Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
NPJ Precis Oncol ; 8(1): 55, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38424363

The molecular profiles and tumor immune microenvironment (TIME) of multiple primary lung cancers (MPLCs) presenting as concurrent lung adenocarcinoma (ADC) and squamous cell carcinoma (SQCC) remain unknown. We aimed to clarify these factors. We performed whole-exome sequencing (WES), RNA sequencing (RNA-Seq), and multiplex immunohistochemistry (mIHC) for five patients with concurrent ADC and SQCC. We found the genetic mutations were similar between ADC and SQCC groups. RNA-Seq revealed that the gene expression and pathways enriched in ADC and SQCC groups were quite different. Gene set enrichment analysis (GSVA) showed that nine gene sets were significantly differentially expressed between the ADC and SQCC groups (p < 0.05), with four gene sets relevant to squamous cell features upregulated in the SQCC group and five gene sets upregulated in the ADC group. Reactome enrichment analysis of differentially expressed genes showed that the immune function-related pathways, including programmed cell death, innate immune system, interleukin-12 family signaling, and toll-like receptor 2/4 pathways, etc. were significantly enriched. Transcriptomic TIME analysis, with mIHC in patient specimens and in vivo validation, showed tumor-infiltrating immune cells were significantly more enriched and diverse in ADC, especially CD8 + T cells. Our results revealed that the transcriptomic profiles and TIME features were quite different between ADC and SQCC lesions. ADC lesions exhibited a more active TIME than SQCC lesions in MPLCs.

2.
Mol Pharm ; 21(2): 373-392, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38252032

Intervertebral disc degeneration (IVDD) is commonly associated with many spinal problems, such as low back pain, and significantly impacts a patient's quality of life. However, current treatments for IVDD, which include conservative and surgical methods, are limited in their ability to fully address degeneration. To combat IVDD, delivery-system-based therapy has received extensive attention from researchers. These delivery systems can effectively deliver therapeutic agents for IVDD, overcoming the limitations of these agents, reducing leakage and increasing local concentration to inhibit IVDD or promote intervertebral disc (IVD) regeneration. This review first briefly introduces the structure and function of the IVD, and the related pathophysiology of IVDD. Subsequently, the roles of drug-based and bioactive-substance-based delivery systems in IVDD are highlighted. The former includes natural source drugs, nonsteroidal anti-inflammatory drugs, steroid medications, and other small molecular drugs. The latter includes chemokines, growth factors, interleukin, and platelet-rich plasma. Additionally, gene-based and cell-based delivery systems are briefly involved. Finally, the limitations and future development of the combination of therapeutic agents and delivery systems in the treatment of IVDD are discussed, providing insights for future research.


Intervertebral Disc Degeneration , Intervertebral Disc , Humans , Quality of Life , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Intercellular Signaling Peptides and Proteins
3.
Mol Metab ; 79: 101834, 2024 Jan.
Article En | MEDLINE | ID: mdl-37935315

Attenuation of adipose hormone sensitive lipase (HSL) may impair lipolysis and exacerbate obesity. We investigate the role of cytokine, macrophage migration inhibitory factor (MIF) in regulating adipose HSL and adipocyte hypertrophy. Extracellular MIF downregulates HSL in an autocrine fashion, by activating the AMPK/JNK signaling pathway upon binding to its membrane receptor, CD74. WT mice fed high fat diet (HFD), as well as mice overexpressing MIF, both had high circulating MIF levels and showed suppression of HSL during the development of obesity. Blocking the extracellular action of MIF by a neutralizing MIF antibody significantly reduced obesity in HFD mice. Interestingly, intracellular MIF binds with COP9 signalosome subunit 5 (Csn5) and JNK, which leads to an opposing effect to inhibit JNK phosphorylation. With global MIF deletion, adipocyte JNK phosphorylation increased, resulting in decreased HSL expression, suggesting that the loss of MIF's intracellular inhibitory action on JNK was dominant in Mif-/- mice. Adipose tissue from Mif-/- mice also exhibited higher Akt and lower PKA phosphorylation following HFD feeding compared with WT, which may contribute to the downregulation of HSL activation during more severe obesity. Both intracellular and extracellular MIF have opposing effects to regulate HSL, but extracellular actions predominate to downregulate HSL and exacerbate the development of obesity during HFD.


Macrophage Migration-Inhibitory Factors , Animals , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Obesity/metabolism , Sterol Esterase/metabolism
4.
Exp Hematol Oncol ; 12(1): 67, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37528490

BACKGROUND: Increasing evidence suggests that immunotherapy, especially immune checkpoint inhibitors (ICIs), has the potential to facilitate long-term survival in various cancer besides prostate cancer. Emerging evidence indicated that pyroptosis, an immunogenic form of cell death, could trigger an anti-tumor immune microenvironment and enhance the effectiveness of immunotherapy. Nevertheless, the mechanism underlying the regulation of pyroptosis signaling in prostate cancer remains unclear. METHODS: The differential expression of human E3 ligases in prostate cancer was integratedly analyzed from five independent public datasets. Moreover, the immunohistochemistry analysis of a tissue microarray derived from prostate cancer patients confirmed the results from the bioinformatic analysis. Furthermore, prostate cancer cell lines were evaluated via the next-generation RNA sequencing to assess transcriptomic profile upon CDC20 depletion. Next, qRT-PCR, Western blotting, cycloheximide assay, immunoprecipitation, and ubiquitination assay were employed to explore the correlation and interaction between CDC20 and GSDME. Both immune-deficient and immune-competent murine models were utilized to examine the anti-tumor efficacy of CDC20 inhibition with or without the anti-PD1 antibodies, respectively. To analyze the immune microenvironment of the xenografts, the tumor tissues were examined by immunohistochemistry and flow cytometry. RESULTS: The analysis of multiple prostate cancer cohorts suggested that CDC20 was the most significantly over-expressed E3 ligase. In addition, CDC20 exerted a negative regulatory effect on the pyroptosis pathway by targeting GSDME for ubiquitination-mediated proteolysis in a degron-dependent manner. Knockdown of CDC20 leads to increased GSDME abundance and a transition from apoptosis to pyroptosis in response to death signals. Furthermore, in our syngeneic murine models, we found that depletion of CDC20 significantly enhances the anti-tumor immunity by promoting the infiltration of CD8+ T lymphocytes dependent on the existence of GSDME, as well as reducing myeloid immune cells. More importantly, Apcin, a small molecular inhibitor that targets CDC20, exhibited synergistic effects with anti-PD1-based immunotherapy in murine models of prostate cancer. CONCLUSIONS: Overall, these findings provide new insights into the upstream regulation of GSDME-mediated pyroptosis by CDC20, which specifically interacts with GSDME and facilitates its ubiquitination in a degron-dependent manner. Importantly, our data highlight novel molecular pathways for targeting cellular pyroptosis and enhancing the effectiveness of anti-PD1-based immunotherapy.

5.
J Immunother Cancer ; 11(8)2023 08.
Article En | MEDLINE | ID: mdl-37620043

BACKGROUND: BANF1 is well known as a natural opponent of cyclic GMP-AMP synthase (cGAS) activity on genomic self-DNA. However, the roles of BANF1 in tumor immunity remain unclear. Here, we investigate the possible impact of BANF1 on antitumor immunity and response to immunotherapy. METHODS: The Cancer Genome Atlas public data were analyzed to evaluate the relevance of the expression of BANF1, patients' survival and immune cell infiltration. We monitored tumor growth and explored the antitumor efficacy of targeting tumor-intrinsic BANF1 in combination with anti-programmed cell death protein-1 (PD-1) in MC38 or B16F10 tumor models in both immunocompetent and immunodeficient mice. Flow cytometry, immunofluorescence and T cells depletion experiments were used to validate the role of BANF1 in tumor immune microenvironment reprogramming. RNA sequencing was then used to interrogate the mechanisms how BANF1 regulated antitumor immunity. RESULTS: We show that upregulated expression of BANF1 in tumor tissues is significantly associated with poor survival and is negatively correlated with immune cell infiltration. Deficiency of BANF1 in tumor cells markedly antagonizes tumor growth in immunocompetent but not immunocompromised mice, and enhances the response to immunotherapy in murine models of melanoma and colon cancer. In the immunotherapy clinical cohort, patients with high BANF1 expression had a worse prognosis. Mechanistically, BANF1 knockout activates antitumor immune responses mediated by cGAS-synthase-stimulator of interferon genes (cGAS-STING) pathway, resulting in an immune-activating tumor microenvironment including increased CD8+ T cell infiltration and decreased myeloid-derived suppressor cell enrichment. CONCLUSIONS: BANF1 is a key regulator of antitumor immunity mediated by cGAS-STING pathway. Therefore, our study provides a rational that targeting BANF1 is a potent strategy for enhancing immunotherapy for cancer with BANF1 upregulation.


Colonic Neoplasms , Melanoma , Animals , Mice , CD8-Positive T-Lymphocytes , Immunity , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Humans
6.
iScience ; 26(6): 106923, 2023 Jun 16.
Article En | MEDLINE | ID: mdl-37283810

While insulin resistance (IR) is associated with inflammation in white adipose tissue, we report a non-inflammatory adipose mechanism of high fat-induced IR mediated by loss of Pref-1. Pref-1, released from adipose Pref-1+ cells with characteristics of M2 macrophages, endothelial cells or progenitors, inhibits MIF release from both Pref-1+ cells and adipocytes by binding with integrin ß1 and inhibiting the mobilization of p115. High palmitic acid induces PAR2 expression in Pref-1+ cells, downregulating Pref-1 expression and release in an AMPK-dependent manner. The loss of Pref-1 increases adipose MIF secretion contributing to non-inflammatory IR in obesity. Treatment with Pref-1 blunts the increase in circulating plasma MIF levels and subsequent IR induced by a high palmitic acid diet. Thus, high levels of fatty acids suppress Pref-1 expression and secretion, through increased activation of PAR2, resulting in an increase in MIF secretion and a non-inflammatory adipose mechanism of IR.

7.
Front Psychol ; 14: 1085293, 2023.
Article En | MEDLINE | ID: mdl-36777210

During the last few decades, China implemented college enrollment expansion to accelerate the process of urbanization. However, most existing papers blaming that receiving higher education may delay people choosing to enter the age of first marriage, which in turn results in the age of the population. In this paper, we argued that the previous papers confused the total impact of higher education on the average age of the first marriage with the influence on individual's behavior change, and thus led to overestimating the delayed effect of higher education on the age choosing behavior of first marriage. The present paper re-estimated the impact of higher education on the average age of the first marriage in China with both extensive and intensive margins using the duration model and qualified the pure effect on the behavior patterns change after removing macroeconomic factors. The results show that: (1) changes in either the demographic structure or behavior patterns due to higher education explain 63.41% or 36.59%, respectively, of the average marriage age delay; (2) the macro factors would delay the age of first marriage; (3) after controlling for demographic structure and macro factors, 3 years or more of higher education would only delay the choosing behavior of entering the first marriage by 0.84 years. Thus, we concluded that higher education does not completely squeeze the time of marriage, and the expansion of college enrollment could improve social and economic benefits.

8.
Front Pharmacol ; 13: 902016, 2022.
Article En | MEDLINE | ID: mdl-36324684

Background: Tumor-associated macrophages (TAMs) are one of the most abundant immune cells in the pancreatic cancer stroma and are related to the poor prognosis of pancreatic ductal adenocarcinoma (PDAC) patients. Therefore, targeting tumor-associated macrophages is a possible strategy for the treatment of pancreatic cancer. Purpose: We would like to investigate the role of sphingomyelin synthase 2 (SMS2) and the effect of the synthase 2 selective inhibitor YE2 in TAMs and the pancreatic tumor microenvironment. In addition, we also would like to investigate the mechanism by which YE2 attenuates macrophage M2 polarization. Methods: YE2 was utilized to treat macrophages (in vitro) and mice (in vivo). Western blotting and real-time PCR were used to detect the protein levels and mRNA levels of macrophage M2 polarization markers and their downstream signaling pathways. Sphingomyelin synthase 2 gene knockout (KO) mice and their controls were used to establish a PANC-02 orthotopic pancreatic cancer model, and immune cell infiltration in the tumor tissue was analyzed by immunohistochemistry (IHC). Results: We found that sphingomyelin synthase 2 mRNA expression is positively correlated with tumor-associated macrophages, the immunosuppressive microenvironment, and poor prognosis in pancreatic ductal adenocarcinoma patients. Sphingomyelin synthase 2 deficiency was confirmed to have an inhibitory effect on the growth of orthotopic PANC-02 tumors in vivo. The deficiency not only reduced the infiltration of tumor-associated macrophages but also regulated other immune components in the tumor microenvironment. In tissue culture, YE2 inhibited M2 polarization in both bone marrow-derived macrophages (BMDMs) and THP-1 macrophages and eliminated the protumor effect of M2 macrophages. In the mouse model, YE2 treatment reduced the infiltration of TAMs and regulated other immune components in the tumor microenvironment, slowing the progression of PANC-02 tumors. In terms of mechanism, we found that the inhibition of sphingomyelin synthase 2 could downregulate the expression of IL4Rα and CSF1R, thereby attenuating M2 polarization. Conclusion: The sphingomyelin synthase 2 inhibitor YE2 or sphingomyelin synthase 2 deficiency can prevent macrophage M2 polarization in pancreatic cancer, and sphingomyelin synthase 2 could be a new potential target for the treatment of pancreatic cancer.

