Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(4): 1966-1975, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38153028

RESUMEN

Polysaccharides in extracellular polymeric substances (EPS) can form a hybrid matrix network with proteins, impeding waste-activated sludge (WAS) fermentation. Amino sugars, such as N-acetyl-d-glucosamine (GlcNAc) polymers and sialic acid, are the non-negligible components in the EPS of aerobic granules or biofilm. However, the occurrence of amino sugars in WAS and their degradation remains unclear. Thus, amino sugars (∼6.0%) in WAS were revealed, and the genera of Lactococcus and Zoogloea were identified for the first time. Chitin was used as the substrate to enrich a chitin-degrading consortium (CDC). The COD balances for methane production ranged from 83.3 and 95.1%. Chitin was gradually converted to oligosaccharides and GlcNAc after dosing with the extracellular enzyme. After doing enriched CDC in WAS, the final methane production markedly increased to 60.4 ± 0.6 mL, reflecting an increase of ∼62%. Four model substrates of amino sugars (GlcNAc and sialic acid) and polysaccharides (cellulose and dextran) could be used by CDC. Treponema (34.3%) was identified as the core bacterium via excreting chitinases (EC 3.2.1.14) and N-acetyl-glucosaminidases (EC 3.2.1.52), especially the genetic abundance of chitinases in CDC was 2.5 times higher than that of WAS. Thus, this study provides an elegant method for the utilization of amino sugar-enriched organics.


Asunto(s)
Quitinasas , Aguas del Alcantarillado , Amino Azúcares , Fermentación , Ácido N-Acetilneuramínico , Quitina/química , Quitina/metabolismo , Polisacáridos , Quitinasas/química , Quitinasas/metabolismo , Metano
2.
Anal Chim Acta ; 1265: 341267, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37230564

RESUMEN

Handwriting represents personal education and physical or psychological states. This work describes a chemical imaging technique for document evaluation that combines laser desorption ionization with post ultraviolet photo-induced dissociation (LDI-UVPD) in mass spectrometry. Taken the advantages of chromophores in ink dyes, handwriting papers were subjected to direct laser desorption ionization without additional matrix materials. It is a surface-sensitive analytical method that uses a low intensity pulsed laser at 355 nm to remove chemical components from very outermost surfaces of overlapped handwritings. Meanwhile, the transfer of photoelectrons to those compounds leads to the ionization and the formation of radical anions. The gentle evaporation and ionization property enable the dissection of chronological orders. Paper documents maintain intact without extensive damages after laser irradiation. The evolving plume resulting from the irradiation of the 355 nm laser is fired by the second ultraviolet laser at 266 nm that is in parallel to the sample surface. In contrast to collision activated dissociation in tandem MS/MS, such post ultraviolet photodissociation generates much more different fragment ions through electron-directed specific cleavages of chemical bonds. LDI-UVPD can not only provide graphic representation of chemical components but also reveal hidden dynamic features such as alterations, pressures and aging.

3.
Environ Sci Pollut Res Int ; 30(22): 62532-62543, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36943561

RESUMEN

Exploring the ecological function of potential core bacteria for high-efficiency composting can provide a fundamental understanding of the role of composting bacterial communities. Mushroom residue and kitchen garbage at different ratios (N1: 1/1, N2: 1/2) of dry weight were tested to investigate the key ecological role of the core bacteria responsible for producing mature compost. N1 had a peak temperature of 75.0 °C which was higher than N2 (68.3 °C). Other key composting parameters (carbon to nitrogen ratio (C/N) and germination index (GI)) also indicated that N1 achieved higher compost maturity. Rice seedlings experiments also further validated this conclusion. Putative key bacterial taxa (Thermobifida, Luteimonasd, Bacillus, etc.) were positively associated with the GI, indicating a substantial contribution to composting maturity. Co-occurrence network analysis revealed the ecological function of potentially beneficial core bacteria promoted cooperation among the bacterial community. The putative core bacteria in N1 may affect composting efficiency. Our findings reveal the mechanism of potential core bacteria throughout the compost maturity phases.


Asunto(s)
Agaricales , Compostaje , Residuos de Alimentos , Nitrógeno , Bacterias , Suelo , Estiércol
4.
Anal Chem ; 95(8): 3976-3985, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36633955

RESUMEN

Lipids represent a large family of compounds with highly diverse structures that are involved in complex biological processes. A photocatalytic technique of on-tissue epoxidation of C=C double bonds has been developed for in situ mass spectrometric identification and spatial imaging of positional isomers of lipids. It is based on the plasmonic hot-electron transfer from irradiated gold nanowires to redox-active organic matrix compounds that undergo bond cleavages and generate hydroxyl radicals in nanoseconds. Intermediate radical anions and negative fragment ions have been unambiguously identified. Under the irradiation of a pulsed laser of the third harmonic of Nd3+:YAG (355 nm), the hydroxyl radical-driven epoxidation of unsaturated lipids with different numbers of C=C bonds can be completed in nanoseconds with high yields of up to 95%. Locations of C=C bonds were recognized with diagnostic fragment ions that were produced by either collision with an inert gas or auto-fragmentation resulting from the impact of energetic hot electrons and vibrational excitation. This technique has been applied to the analysis of breast cancer tissues of mice models without extensive sample processes. It was experimentally demonstrated that C=C bonds may be formed at different positions of not only regular mono- or poly-unsaturated fatty acids but also other odd-numbered long-chain fatty acids.


Asunto(s)
Ácidos Grasos , Radical Hidroxilo , Ratones , Animales , Espectrometría de Masas , Isomerismo , Ácidos Grasos Insaturados/análisis
5.
iScience ; 26(1): 105733, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36582818

RESUMEN

Spermatogenesis carries the task of precise intergenerational transmission of genetic information from the paternal genome and involves complex developmental processes regulated by the testicular microenvironment. Studies performed mainly in mouse models have established the theoretical basis for spermatogenesis, yet the wide interspecies differences preclude direct translation of the findings, and farm animal studies are progressing slowly. More than 32,000 cells from prepubertal (3-month-old) and pubertal (24-month-old) buffalo testes were analyzed by using single-cell RNA sequencing (scRNA-seq), and dynamic gene expression roadmaps of germ and somatic cell development were generated. In addition to identifying the dynamic processes of sequential cell fate transitions, the global cell-cell communication essential to maintain regular spermatogenesis in the buffalo testicular microenvironment was uncovered. The findings provide the theoretical basis for establishing buffalo germline stem cells in vitro or culturing organoids and facilitating the expansion of superior livestock breeding.

6.
Life (Basel) ; 12(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36143418

RESUMEN

Compost produced by straw and livestock and poultry manure under the action of micro-organisms is one of the main forms of organic alternative fertilizers at present. The present study explored the effects of compost substitution on soil greenhouse gas emissions, soil microbial community changes, and wheat yield to determine the best substitution ratio for reducing greenhouse gas emissions and soil microbial community changes and increasing wheat yield. Using the single-factor randomized block trial design, four treatments were employed, the characteristics of greenhouse gas emission, yield and yield components, and the changes of soil microbial community under different compost substitution ratio in the whole wheat growing season were determined by static box-gas chromatography. During the wheat season, both CO2 and N2O emissions were reduced, whereas CH4 emission was increased. That all treatments reduced the Global Warming Potential (GWP) and Greenhouse gas emission intensity (GHGI) in wheat season compared with T0. Compost substitution can alleviate the global warming potential to some extent. Under the condition of compost substitution, the wheat yield under T2 and T3 increased significantly compared with that under the control; however, the spike number and 1000-grain weight did not differ significantly among the treatments. When compost replacement was 30%, the yield was the highest. Under different ratios of compost substitution, the microbial communities mainly comprised Proteobacteria, Actinobacteria, Firmicutes, Patescibacteria, Chloroflexi, Acidobacteria, Bacteroidetes, Gemmatimonadetes, and Verrucomicrobia. The soil microbial community structure differed mainly due to the difference in the compost substitution ratio and was clustered into different groups. In conclusion, to achieve high wheat yield and low greenhouse gas emissions, compost replacement of 30% is the most reasonable means for soil improvement and fertilization.

7.
Animals (Basel) ; 12(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35804605

RESUMEN

The acquisition of mammalian sperm motility is a main indicator of epididymal sperm maturation and helps ensure fertilization. Poor sperm motility will prevent sperm cells from reaching the fertilization site, resulting in fertilization failure. To investigate the proteomic profiling of normal and poorly motile buffalo spermatozoa, a strategy applying liquid chromatography tandem mass spectrometry combined with tandem mass targeting was used. As a result, 145 differentially expressed proteins (DEPs) were identified in poorly motile spermatozoa (fold change > 1.5), including 52 upregulated and 93 downregulated proteins. The upregulated DEPs were mainly involved in morphogenesis and regulation of cell differentiation. The downregulated DEPs were involved with transport, oxidation-reduction, sperm motility, regulation of cAMP metabolism and regulation of DNA methylation. The mRNA and protein levels of PRM1 and AKAP3 were lower in poorly motile spermatozoa, while the expressions of SDC2, TEKT3 and IDH1 were not correlated with motility, indicating that their protein changes were affected by transcription or translation. Such changes in the expression of these proteins suggest that the formation of poorly motile buffalo spermatozoa reflects a low efficiency of energy metabolism, decreases in sperm protamine proteins, deficiencies in motility-related proteins, and variations in tail structural proteins. Such proteins could be biomarkers of poorly motile spermatozoa. These results illustrate some of the molecular mechanisms associated with poorly motile spermatozoa and provide clues for finding molecular markers of these pathways.

