Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Clin Invest ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141428

RESUMEN

Endometriosis is a debilitating, chronic inflammatory disease affecting ~10% of reproductive age women worldwide with no cure. While macrophages have been intrinsically linked to the pathophysiology of endometriosis, targeting them therapeutically has been extremely challenging due to their high heterogeneity and because these disease-associated macrophages (DAMs) can be either pathogenic or protective. Here, we reported identification of pathogenic macrophages characterized by TET3 overexpression in human endometriosis lesions. We showed that factors from the disease microenvironment upregulated TET3 expression transforming macrophages into pathogenic DAMs. TET3 overexpression stimulated pro-inflammatory cytokine production via a feedback mechanism involving inhibition of let-7 miRNA expression. Remarkably, these cells relied on TET3 overexpression for survival, hence vulnerable to TET3 knockdown. We demonstrated that Bobcat339, a synthetic cytosine derivative, triggered TET3 degradation both in human and mouse macrophages. This degradation was dependent on a VHL E3 ubiquitin ligase whose expression was also upregulated in TET3-overexpressing macrophages. Furthermore, depleting TET3-overexpressing macrophages either through myeloid-specific Tet3 ablation or using Bobcat339 strongly inhibited endometriosis progression in mice. Our results defined TET3-overexpressing macrophages as key pathogenic contributors to and attractive therapeutic targets for endometriosis. Our findings may also be applicable to other chronic inflammatory diseases where DAMs have important roles.

2.
Trends Cell Biol ; 34(8): 620-621, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964955

RESUMEN

Multiple mechanisms have been reported for how circular RNAs (circRNAs) are exported to the cytoplasm. A recent paper by Cao et al. shows that export of a subset of circRNAs with (A)-rich motifs, including one with a clear function, is regulated during neuronal development via a novel mechanism.


Asunto(s)
Transporte Activo de Núcleo Celular , Diferenciación Celular , Neuronas , ARN Circular , ARN , ARN Circular/metabolismo , ARN Circular/genética , Humanos , Neuronas/metabolismo , Neuronas/citología , Animales , ARN/metabolismo , Núcleo Celular/metabolismo
3.
Diabetologia ; 67(4): 724-737, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38216792

RESUMEN

AIM/HYPOTHESIS: The peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) plays a critical role in the maintenance of glucose, lipid and energy homeostasis by orchestrating metabolic programs in multiple tissues in response to environmental cues. In skeletal muscles, PGC-1α dysregulation has been associated with insulin resistance and type 2 diabetes but the underlying mechanisms have remained elusive. This research aims to understand the role of TET3, a member of the ten-eleven translocation (TET) family dioxygenases, in PGC-1α dysregulation in skeletal muscles in obesity and diabetes. METHODS: TET expression levels in skeletal muscles were analysed in humans with or without type 2 diabetes, as well as in mouse models of high-fat diet (HFD)-induced or genetically induced (ob/ob) obesity/diabetes. Muscle-specific Tet3 knockout (mKD) mice were generated to study TET3's role in muscle insulin sensitivity. Genome-wide expression profiling (RNA-seq) of muscle tissues from wild-type (WT) and mKD mice was performed to mine deeper insights into TET3-mediated regulation of muscle insulin sensitivity. The correlation between PGC-1α and TET3 expression levels was investigated using muscle tissues and in vitro-derived myotubes. PGC-1α phosphorylation and degradation were analysed using in vitro assays. RESULTS: TET3 expression was elevated in skeletal muscles of humans with type 2 diabetes and in HFD-fed and ob/ob mice compared with healthy controls. mKD mice exhibited enhanced glucose tolerance, insulin sensitivity and resilience to HFD-induced insulin resistance. Pathway analysis of RNA-seq identified 'Mitochondrial Function' and 'PPARα Pathway' to be among the top biological processes regulated by TET3. We observed higher PGC-1α levels (~25%) in muscles of mKD mice vs WT mice, and lower PGC-1α protein levels (~25-60%) in HFD-fed or ob/ob mice compared with their control counterparts. In human and murine myotubes, increased PGC-1α levels following TET3 knockdown contributed to improved mitochondrial respiration and insulin sensitivity. TET3 formed a complex with PGC-1α and interfered with its phosphorylation, leading to its destabilisation. CONCLUSIONS/INTERPRETATION: Our results demonstrate an essential role for TET3 in the regulation of skeletal muscle insulin sensitivity and suggest that TET3 may be used as a potential therapeutic target for the metabolic syndrome. DATA AVAILABILITY: Sequences are available from the Gene Expression Omnibus ( https://www.ncbi.nlm.nih.gov/geo/ ) with accession number of GSE224042.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dioxigenasas , Resistencia a la Insulina , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dioxigenasas/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina/genética , Músculo Esquelético/metabolismo , Obesidad/genética , Obesidad/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Mol Metab ; 78: 101828, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898449

RESUMEN

OBJECTIVE: FAS-mediated apoptosis of hepatocytes and aberrant TGF-ß signaling are major drivers of liver fibrosis. Decreased miRNA let-7 expression in the livers of patients and animals with fibrosis suggests a mechanistic link of let-7 to hepatic fibrogenesis. METHODS: Using transient transfection we tested the effects of let-7 overexpression and TET3 siRNA knockdown on FAS and TGF-ß1 expression and FAS-mediated apoptosis in human and mouse primary hepatocytes. We assessed the therapeutic activity of let-7 miRNA delivered via adeno-associated viral vectors in mouse models of carbon tetrachloride (CCl4)-induced and bile duct ligation (BDL)-induced liver fibrosis. RESULTS: Let-7 decreased TGF-ß1 production from hepatocytes through a negative feedback loop involving TET3. On the other hand, let-7 post-transcriptionally inhibits FAS expression, thereby suppressing hepatocyte apoptosis. Hepatic-specific delivery of let-7 miRNA mitigated liver fibrosis in both CCl4 and BDL mouse models. CONCLUSIONS: Let-7 is a crucial node in the signaling networks that govern liver fibrosis progression. Let-7 and/or its derivatives may be used as therapeutic agents for liver fibrosis.


Asunto(s)
MicroARNs , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Cirrosis Hepática/metabolismo , Hepatocitos/metabolismo , Fibrosis , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis
5.
Proc Natl Acad Sci U S A ; 120(16): e2300015120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036983

RESUMEN

Anorexia nervosa (AN) is a psychiatric illness with the highest mortality. Current treatment options have been limited to psychotherapy and nutritional support, with low efficacy and high relapse rates. Hypothalamic AgRP (agouti-related peptide) neurons that coexpress AGRP and neuropeptide Y (NPY) play a critical role in driving feeding while also modulating other complex behaviors. We have previously reported that genetic ablation of Tet3, which encodes a member of the TET family dioxygenases, specifically in AgRP neurons in mice, activates these neurons and increases the expression of AGRP, NPY, and the vesicular GABA transporter (VGAT), leading to hyperphagia and anxiolytic effects. Bobcat339 is a synthetic small molecule predicted to bind to the catalytic pockets of TET proteins. Here, we report that Bobcat339 is effective in mitigating AN and anxiety/depressive-like behaviors using a well-established mouse model of activity-based anorexia (ABA). We show that treating mice with Bobcat339 decreases TET3 expression in AgRP neurons and activates these neurons leading to increased feeding, decreased compulsive running, and diminished lethality in the ABA model. Mechanistically, Bobcat339 induces TET3 protein degradation while simultaneously stimulating the expression of AGRP, NPY, and VGAT in a TET3-dependent manner both in mouse and human neuronal cells, demonstrating a conserved, previously unsuspected mode of action of Bobcat339. Our findings suggest that Bobcat339 may potentially be a therapeutic for anorexia nervosa and stress-related disorders.


Asunto(s)
Anorexia Nerviosa , Dioxigenasas , Ratones , Humanos , Animales , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Anorexia Nerviosa/tratamiento farmacológico , Anorexia Nerviosa/metabolismo , Neuronas/metabolismo , Hipotálamo/metabolismo , Modelos Animales , Dioxigenasas/metabolismo
6.
J Clin Invest ; 132(19)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36189793

RESUMEN

The TET family of dioxygenases promote DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Hypothalamic agouti-related peptide-expressing (AGRP-expressing) neurons play an essential role in driving feeding, while also modulating nonfeeding behaviors. Besides AGRP, these neurons produce neuropeptide Y (NPY) and the neurotransmitter GABA, which act in concert to stimulate food intake and decrease energy expenditure. Notably, AGRP, NPY, and GABA can also elicit anxiolytic effects. Here, we report that in adult mouse AGRP neurons, CRISPR-mediated genetic ablation of Tet3, not previously known to be involved in central control of appetite and metabolism, induced hyperphagia, obesity, and diabetes, in addition to a reduction of stress-like behaviors. TET3 deficiency activated AGRP neurons, simultaneously upregulated the expression of Agrp, Npy, and the vesicular GABA transporter Slc32a1, and impeded leptin signaling. In particular, we uncovered a dynamic association of TET3 with the Agrp promoter in response to leptin signaling, which induced 5hmC modification that was associated with a chromatin-modifying complex leading to transcription inhibition, and this regulation occurred in both the mouse models and human cells. Our results unmasked TET3 as a critical central regulator of appetite and energy metabolism and revealed its unexpected dual role in the control of feeding and other complex behaviors through AGRP neurons.


Asunto(s)
Ansiolíticos , Dioxigenasas , 5-Metilcitosina/metabolismo , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Ansiolíticos/farmacología , Cromatina/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Ratones , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
7.
Proc Natl Acad Sci U S A ; 119(14): e2122217119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344434

RESUMEN

SignificanceA clear mechanistic understanding of metformin's antidiabetic effects is lacking. This is because suprapharmacological concentrations of metformin have been used in most studies. Using mouse models and human primary hepatocytes, we show that metformin, at clinically relevant doses, suppresses hepatic glucose production by activating a conserved regulatory pathway encompassing let-7, TET3, and a fetal isoform of hepatocyte nuclear factor 4 alpha (HNF4α). We demonstrate that metformin no longer has potent antidiabetic actions in a liver-specific let-7 loss-of-function mouse model and that hepatic delivery of let-7 ameliorates hyperglycemia and improves glucose homeostasis. Our results thus reveal an important role of the hepatic let-7/TET3/HNF4α axis in mediating the therapeutic effects of metformin and suggest that targeting this axis may be a potential therapeutic for diabetes.


Asunto(s)
Hiperglucemia , Metformina , Animales , Modelos Animales de Enfermedad , Glucosa/metabolismo , Hepatocitos/metabolismo , Hiperglucemia/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hígado/metabolismo , Metformina/uso terapéutico , Ratones
8.
FASEB J ; 34(6): 8625-8640, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32374060

RESUMEN

While emerging evidence suggests the link between endothelial activation of TGF-ß signaling, induction of endothelial-to-mesenchymal transition (EndMT), and cardiovascular disease (CVD), the molecular underpinning of this connection remains enigmatic. Here, we report aberrant expression of H19 lncRNA and TET1 in endothelial cells (ECs) of human atherosclerotic coronary arteries. Using primary human umbilical vein endothelial cells (HUVECs) and aortic endothelial cells (HAoECs) we show that TNF-α, a known risk factor for endothelial dysfunction and CVD, induces H19 expression which in turn activates TGF-ß signaling and EndMT via a TET1-dependent epigenetic mechanism. We also show that H19 regulates TET1 expression at the posttranscriptional level. Further, we provide evidence that this H19/TET1-mediated regulation of TGF-ß signaling and EndMT occurs in mouse pulmonary microvascular ECs in vivo under hyperglycemic conditions. We propose that endothelial activation of the H19/TET1 axis may play an important role in EndMT and perhaps CVD.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Largo no Codificante/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Células Cultivadas , Vasos Coronarios/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Procesamiento Postranscripcional del ARN/fisiología , Transducción de Señal/fisiología
9.
Cell Rep ; 30(5): 1310-1318.e5, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32023451

RESUMEN

Pathological activation of TGF-ß signaling is universal in fibrosis. Aberrant TGF-ß signaling in conjunction with transdifferentiation of hepatic stellate cells (HSCs) into fibrogenic myofibroblasts plays a central role in liver fibrosis. Here we report that the DNA demethylase TET3 is anomalously upregulated in fibrotic livers in both humans and mice. We demonstrate that in human HSCs, TET3 promotes profibrotic gene expression by upregulation of multiple key TGF-ß pathway genes, including TGFB1. TET3 binds to target gene promoters, inducing demethylation, which in turn facilitates chromatin remodeling and transcription. We also reveal a positive feedback loop between TGF-ß1 and TET3 in both HSCs and hepatocytes. Furthermore, TET3 knockdown ameliorates liver fibrosis in mice. Our results uncover a TET3/TGF-ß1 positive feedback loop as a crucial determinant of liver fibrosis and suggest that inhibiting TET3 may represent a therapeutic strategy for liver fibrosis and perhaps other fibrotic diseases.


Asunto(s)
Dioxigenasas/metabolismo , Retroalimentación Fisiológica , Factor de Crecimiento Transformador beta1/metabolismo , Adulto , Animales , Secuencia de Bases , Línea Celular , Epigénesis Genética , Femenino , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Transducción de Señal , Regulación hacia Arriba/genética
10.
Nat Commun ; 11(1): 342, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953394

RESUMEN

Precise control of hepatic glucose production (HGP) is pivotal to maintain systemic glucose homeostasis. HNF4α functions to stimulate transcription of key gluconeogenic genes. HNF4α harbors two promoters (P2 and P1) thought to be primarily active in fetal and adult livers, respectively. Here we report that the fetal version of HNF4α is required for HGP in the adult liver. This isoform is acutely induced upon fasting and chronically increased in type-2 diabetes (T2D). P2 isoform induction occurs in response to glucagon-stimulated upregulation of TET3, not previously shown to be involved in HGP. TET3 is recruited to the P2 promoter by FOXA2, leading to promoter demethylation and increased transcription. While TET3 overexpression augments HGP, knockdown of either TET3 or the P2 isoform alone in the liver improves glucose homeostasis in dietary and genetic mouse models of T2D. These studies unmask an unanticipated, conserved regulatory mechanism in HGP and offer potential therapeutic targets for T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Dioxigenasas/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Hígado/metabolismo , Isoformas de Proteínas/metabolismo , Animales , Desmetilación del ADN , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Modelos Animales de Enfermedad , Ayuno , Regulación de la Expresión Génica , Glucagón/metabolismo , Glucosa/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Activación Transcripcional , Transcriptoma , Regulación hacia Arriba
11.
Cell Death Dis ; 10(8): 592, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391459

RESUMEN

Since publication of this article, Dr Ramanaiah Mamillapalli reported that his last name had published incorrectly as Ramillapalli. The publisher apologizes to the authors and to readers for this error, which has not been fixed in the original article.

12.
Oncogene ; 38(27): 5356-5366, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31089260

RESUMEN

Uterine leiomyomas or fibroids (UFs) are benign tumors characterized by hyperplastic smooth muscle cells and excessive deposition of extracellular matrix (ECM). Afflicting ~80% of women, and symptomatic in 25%, UFs bring tremendous suffering and are an economic burden worldwide; they cause severe pain and bleeding, and are the leading cause of hysterectomy. Yet, UFs are severely understudied with few effective treatment options available; those that are available frequently have significant side effects such as menopausal symptoms. Recently, integrated genome-scale studies have revealed mutations and fibroid subtype-specific expression changes in key driver genes, with MED12 and HMGA2 together contributing to nearly 90% of all UFs, but their regulation of expression is poorly characterized. Here we report that the expression of H19 long noncoding RNA (lncRNA) is aberrantly increased in UFs. Using cell culture and genome-wide transcriptome and methylation profiling analyses, we demonstrate that H19 promotes expression of MED12, HMGA2, and key ECM-remodeling genes via multiple mechanisms including a new class of epigenetic modification by TET3. Our results mark the first example of an evolutionarily conserved lncRNA in pathogenesis of UFs and regulation of TET expression. Given the link between a H19 single-nucleotide polymorphism (SNP) and increased risk and tumor size of UFs, and the existence of multiple fibroid subtypes driven by key pathway genes regulated by H19, we propose a unifying mechanism for pathogenesis of uterine fibroids mediated by H19 and identify a pathway for future exploration of novel target therapies for uterine leiomyomas.


Asunto(s)
Leiomioma/genética , ARN Largo no Codificante/fisiología , Neoplasias Uterinas/genética , Línea Celular Tumoral , Metilación de ADN , Dioxigenasas/genética , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Proteína HMGA2/genética , Humanos , Leiomioma/patología , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Neoplasias Uterinas/patología
13.
Diabetes ; 67(11): 2183-2198, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30201684

