Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 319: 115771, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35982569

RESUMEN

While nanoscale zero-valent iron modified biochar (nZVI-BC) have been widely investigated for the removal of heavy metals, the corrosion products of nZVI and their interaction with heavy metals have not been revealed yet. In this paper, nZVI-BC was synthesized and applied for the removal of Cr(VI). Batch experiments indicated that the adsorption of Cr(VI) fit Langmuir isotherm, with the maximum removal capacity at 172.4 mg/g at pH 2.0. SEM-EDS, BET, XRD, FT-IR, Raman and XPS investigation suggested that reduction of Cr(VI) to Cr(III) was the major removal mechanism. pH played an important role on the corrosion of nZVI-BC, at pH 4.5 and 2.0, FeOOH and Fe3O4 were detected as the major iron oxide, respectively. Therefore, FeOOH-BC and Fe3O4-BC were further prepared and their interaction with Cr were studied. Combining with DFT calculations, it revealed that Fe3O4 has higher adsorption capacity and was responsible for the effective removal of Cr(VI) through electrostatic attraction and reduction under acidic conditions. However, Fe3O4 will continue to convert to the more stable FeOOH, which is the key to for the subsequent stabilization of the reduced Cr(III). The results showed that the oxide corrosion products of nZVI-BC were subjected to the environment, which will eventually affect the fate and transport of the adsorbed heavy metal.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Cromo , Aguas del Alcantarillado , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
2.
Environ Res ; 197: 111105, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33839120

RESUMEN

The global escalation and intensification of cyanobacterial blooms require powerful algaecides. This study investigated the algicidal efficacy and mechanism of EA-1 against Oscillatoria. Bacteria EA-1, identified as Enterobacter, was isolated with high algicidal activity against harmful cyanobacteria. Results showed that a complete removal of Oscillatoria was observed within 3 days with the initial Chl-a concentration of 1.74 mg/L. Physiological responses of Oscillatoria revealed that EA-1 induced severe lipid peroxidation and the ultimate decline of antioxidant enzyme activities. Moreover, the contents for both intracellular protein and carbohydrate of each algae cell increased first and then decreased. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) analysis clarified that the possible process of Oscillatoria lysis included the breach of cross wall, followed by the disruption of photosynthetic membrane and incipient nucleus, and the ultimate outflow of inclusion. Confocal laser scanning microscopy (CLSM) analysis illustrated the degradation process of incipient nucleus in Oscillatoria.


Asunto(s)
Cianobacterias , Oscillatoria , Antioxidantes , Acuicultura , Enterobacter
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA