Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Angew Chem Int Ed Engl ; 63(21): e202402301, 2024 May 21.
Article En | MEDLINE | ID: mdl-38482741

Li+ de-solvation at solid-electrolyte interphase (SEI)-electrolyte interface stands as a pivotal step that imposes limitations on the fast-charging capability and low-temperature performance of lithium-ion batteries (LIBs). Unraveling the contributions of key constituents in the SEI that facilitate Li+ de-solvation and deciphering their mechanisms, as a design principle for the interfacial structure of anode materials, is still a challenge. Herein, we conducted a systematic exploration of the influence exerted by various inorganic components (Li2CO3, LiF, Li3PO4) found in the SEI on their role in promoting the Li+ de-solvation. The findings highlight that Li3PO4-enriched SEI effectively reduces the de-solvation energy due to its ability to attenuate the Li+-solvent interaction, thereby expediting the de-solvation process. Building on this, we engineer Li3PO4 interphase on graphite (LPO-Gr) anode via a simple solid-phase coating, facilitating the Li+ de-solvation and building an inorganic-rich SEI, resulting in accelerated Li+ transport crossing the electrode interfaces and interphases. Full cells using the LPO-Gr anode can replenish its 80 % capacity in 6.5 minutes, while still retaining 70 % of the room temperature capacity even at -20 °C. Our strategy establishes connection between the de-solvation characteristics of the SEI components and the interfacial structure design of anode materials for high performance LIBs.

2.
ACS Nano ; 18(11): 8496-8510, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38456818

Designing three-dimensional (3D) porous carbonaceous skeletons for K metal is one of the most promising strategies to inhibit dendrite growth and enhance the cycle life of potassium metal batteries. However, the nucleation and growth mechanism of K metal on 3D skeletons remains ambiguous, and the rational design of suitable K hosts still presents a significant challenge. In this study, the relationships between the binding energy of skeletons toward K and the nucleation and growth of K are systematically studied. It is found that a high binding energy can effectively decrease the nucleation barrier, reduce nucleation volume, and prevent dendrite growth, which is applied to guide the design of 3D current collectors. Density functional theory calculations show that P-doped carbon (P-carbon) exhibits the highest binding energy toward K compared to other elements (e.g., N, O). As a result, the K@P-PMCFs (P-binding porous multichannel carbon nanofibers) symmetric cell demonstrates an excellent cycle stability of 2100 h with an overpotential of 85 mV in carbonate electrolytes. Similarly, the perylene-3,4,9,10-tetracarboxylic dianhydride || K@P-PMCFs cell achieves ultralong cycle stability (85% capacity retention after 1000 cycles). This work provides a valuable reference for the rational design of 3D current collectors.

3.
Adv Mater ; 36(13): e2308675, 2024 Mar.
Article En | MEDLINE | ID: mdl-38100819

The most successful lithium-ion batteries (LIBs) based on ethylene carbonate electrolytes and graphite anodes still suffer from severe energy and power loss at temperatures below -20 °C, which is because of high viscosity or even solidification of electrolytes, sluggish de-solvation of Li+ at the electrode surface, and slow Li+ transportation in solid electrolyte interphase (SEI). Here, a coherent lithium phosphide (Li3P) coating firmly bonding to the graphite surface to effectively address these challenges is engineered. The dense, continuous, and robust Li3P interphase with high ionic conductivity enhances Li+ transportation across the SEI. Plus, it promotes Li+ de-solvation through an electron transfer mechanism, which simultaneously accelerates the charge transport kinetics and stands against the co-intercalation of low-melting-point solvent molecules, such as propylene carbonate (PC), 1,3-dioxolane, and 1,2-dimethoxyethane. Consequently, an unprecedented combination of high-capacity retention and fast-charging ability for LIBs at low temperatures is achieved. In full-cells encompassing the Li3P-coated graphite anode and PC electrolytes, an impressive 70% of their room-temperature capacity is attained at -20 °C with a 4 C charging rate and a 65% capacity retention is achieved at -40 °C with a 0.05 C charging rate. This research pioneers a transformative trajectory in fortifying LIB performance in cryogenic environments.

4.
ACS Nano ; 17(17): 16478-16490, 2023 Sep 12.
Article En | MEDLINE | ID: mdl-37589462

Potassium-ion batteries (KIBs) are promising candidates for large-scale energy storage devices due to their high energy density and low cost. However, the large potassium-ion radius leads to its sluggish diffusion kinetics during intercalation into the lattice of the electrode material, resulting in electrode pulverization and poor cycle stability. Herein, vanadium trioxide anodes with different oxygen vacancy concentrations (V2O2.9, V2O2.8, and V2O2.7 determined by the neutron diffraction) are developed for KIBs. The V2O2.8 anode is optimal and exhibits excellent potassium storage performance due to the realization of expanded interlayer spacing and efficient ion/electron transport. In situ X-ray diffraction indicates that V2O2.8 is a zero-strain anode with a volumetric strain of 0.28% during the charge/discharge process. Density functional theory calculations show that the impacts of oxygen defects are embodied in reducing the band gap, increasing electron transfer ability, and lowering the diffusion energy barriers for potassium ions. As a result, the electrode of nanosized V2O2.8 embedded in porous reticular carbon (V2O2.8@PRC) delivers high reversible capacity (362 mAh g-1 at 0.05 A g-1), ultralong cycling stability (98.8% capacity retention after 3000 cycles at 2 A g-1), and superior pouch-type full-cell performance (221 mAh g-1 at 0.05 A g-1). This work presents an oxygen defect engineering strategy for ultrastable KIBs.

5.
Perfusion ; : 2676591231163270, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36921566

BACKGROUND: Myocardial protection is essential in cardiac surgery with cardiopulmonary bypass The Del Nido cardioplegia which was initially used in pediatric cardiac surgery, has been increasingly used in adult cardiac surgery recently. However, no literature has reported the efficacy of DNC in hypertrophic obstructive cardiomyopathy. METHODS: This retrospective study involved elective patients who underwent extended surgical myectomy with or without concomitant cardiac surgical procedures between September 2017 and June 2022. Patients were distributed into two groups, the DNC and the CBC group. The primary outcome was high-sensitivity cardiac troponin I (hs-TnI) and creatine kinase-MB (CK-MB) levels at the 0, 1, and 2 postoperative days. The secondary outcomes contained: intraoperative LVEF, return to spontaneous rhythm; postoperative myocardial infarction, worsening or deteriorating of EF, mechanical circulatory support; new-onset atrial fibrillation; mechanical ventilation duration; intensive care unit hours; in-hospital days. RESULTS: Fifty-nine patients were included and divided into the CBC (n = 15) and the DNC group (n = 44). There was no statistical difference in patients' demographics and preoperative parameters between the two groups. No in-hospital mortality. The total cardioplegia volume [21.93(18.36,26.07) vs. 25.68(23.17,37.12), p = 0.012] and infusion times [1(1,1) vs. 2(2,3), p = 0.000] were less and the incidence of return to spontaneous rhythm after declamping was higher in the DNC group [97.7% vs. 73.3%, p = 0.013]. Postoperative hs-TnI and CK-MB levels were comparable between the two groups. A longer DNC infusion interval was associated with higher levels of CK-MB on postoperative day 1 and day 2 (p = 0.009 and p = 0.011, respectively). CONCLUSIONS: The use of DNC in extended surgical myectomy procedure was as safe and effective as CBC. However, DNC infusion interval over 60 minutes was associated with increased postoperative CK-MB levels.

6.
Vascular ; 31(2): 250-256, 2023 Apr.
Article En | MEDLINE | ID: mdl-34875933

OBJECTIVE: This study aims to investigate the methods for rat spinal cord ischemia injury models with a high long-term survival rate. METHODS: The rats were divided into three groups: the treatment group, the control group, and the sham operation group. The treatment group had a blocked thoracic aorta (landing zone 3 by Ishimaru - T11) + aortic bypass circulation for 20 min. In the control group, the thoracic aorta at the landing zone 3 was blocked for 20 min. In the sham operation group, only thoracotomy without thoracic aortic occlusion was performed. The mean arterial blood pressure (MABP) of the thoracic aorta and caudal artery before and after thoracic aortic occlusion was monitored intraoperatively. Spinal cord function was monitored by a transcranial motor evoked potential (Tc-MEP) during the operation. Spinal cord function was evaluated by the BBB scale (Basso, Beattie, & Bresnahan locomotor rating scale) scores at multiple postoperative time points. The spinal cord sections of the rats were observed for 7 days after surgery, and the survival curves were analyzed for 28 days after surgery. RESULTS: After aortic occlusion, the MABP of thoracic aorta decreased to 6% of that before occlusion, and the MABP of caudal artery decreased to 63% of that before occlusion in the treatment group. In the control group, the MABP of both thoracic aorta and caudal artery decreased to 19% of that before occlusion. The Tc-MEP waveform of the treatment group disappeared after 6 min, and that of the control group disappeared after 8 min until the end of surgery. There was no change in the Tc-MEP waveform in the sham operation group. The BBB score of the treatment group decreased more obviously than the control group, and there was a significant difference. There was no decrease in the sham group. Spinal cord sections showed a large number of degeneration and necrosis of neurons, infiltration of inflammatory cells, and proliferation of surrounding glial cells in the treatment group. In the control group, multiple neurons were necrotic. The histology of the sham operation group was normal. The 28-day survival rate of the treatment group was 73.3%, which was higher than the control group (40.0%), and there was a significant difference (p < 0.05). CONCLUSION: Thoracic aortic occlusion combined with aortic bypass is an effective modeling method for rats with accurate modeling effects and high long-term survival rates.