8.
Animals (Basel) ; 12(6)2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35327186

RESUMEN

Endoplasmic reticulum (ER) stress plays a crucial role in granulosa cell (GCs) apoptosis, which is the main cause of follicular atresia. Quercetin (QC), a plant-derived flavonoid, has antioxidant, anti-inflammatory, and other biological properties. However, whether QC can alleviate the effects of ER stress on buffalo GCs remains unknown. In this study, we constructed an ER stress model in buffalo GCs by using tunicamycin (TM) and pre-treated with QC to explore the effect of QC on cells under ER stress. Apoptosis was detected by Annexin fluorescein 5 isothiocyanate (V-FITC), and the expressions of mRNA and related proteins involved in ER stress and apoptosis were detected via real-time polymerase chain reaction and Western blot. The results revealed that ER stress can cause apoptosis in GCs, whereas QC pre-treatment can prevent apoptosis caused by ER stress. After pre-treatment with QC, the expression levels of ER stress-related genes and proteins significantly decreased, pro-apoptotic genes were significantly down-regulated, and anti-apoptotic genes were significantly up-regulated. Furthermore, the results of Chop gene overexpression suggested that QC alleviated ER stress via the PERK/CHOP signaling pathway. In this study, we preliminarily elucidated that QC alleviates ER stress-induced apoptosis in buffalo GCs, and the results suggest a novel strategy for delaying follicular atresia by inhibiting GCs apoptosis.

9.
Genes (Basel) ; 13(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35052443

RESUMEN

Bromodomain (BRD) is an evolutionarily conserved protein-protein interaction module that is critical in gene regulation, cellular homeostasis, and epigenetics. This study aimed to conduct an identification, evolution, and expression analysis of the BRD gene family in the swamp buffalo (Bubalus bubalis). A total of 101 BRD protein sequences deduced from 22 BRD genes were found in the buffalo genome. The BRD proteins were classified into six groups based on phylogenetic relationships, conserved motifs, and conserved domains. The BRD genes were irregularly distributed in 13 chromosomes. Collinearity analysis revealed 20 BRD gene pairs that had remarkable homologous relationships between the buffalo and cattle, although no tandem or segmental duplication event was found in the buffalo BRD genes. Comparative transcriptomics using a 10x sequencing platform analysis showed that 22 BRD genes were identified in the Sertoli cells (SCs) at different developmental stages of buffalo. Further, the mRNA expression levels of bromodomain and the extraterminal (BET) family in SCs at the pubertal stage were higher than that at the prepubertal stage of buffalo. However, the SMARCA2, PHIP, BRD9, and TAF1 genes exhibited the opposite trend. The maturation process of SCs may be regulated by the BRD family members expressed differentially in SCs at different developmental stages of buffalo. In summary, our findings provide an understanding of the evolutionary, structural, and functional properties of the buffalo BRD family members, and further characterize the function of the BRD family in the maturation of SCs. It also provides a theoretical basis for further understanding in the future of the mechanism of SCs regulating spermatogenesis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Regulación de la Expresión Génica , Filogenia , Polimorfismo de Nucleótido Simple , Factores de Transcripción/metabolismo , Animales , Bovinos , Proteínas de Unión al ADN/genética , Genoma , Masculino , Dominios Proteicos , Factores de Transcripción/genética
10.
Reprod Domest Anim ; 57(5): 481-488, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35044003

RESUMEN

Maternal-effect genes (MEGs) accumulate in oocytes during oogenesis and mediate the pre-implantation embryo developmental programme until activation of the zygote genome. Nlrp5 and Tle6 are required for normal pre-implantation and embryonic development. However, the precise function of these MEGs in buffalo (Bubalus bubalis) remains to be elucidated. The aim of this study was to characterize Nlrp5 and Tle6 sequences and analyse their mRNA and protein expression patterns in somatic tissues, oocytes and pre-implantation embryos of buffalo. The coding sequences of each gene were successfully cloned and characterized. Real-time quantitative reverse transcription PCR results revealed an absence of Nlrp5 or Tle6 transcripts in somatic tissues, with the exception of ovary. Expression levels of Nlrp5 and Tle6 in oocytes increased from the germinal vesicle stage to metaphase II stage and then gradually decreased during morula and blastocyst stages. Protein expression patterns were confirmed by immunofluorescence analysis. This study lays a foundation for further validation of the function of MEGs in buffalo.