9.
Metabolomics ; 18(10): 76, 2022 09 30.
Article En | MEDLINE | ID: mdl-36180605

INTRODUCTION: Pro-inflammatory cytokines are responsible for initiating an effective defense against exogenous pathogens, and their regulation has a vital role in maintaining physiological homeostasis. The involvement of pro-inflammatory cytokines in pathological conditions have been explored in great detail, however, studies investigating metabolic pathways associated with these cytokines under normal homeostatic conditions are scarce. OBJECTIVES: The aim of the current study was to identify metabolites and metabolic pathways associated with circulating pro-inflammatory cytokines under homeostatic conditions using a metabolomics approach. METHODS: The study participants (n = 133) were derived from the Newfoundland Osteoarthritis Study (NFOAS) and the Complex Diseases in the Newfoundland population: Environment and Genetics (CODING) study. Plasma concentrations of cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1ß), and macrophage migration inhibitory factor (MIF) were assessed by enzyme-linked immunosorbent assay. Targeted metabolomic profiling on fasting plasma samples was performed using Biocrates MxP® Quant 500 kit which measures a total of 630 metabolites. Associations between natural log-transformed metabolite concentrations and metabolite sums/ratios and cytokine levels were assessed using linear regression with adjustment for age, sex, body mass index (BMI), and osteoarthritis status. RESULTS: Seven metabolites and 11 metabolite sums/ratios were found to be significantly associated with TNF-α, IL-1ß, and MIF (all p ≤ 5.13 × 10- 5) after controlling multiple testing with Bonferroni method, indicating the association between glutathione (GSH), polyamine, and lysophosphatidylcholine (lysoPC) synthesis pathways and these pro-inflammatory cytokines. CONCLUSION: GSH, polyamine, and lysoPC synthesis pathways were positively associated with circulating TNF-α, IL-1ß, and MIF levels under homeostatic conditions.


Macrophage Migration-Inhibitory Factors , Osteoarthritis , Glutathione , Humans , Interleukin-1beta , Interleukin-6 , Lysophosphatidylcholines , Metabolomics , Polyamines , Tumor Necrosis Factor-alpha
10.
Acta Pharm Sin B ; 12(8): 3427-3447, 2022 Aug.
Article En | MEDLINE | ID: mdl-35967283

Platelets buoy up cancer metastasis via arresting cancer cells, enhancing their adhesion, and facilitating their extravasation through the vasculature. When deprived of intracellular and granular contents, platelet decoys could prevent metastatic tumor formation. Inspired by these, we developed nanoplatesomes by fusing platelet membranes with lipid membranes (P-Lipo) to restrain metastatic tumor formation more efficiently. It was shown nanoplateletsomes bound with circulating tumor cells (CTC) efficiently, interfered with CTC arrest by vessel endothelial cells, CTC extravasation through endothelial layers, and epithelial-mesenchymal transition of tumor cells as nanodecoys. More importantly, in the mouse breast tumor metastasis model, nanoplateletsomes could decrease CTC survival in the blood and counteract metastatic tumor growth efficiently by inhibiting the inflammation and suppressing CTC escape. Therefore, nanoplatelesomes might usher in a new avenue to suppress lung metastasis.

11.
Front Psychol ; 13: 899348, 2022.
Article En | MEDLINE | ID: mdl-35656499

Studies show that parental educational expectations (PEEs) serve as an intermediary variable between family background and children's educational attainment. This paper re-examines the relationship between PEEs and children's higher educational attainment using data from the China Family Panel Studies (CFPS) 2010-2018. To address potential endogenous problems in the previous papers, we use the average College Enrolment Opportunity Index (CEOI) when the children were 10-12 years old as an instrumental variable for PEEs. The results revealed that: (1) In addition to the indirect intermediary effects, the PEEs also had a direct impact on children's higher educational attainment independent of family background; (2) the magnitude of the effect was much larger (almost three times) than previous estimates after solving endogenous problems; (3) there was no significant gender difference in the effect of PEEs. In addition, we also found that PEEs had a greater impact on middle- and low-income families. Therefore, we argue that against the background of the "Double Reduction" policy, parents should change their conception of education and raise their expectations for their children and encourage them to strive for higher educational achievements.

12.
Metabolites ; 12(4)2022 Apr 07.
Article En | MEDLINE | ID: mdl-35448521

Obesity is a global pandemic, but there is yet no effective measure to control it. Recent metabolomics studies have identified a signature of altered amino acid profiles to be associated with obesity, but it is unclear whether these findings have actionable clinical potential. The aims of this study were to reveal the metabolic alterations of obesity and to explore potential strategies to mitigate obesity. We performed targeted metabolomic profiling of the plasma/serum samples collected from six independent cohorts and conducted an individual data meta-analysis of metabolomics for body mass index (BMI) and obesity. Based on the findings, we hypothesized that restriction of branched-chain amino acids (BCAAs), phenylalanine, or tryptophan may prevent obesity and tested our hypothesis in a dietary restriction trial with eight groups of 4-week-old male C57BL/6J mice (n = 5/group) on eight different types of diets, respectively, for 16 weeks. A total of 3397 individuals were included in the meta-analysis. The mean BMI was 30.7 ± 6.1 kg/m2, and 49% of participants were obese. Fifty-eight metabolites were associated with BMI and obesity (all p ≤ 2.58 × 10-4), linked to alterations of the BCAA, phenylalanine, tryptophan, and phospholipid metabolic pathways. The restriction of BCAAs within a high-fat diet (HFD) maintained the mice's weight, fat and lean volume, subcutaneous and visceral adipose tissue weight, and serum glucose and insulin at levels similar to those in the standard chow group, and prevented obesity, adipocyte hypertrophy, adipose inflammation, and insulin resistance induced by HFD. Our data suggest that four metabolic pathways, BCAA, phenylalanine, tryptophan, and phospholipid metabolic pathways, are altered in obesity and restriction of BCAAs within a HFD can prevent the development of obesity and insulin resistance in mice, providing a promising strategy to potentially mitigate diet-induced obesity.

13.
Bull Environ Contam Toxicol ; 106(2): 370-376, 2021 Feb.
Article En | MEDLINE | ID: mdl-33392689

In this paper, the 36 topsoil (0-10 cm) samples were collected and the contents of Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb were analyzed. The results indicated that the contents of Cu and As in all samples exceeded the soil background values of Anhui province, while the Co and Pb contents were lower than the background values. Geo-statistics and positive matrix factorization were applied to identify the sources of soil heavy metals, which were nature factor (15.7%), industrial activities (21.2%), coal mine (50.9%) and traffic emission (12.2%), respectively. The calculation results of health risk model based on positive matrix factorization model showed that coal mine activities accounted for the largest proportion of total source contribution, followed by industrial activities. In addition, compared with adults, the trend of health risk of children from four sources in three lands were same as adults, but their health risk was higher than adults.