RESUMEN

Skeletal muscle plays a pivotal role in regulating systemic glucose homeostasis in part through the conserved cellular energy sensor AMPK. AMPK activation increases glucose uptake, lipid oxidation, and mitochondrial biogenesis, leading to enhanced muscle insulin sensitivity and whole-body energy metabolism. Here we show that the muscle-enriched H19 long noncoding RNA (lncRNA) acts to enhance muscle insulin sensitivity, at least in part, by activating AMPK. We identify the atypical dual-specificity phosphatase DUSP27/DUPD1 as a potentially important downstream effector of H19. We show that DUSP27, which is highly expressed in muscle with previously unknown physiological function, interacts with and activates AMPK in muscle cells. Consistent with decreased H19 expression in the muscle of insulin-resistant human subjects and rodents, mice with genetic H19 ablation exhibit muscle insulin resistance. Furthermore, a high-fat diet downregulates muscle H19 via both posttranscriptional and epigenetic mechanisms. Our results uncover an evolutionarily conserved, highly expressed lncRNA as an important regulator of muscle insulin sensitivity.


Asunto(s)
Adenilato Quinasa/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Composición Corporal/fisiología , Regulación hacia Abajo , Técnica de Clampeo de la Glucosa , Humanos , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , ARN Largo no Codificante/genética
14.
JCI Insight ; 3(10)2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29769440

RESUMEN

Excessive hepatic glucose production (HGP) contributes significantly to the hyperglycemia of type 2 diabetes; however, the molecular mechanism underlying this dysregulation remains poorly understood. Here, we show that fasting temporally increases the expression of H19 long noncoding RNA (lncRNA) in nondiabetic mouse liver, whereas its level is chronically elevated in diet-induced diabetic mice, consistent with the previously reported chronic hepatic H19 increase in diabetic patients. Importantly, liver-specific H19 overexpression promotes HGP, hyperglycemia, and insulin resistance, while H19 depletion enhances insulin-dependent suppression of HGP. Using genome-wide methylation and transcriptome analyses, we demonstrate that H19 knockdown in hepatic cells alters promoter methylation and expression of Hnf4a, a master gluconeogenic transcription factor, and that this regulation is recapitulated in vivo. Our findings offer a mechanistic explanation of lncRNA H19's role in the pathogenesis of diabetic hyperglycemia and suggest that targeting hepatic H19 may hold the potential of new treatment for this disease.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hiperglucemia/metabolismo , Hígado/metabolismo , ARN Largo no Codificante/genética , Animales , Western Blotting , Metilación de ADN , Técnicas de Silenciamiento del Gen , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa/métodos , Regiones Promotoras Genéticas , Transcriptoma
15.
Cell Death Dis ; 8(12): e3175, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29215608

RESUMEN

Metformin is the most widely used anti-diabetic medication worldwide. However, human and animal studies suggest that prenatal metformin exposure may increase the risk of metabolic disorders in adult offspring, yet the underpinning mechanism remains unclear. Here we report that metformin-exposed mouse fetuses exhibit elevated expression of the H19 long noncoding RNA, which induces hypomethylation and increased expression of hepatocyte nuclear factor 4α (HNF4α). As a transcription factor essential for morphological and functional differentiation of hepatocytes, HNF4α also has an indispensable role in the regulation of expression of gluconeogenic genes. Consistently, H19 overexpression in a human liver cell line leads to decreased methylation and increased expression of Hnf4α, with concomitant activation of the gluconeogenic program. Mechanistically, we show that the methylation change of Hnf4α is induced by H19-mediated regulation of S-adenosylhomocysteine hydrolase. We also provide evidence that altered H19 expression is a direct effect of metformin in the fetal liver. Our results suggest that metformin from the mother can directly act upon the fetal liver to modify Hnf4α expression, a key factor for both liver development and function, and that perturbation of this H19/Hnf4α-mediated pathway may contribute to the fetal origin of adult metabolic abnormalities.


Asunto(s)
Factor Nuclear 4 del Hepatocito/genética , Hipoglucemiantes/efectos adversos , Metformina/efectos adversos , Efectos Tardíos de la Exposición Prenatal/genética , ARN Largo no Codificante/genética , Adenosilhomocisteinasa/genética , Adenosilhomocisteinasa/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Femenino , Feto , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Exposición Materna , Metilación , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , ARN Largo no Codificante/metabolismo , Transducción de Señal
16.
Oncotarget ; 7(25): 38398-38407, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27223264

RESUMEN

Fetal growth restriction (FGR) is a well-recognized risk factor for perinatal mortality and morbidity, as well as neurodevelopmental impairment and adulthood onset disorders. Here we report that the H19 long noncoding RNA (lncRNA) is significantly decreased in placentae from pregnancies with FGR. Downregulation of H19 leads to reduced migration and invasion of extravillous trophoblast (EVT) cells in vitro. This is consistent with reduced trophoblast invasion that has been observed in FGR. Genome-scale transcriptome profiling of EVT cells reveals significantly decreased expression of the type III TGF-ß receptor (TßR3) following H19 knockdown. Decreased TßR3 expression is also seen in FGR placentae. TßR3 repression decreases EVT cell migration and invasion, owing to impaired TGF-ß signaling through a non-canonical TGF-ß signaling pathway. Further, we identify TßR3 as a novel regulatory target of microRNA let-7. We propose that dysregulation of this newly identified H19/TßR3-mediated regulatory pathway may contribute to the molecular mechanism of FGR. Our findings are the first to show a lncRNA-based mechanism of FGR, holding promise for the development of novel predictive, diagnostic, and therapeutic modalities for FGR.


Asunto(s)
Retardo del Crecimiento Fetal/metabolismo , Placenta/patología , ARN Largo no Codificante/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Trofoblastos/patología , Movimiento Celular/fisiología , Regulación hacia Abajo , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/patología , Humanos , Placenta/metabolismo , Embarazo , ARN Largo no Codificante/metabolismo , Transfección , Trofoblastos/metabolismo
17.
Nat Commun ; 6: 10221, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26687445

RESUMEN

DNA methylation is essential for mammalian development and physiology. Here we report that the developmentally regulated H19 lncRNA binds to and inhibits S-adenosylhomocysteine hydrolase (SAHH), the only mammalian enzyme capable of hydrolysing S-adenosylhomocysteine (SAH). SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases that methylate diverse cellular components, including DNA, RNA, proteins, lipids and neurotransmitters. We show that H19 knockdown activates SAHH, leading to increased DNMT3B-mediated methylation of an lncRNA-encoding gene Nctc1 within the Igf2-H19-Nctc1 locus. Genome-wide methylation profiling reveals methylation changes at numerous gene loci consistent with SAHH modulation by H19. Our results uncover an unanticipated regulatory circuit involving broad epigenetic alterations by a single abundantly expressed lncRNA that may underlie gene methylation dynamics of development and diseases and suggest that this mode of regulation may extend to other cellular components.


Asunto(s)
Adenosilhomocisteinasa/metabolismo , ARN Largo no Codificante/metabolismo , Adenosilhomocisteinasa/genética , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Genoma , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Ratones , Unión Proteica , ARN Largo no Codificante/genética , S-Adenosilhomocisteína/metabolismo , ADN Metiltransferasa 3B
18.
EMBO Mol Med ; 7(8): 996-1003, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26089099

RESUMEN

Endometriosis affects approximately 15% of reproductive aged women and is associated with chronic pelvic pain and infertility. However, the molecular mechanisms by which endometriosis impacts fertility are poorly understood. The developmentally regulated, imprinted H19 long noncoding RNA (lncRNA) functions to reduce the bioavailability of microRNA let-7 by acting as a molecular sponge. Here we report that H19 expression is significantly decreased in the eutopic endometrium of women with endometriosis as compared to normal controls. We show that decreased H19 increases let-7 activity, which in turn inhibits Igf1r expression at the post-transcriptional level, thereby contributing to reduced proliferation of endometrial stromal cells. We propose that perturbation of this newly identified H19/Let-7/IGF1R regulatory pathway may contribute to impaired endometrial preparation and receptivity for pregnancy in women with endometriosis. Our finding represents the first example of a lncRNA-based mechanism in endometriosis and its associated infertility, thus holding potential in the development of novel therapeutics for women with endometriosis and infertility.


Asunto(s)
Proliferación Celular , Endometriosis/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Receptor IGF Tipo 1/metabolismo , Somatomedinas/metabolismo , Células del Estroma/fisiología , Endometriosis/fisiopatología , Femenino , Regulación de la Expresión Génica , Humanos , ARN Largo no Codificante/genética , Transducción de Señal
19.
Nucleic Acids Res ; 42(22): 13799-811, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25399420

RESUMEN

The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells.


Asunto(s)
Glucosa/metabolismo , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Regulación hacia Abajo , Retroalimentación Fisiológica , Humanos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Insulina/farmacología , Masculino , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas de Unión al ARN/fisiología , Transducción de Señal , Transactivadores/fisiología
20.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA