubPcTI) with different substituents at imide sites and B atoms were designed and synthesized. These compounds with low-lying lowest unoccupied molecular orbital energy levels (from -3.91 to -3.98 eV), strong absorption in the range of 450-650 nm, and adjustable solubility are expected to be excellent electron acceptors. Non-fullerene bulk heterojunction organic solar cells based on acceptor 8c showed power conversion efficiency of 4.92%, which is the highest value among subphthalocyanine derivatives.

20.
Biomed Opt Express ; 10(3): 1097-1110, 2019 Mar 01.
Article En | MEDLINE | ID: mdl-30891332

Total internal reflection fluorescence microscopy (TIRF microscopy) uses a rapid decay of evanescent waves to excite fluorophores within several hundred nanometers (nm) beneath the plasma membrane, which can effectively suppress excitation of fluorescence signals in the deep layers. From image stacks obtained with a plurality of different incident angles, a three-dimensional spatial structure of the observed sample can be reconstructed by a Multi-Angle-TIRF (MA-TIRF) algorithm that provides an axial resolution of ~50 nm. Taking into account the point spread function (PSF) of the TIRF microscopes, we further increase its lateral resolution by introducing a fast deconvolution algorithm into the reconstruction of MA-TIRF data (DMA-TIRF), which is approached in just one step of minimizing the reconstruction function. We also introduce a TV regularization term in the deconvolution algorithm to suppress artifacts induced by the excessive noise. Therefore, based on the hardware of existing MA-TIRF microscopes, the proposed DMA-TIRF algorithm has achieved lateral and axial resolutions of ~200 and ~50 nm, respectively.

...