Metals, Heavy , Soil Pollutants , Adult , Child , China , Coal , Environmental Monitoring , Humans , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
14.
PLoS One ; 13(8): e0201515, 2018.
Article En | MEDLINE | ID: mdl-30071061

OBJECTIVES: To develop and validate an individualized nomogram to predict probability of patients with ureteral calculi developing into urosepsis. METHODS: The clinical data of 747 patients with ureteral calculi who were admitted from June 2013 to December 2015 in Affiliated Nanhai Hospital of Southern Medical University were selected and included in the development group, while 317 ureteral calculi patients who were admitted from January 2016 to December 2016 were included in the validation group. The independent risk factors of ureteral calculi associated with urosepsis were screened using univariate and multivariate logistic regression analyses. The corresponding nomogram prediction model was drawn according to the regression coefficients. The area under the receiver operating characteristic curves and the GiViTI calibration belts were used to estimate the discrimination and calibration of the prediction model, respectively. RESULTS: Multivariate logistic regression analysis showed that the five risk factors of gender, mean computed tomography(CT) attenuation value of hydronephrosis, functional solitary kidney, urine white blood cell(WBC) count and urine nitrite were independent risk factors of ureteral calculi associated with urosepsis. The areas under the receiver operating characteristic curve of the development group and validation group were 0.913 and 0.874 respectively, suggesting that the new prediction model had good discrimination capacity. P-values of the GiViTI calibration test of the two groups were 0.247 and 0.176 respectively, and the 95% CIs of GiViTI calibration belt in both groups did not cross the diagonal bisector line. Therefore the predicted probability of the model was consistent with the actual probability which suggested that the calibration of the prediction model in both groups were perfect and prediction model had strong concordance performance. CONCLUSION: The individualized prediction model for patients with ureteral calculi can facilitate improved screening and early identification of patients having higher risk of urosepsis.


Models, Biological , Nomograms , Sepsis/epidemiology , Sepsis/etiology , Ureteral Calculi/complications , Ureteral Calculi/epidemiology , Adult , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , Risk Factors , Sepsis/diagnostic imaging , Sepsis/therapy , Sex Factors , Tomography, X-Ray Computed , Ureteral Calculi/diagnostic imaging , Ureteral Calculi/therapy
15.
Colloids Surf B Biointerfaces ; 151: 19-25, 2017 Mar 01.
Article En | MEDLINE | ID: mdl-27940165

Currently, the phosphatidylethanolamine-based, pH-sensitive, liposome drug-delivery system has been widely developed for efficient, targeted cancer therapy. However, the mechanism of pH sensitivity was unclear; it is a main obstacle in controlling the preparation of pH-sensitive liposomes (PSLs).Therefore, our research is aimed at clarifying the pH-response mechanism of the various molecules that compose liposomes. We chose the small pH-sensitive molecules oleic acid (OA), linoleic acid (LA) and cholesteryl hemisuccinate (CHEMS) and the fundamental lipids cholesterol and phosphatidylethanolamine (PE) as test molecules. The PSLs were prepared using the thin-film hydration method and characterized in detail at various pH values (pH 5.0, 6.0 and 7.4), including particle size, ζ-potential, drug encapsulation efficiency and drug loading. The surface structure was observed by transmission electron microscopy (TEM), and the electrical conductivity of the liposome dispersion was also tested. The calorimetric analysis was conducted by Nano-differential scanning calorimetry (Nano-DSC). The in vitro drug release profile showed that PSLs exhibit good pH sensitivity. At neutral pH, the particle size was approximately 150nm, and it dramatically increased at pH 5.0. The ζ-potential increased as the pH decreased. The Nano-DSC results showed that cholesterol and CHEMS can both increase the stability and phase transfer temperature of PSLs. Conductivity increased to a maximum at pH 5.0 and was rather low at pH 7.4. In conclusion, results show that the three kinds of liposomes have pH responsive release characteristics in acidic pH. The OA-PSLs have a pH sensitive point of 5. Since CHEMS has a cholesterol-like structure, it can stabilizes the phospholipid bilayer under neutral conditions as shown in the Nano-DSC data, and because it has a special steroidal rigid structure, it exhibits better pH response characteristics under acidic conditions.


Liposomes/chemistry , Neoplasms/drug therapy , Calorimetry, Differential Scanning , Cholesterol Esters/chemistry , Drug Delivery Systems , Electric Conductivity , Hot Temperature , Humans , Hydrogen-Ion Concentration , Linoleic Acid/chemistry , Microscopy, Electron, Transmission , Nanotechnology/methods , Neoplasms/metabolism , Oleic Acid/chemistry , Phosphatidylethanolamines/chemistry , Surface Properties , Temperature , Tumor Microenvironment
...