Aortic Diseases , Arterial Occlusive Diseases , Spinal Cord Ischemia , Rats , Animals , Spinal Cord Ischemia/etiology , Ischemia , Spinal Cord/blood supply , Spinal Cord/pathology , Spinal Cord/physiology , Aorta, Thoracic/diagnostic imaging , Aorta, Thoracic/surgery , Aorta, Thoracic/pathology , Aortic Diseases/pathology , Necrosis/pathology
7.
J Environ Manage ; 319: 115660, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-35803073

Megacities exploit enormous amounts of lands from outside of the city boundary. However, there is a large knowledge gap in the impact of socioeconomic activities associated land-use changes on carbon emissions of megacities during the urbanization. In the current work, we combined the material-flow analysis, environmental extended input-output model, and land matrix data to construct a hybrid network framework. Such a framework was used to estimate the carbon emissions driving from trade between sectors and associated land use changes during 2000-2015 in Shenzhen, China. Results indicated that the total carbon emissions of Shenzhen had a growth rate of 262.7% from 2000 to 2010 and a declining rate of 17.6% from 2010 to 2015. This pattern is associated with large declining rates in the overall energy and carbon intensities by 53.8% and 63.2% during the period of 2000-2015. Meanwhile, embodied carbon emissions of Shenzhen kept rising by approximately twofold, accompanied by the increasing trends in the land-use related carbon emissions both inside and outside of city boundary. The land uses per unit GDP showed a dramatical decline by 85.7% and with a large contribution of the transportation and industrial land, and this caused a gradual increase in overall land-use related emissions with average growth rate of 7.1%. In addition, the land-use change related carbon emissions of the transportation and industrial land had a cumulative growth of 85%. As for the embodied land-use related carbon emissions, the dominated contributor was the Agriculture sector which drove an average of 0.13 MtC yr-1 emissions via importing agricultural products from outside of Shenzhen. This study provides a scientific foundation for corporately mitigate carbon emissions between megacities and their surrounding regions.


Carbon , Urbanization , Carbon/analysis , Carbon Dioxide/analysis , China , Cities , Industry
8.
Chem Commun (Camb) ; 56(5): 735-738, 2020 Jan 16.
Article En | MEDLINE | ID: mdl-31840710

An efficient electrochemical system for the construction of diselenytlated indolizines from available pyridines, ketones and diselenides under undivided electrolytic conditions was developed. No external oxidants and transition-metal catalysts are needed for achieving this three-component tandem reaction realizing C-C, C-N and C-Se bond formations.

9.
Biosens Bioelectron ; 142: 111594, 2019 Oct 01.
Article En | MEDLINE | ID: mdl-31430612

We report a novel anode electrocatalyst, iron carbide nanoparticles dispersed in porous graphitized carbon (Nano-Fe3C@PGC), which is synthesized by facile approach involving a direct pyrolysis of ferrous gluconate and a following removal of free iron, but provides microbial fuel cells with superior performances. The physical characterizations confirm the unique configuration of iron carbide nanoparticles with porous graphitized carbon. Electrochemical measurements demonstrate that the as-synthesized Nano-Fe3C@PGC exhibits an outstanding electrocatalytic activity toward the charge transfer between bacteria and anode. Equipped with Nano-Fe3C@PGC, the microbial fuel cells based on a mixed bacterium culture yields a power density of 1856 mW m-2. The resulting excellent performance is attributed to the large electrochemical active area and the high electronic conductivity that porous graphitized carbon provides and the enriched electrochemically active microorganisms and enhanced activity towards the redox reactions in microorganisms by Fe3C nanoparticles.


Bioelectric Energy Sources , Carbon Compounds, Inorganic/chemistry , Graphite/chemistry , Iron Compounds/chemistry , Nanostructures/chemistry , Bioelectric Energy Sources/economics , Bioelectric Energy Sources/microbiology , Carbon Compounds, Inorganic/economics , Catalysis , Electric Conductivity , Electrodes , Equipment Design , Graphite/economics , Iron Compounds/economics , Nanoparticles/chemistry , Nanoparticles/economics , Nanoparticles/ultrastructure , Nanostructures/economics , Nanostructures/ultrastructure , Porosity
...