Asunto(s)
Bison , Búfalos , Animales , Blastocisto/metabolismo , Búfalos/genética , Desarrollo Embrionario/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Oocitos/fisiología , Oogénesis , Embarazo
11.
Gene ; 802: 145870, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34363886

RESUMEN

Leydig cells (LCs) are testosterone-generating endocrine cells that are located outside the seminiferous tubules in the testis, and testosterone is fundamental for retaining spermatogenesis and male fertility. In buffalo, adult Leydig cells (ALCs) are developed by immature Leydig cells (ILCs) in the postnatal testes. However, the genes/pathways associated to the regulation of testosterone secretion function during the development of postnatal LCs remains comprehensively unidentified. The present study comparatively analyzed the transcriptome profiles of ILC and ALC in buffalo with significant differences in testosterone secretion. Differentially expressed genes (DEGs) analysis identified 972 and 1,091 annotated genes that were significantly up- and down-regulated in buffalo ALC. Functional enrichment analysis showed that cAMP signaling being the most significantly enriched pathway, and testosterone synthesis and lipid transport-related genes/pathways were upregulated in ALC. Furthermore, gene set enrichment analysis (GSEA) shows that cAMP signaling and steroid hormone biosynthesis were activated in ALC, demonstrating that cAMP signaling may serve as a positive regulatory pathway in the maintenance of testosterone function during postnatal development of LCs. Protein-protein interaction (PPI) networks analysis highlighted that ADCY8, ADCY2, POMC, CHRM2, SST, PTGER3, SSTR2, SSTR1, NPY1R, and HTR1D as hub genes in the cAMP signaling pathway. In conclusion, this study identified key genes and pathways associated in the regulation of testosterone secretion function during the ILC-ALC transition in buffalo based on bioinformatics analysis, and these key genes might be deeply involved in cAMP generation to influencing testosterone levels in LCs. The results suggest that ALCs might increase testosterone levels by enhancing cAMP production than ILCs. Our data will enhance the understanding of developmental mechanism studies related to testosterone function and provide preliminary evidence for molecular mechanisms of LCs regulating spermatogenesis.


Asunto(s)
Búfalos/genética , Células Intersticiales del Testículo/fisiología , Testículo/citología , Testosterona/fisiología , Animales , Búfalos/fisiología , Separación Celular/veterinaria , AMP Cíclico/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Masculino , Redes y Vías Metabólicas , RNA-Seq/veterinaria , Transducción de Señal , Espermatogénesis/genética , Esteroides/biosíntesis , Testosterona/metabolismo , Transcriptoma
12.
Theriogenology ; 170: 1-14, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33945957

RESUMEN

Sertoli cells provide nutrients and support for germ cell differentiation and maintain a stable microenvironment for spermatogenesis. Comprehensive identification of Sertoli cellular proteins is important in understanding spermatogenesis. In this study, we performed an integrative analysis of the proteome and phosphoproteome to explore the role of Sertoli cells in spermatogenesis. A total of 2912 and 753 proteins were identified from the proteome and phosphoproteome in Sertoli cells, respectively; 438 proteins were common to the proteome and phosphoproteome. Data are available via ProteomeXchange with identifier PXD024984. In the proteome, ACTG1, ACTB, ACTA2, MYH9 were the most abundant proteins. Gene Ontology (GO) analysis indicated that most of the proteins were involved in the processes of localization, biosynthesis, gene expression, and transport. In addition, some of the proteins related to Sertoli cell functions were also enriched. In the phosphoproteome, most of the proteins were involved in gene expression and the RNA metabolic process; the pathways mainly involved the spliceosome, mitogen-activated protein kinase signaling pathway, focal adhesion, and tight junctions. The pleckstrin homology-like domain is the most highly enriched protein domain in phosphoproteins. Cyclin-dependent kinases and protein kinases C were found to be highly active kinases in the kinase-substrate network analysis. Ten proteins most closely related to network stability were found in the analysis of the network interactions of proteins identified jointly in the phosphoproteome and proteome. Through immunohistochemistry and immunofluorescence verification of vimentin, it was found that there were localization differences between phosphorylated and non-phosphorylated vimentin in testicular tissue. This study is the first in-depth proteomic and phosphoproteomic analysis of buffalo testicular Sertoli cells. The results provide insight into the role of Sertoli cells in spermatogenesis and provide clues for further study of male reproduction.


Asunto(s)
Proteómica , Células de Sertoli , Animales , Búfalos , Masculino , Espermatogénesis , Testículo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA