Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Fish Shellfish Immunol ; 151: 109703, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38878912

Heme oxygenase-1 (HO-1), an inducible rate-limiting metabolic enzyme, exerts critical immunomodulatory functions by potential anti-oxidant, anti-inflammatory, and anti-apoptotic activities. Although accumulative studies have focused on the immune functions of HO-1 in mammals, the roles in fish are poorly understood, and the reports on involvement in the defensive and immune response are very limited. In this study, On-HO-1 gene from Oreochromis niloticus was successfully cloned and identified, which contained an open reading frame (ORF) of 816 bp and coded for a protein of 271 amino acids. The On-HO-1 protein phylogenetically shared a high homology with HO-1 in other teleost fish (76.10%-98.89 %) and a lowly homology with HO-1 in mammals (38.98%-41.55 %). The expression levels of On-HO-1 were highest in the liver of healthy tilapias and sharply induced by Streptococcus agalactiae or Aeromonas hydrophila. Besides, On-HO-1 overexpression significantly increased non-specific immunological parameters in serum during bacterial infection, including LZM, SOD, CAT, ACP, and AKP. It also exerted anti-inflammatory and anti-apoptotic effects in response to the immune response of the infection with S. agalactiae or A. hydrophila by upregulating anti-inflammatory factors (IL-10, TGF-ß), autophagy factors (ATG6, ATG8) and immune-related pathway factors (P65, P38), and down-regulating pro-inflammatory factors (IL-1ß, IL-6, TNF-α), apoptotic factors (Caspase3, Caspase9), pyroptosis factor (Caspase1), and inflammasome (NLRP3). These results suggested that On-HO-1 involved in immunomodulatory functions and host defense in Nile tilapia.

2.
J Inflamm Res ; 17: 2959-2975, 2024.
Article En | MEDLINE | ID: mdl-38764497

Background: Intervertebral disc degeneration (IDD) is the leading cause of low back pain (LBP). The mechanism of IDD development and progression is not fully understood. Peripheral biomarkers are increasingly vital non-radioactive methods in early detection and diagnosis for IDD. Nevertheless, less attention has been paid to the role of mitophagy genes in the progress of IDD. This study aimed to identify the mitophagy disease-causing genes in the process of IDD and mitophagy diagnostic biomarkers for IDD. Methods: Mitophagy-related differentially expressed genes (MRDEGs) related to IDD were investigated by analyzing the microarray datasets of IDD cases from GEO, PathCards and Molecular Signatures Databases. We used R software, WGCNA, PPI, mRNA-miRNA, mRNA-TF, GO, KEGG, GSEA, GSVA and Cytoscape to analyze and visualize the data. We further used ssGSEA for immunoinfiltration analysis to obtain different immune cell infiltration. LASSO model was developed to screen for genes that met the diagnostic gene model requirements. Finally, qRT-PCR, Western blotting and HE were used to verify hub genes and their expression from clinical IDD samples. Results: We identified 14 MRDEGs and 12 hub genes. GO, KEGG, GSEA and GSVA analyses demonstrated that hub genes were critical for the development of IDD. LASSO diagnostic model consisted of six hub genes, among which SQSTM1, ATG7 and OPTN were significantly different between the two IDD disease subtypes. At the same time, SQSTM1 also had a high correlation with immune characteristic subtypes. The results of qRT-PCR and Western blotting also indicated that these genes were significantly differentially expressed in nucleus pulposus cells (NPCs) of the IDD group. Conclusion: We explored an association between MRDEGs-associated signature in IDD and validated that hub genes like SQSTM1 might serve as biomarkers for diagnostic and therapeutic targets for IDD. Meanwhile, this study can provide new insights into the functional characteristics and mechanism of mitophagy in the development of IDD.

4.
Fish Shellfish Immunol ; 145: 109353, 2024 Feb.
Article En | MEDLINE | ID: mdl-38184180

In the past decade, the outbreak of Streptococcus agalactiae has caused significant economic losses in tilapia farming. Vaccine immunization methods and strategies have gradually evolved from single-mode to multi-mode overall prevention and control strategies. In this study, an inactivated vaccine of S. agalactiae with a chitosan oligosaccharide (COS) adjuvant was constructed using different administration methods: intraperitoneal injection (Ip), immersion combined with intraperitoneal injection (Im + Ip), immersion combined with oral administration (Im + Or), and oral administration (Or). Safety analysis revealed no adverse effects on tilapia, and the vaccine significantly promoted fish growth and development when administered through Im + Or or Or immunization. Following vaccination, innate immunity parameters including SOD, ACP and CAT activities were all significantly enhanced. Additionally, specific serum IgM antibodies reached their highest level at the 6th week post vaccination. Skin and intestinal mucus IgT antibodies reached peaked at the 6th and 7th week post vaccination, respectively. The relative peak expression values for IL-8, IL-12, MHC-I, MHC-II, IgM, IgT, CD4, CD8, TNFα, IFNγ from Im + Ip group were significantly higher than those in Ip group, Im + Or group and Or group in most cases (p < 0.05). Importantly, the relative protection survival of Im + Ip group was the highest (78.6%), followed by the Ip group (71.4%), the Or group (64.3%) and the Im + Or group (57.1%). In summary, this study encourages further research on multi-channel immunization strategies of other kinds of vaccines in other aquatic economic animals to improve their disease resistance.


Chitosan , Cichlids , Fish Diseases , Streptococcal Infections , Tilapia , Animals , Streptococcus agalactiae , Bacterial Vaccines , Vaccination , Immunity, Innate , Immunoglobulin M , Oligosaccharides
5.
Fish Shellfish Immunol ; 145: 109344, 2024 Feb.
Article En | MEDLINE | ID: mdl-38151141

Non-specific cytotoxic cells (NCCs) are cytotoxic cell population found in innate immune system of teleost, playing crucial role in immune defense. Non-specific cytotoxic cell receptor protein 1 (NCCRP1) is responsible for recognizing target cells and activating NCCs. That said, since the studies regarding NCCs' role in fish during pathogen infection are few, it is necessary to conduct more comprehensive studies. In this study, we identified NCCRP1 from Trachinotus ovatus (ToNCCRP1). The open reading frame of ToNCCRP1 was found to be 702 bp, encoding a protein of 233 amino acids. Additionally, ToNCCRP1 contained a conserved F-box-associated domain and exhibited more than 61 % similarity to NCCRP1 in other fish species. Quantitative real-time PCR analysis showed that ToNCCRP1 mRNA was generally expressed in all tissues, with the highest level expressed in the liver. Furthermore, the expression of ToNCCRP1 was significantly upregulated following infection with Streptococcus iniae. In vitro experiments demonstrated that recombinant ToNCCRP1 possessed bacterial agglutination and binding capabilities, suggesting its antibacterial function. Additionally, we investigated the immune response of head kidney leukocytes (HKLs) to ToNCCRP1. The challenge experiments revealed that ToNCCRP1 played a role in the immune response by influencing the inflammatory response, regulating signaling pathways and apoptosis in HKLs. These findings suggest that NCCRP1 is involved in the immune defense against pathogenic infections in golden pompano, providing insights into the immune mechanisms of teleost.


Fish Diseases , Fish Proteins , Animals , Fish Proteins/genetics , Fishes , Receptors, Cell Surface , Immunity, Innate/genetics
6.
Mar Drugs ; 21(10)2023 Oct 23.
Article En | MEDLINE | ID: mdl-37888483

Heme oxygenase-1 (HO-1), which could be highly induced under the stimulation of oxidative stress, functions in reducing the damage caused by oxidative stress, and sulforaphane (SFN) is an antioxidant. This study aims to investigate whether HO-1 is involved in the repair of oxidative damage induced by oxidized fish oil (OFO) in Litopenaeus vannamei by sulforaphane (SFN). The oxidative stress model of L. vannamei was established by feeding OFO feed (OFO accounts for 6%), and they were divided into the following four groups: control group (injected with dsRNA-EGFP and fed with common feed), dsRNA-HO-1 group (dsRNA-HO-1, common feed), dsRNA-HO-1 + SFN group (dsRNA-HO-1, supplement 50 mg kg-1 SFN feed), and SFN group (dsRNA-EGFP, supplement 50 mg kg-1 SFN feed). The results showed that the expression level of HO-1 in the dsRNA-HO-1 + SFN group was significantly increased compared with the dsRNA-HO-1 group (p < 0.05). The activities of SOD in muscle and GPX in hepatopancreas and serum of the dsRNA-HO-1 group were significantly lower than those of the control group, and MDA content in the dsRNA-HO-1 group was the highest among the four groups. However, SFN treatment increased the activities of GPX and SOD in hepatopancreas, muscle, and serum and significantly reduced the content of MDA (p < 0.05). SFN activated HO-1, upregulated the expression of antioxidant-related genes (CAT, SOD, GST, GPX, Trx, HIF-1α, Nrf2, prx 2, Hsp 70), and autophagy genes (ATG 3, ATG 5), and stabilized the expression of apoptosis genes (caspase 2, caspase 3) in the hepatopancreas (p < 0.05). In addition, knocking down HO-1 aggravated the vacuolation of hepatopancreas and increased the apoptosis of hepatopancreas, while the supplement of SFN could repair the vacuolation of hepatopancreas and reduce the apoptosis signal. In summary, HO-1 is involved in the repair of the oxidative damage induced by OFO in L. vannamei by SFN.


Antioxidants , Heme Oxygenase-1 , Antioxidants/pharmacology , Antioxidants/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Fish Oils/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Sulfoxides , Superoxide Dismutase/metabolism
7.
Fish Shellfish Immunol ; 141: 109069, 2023 Oct.
Article En | MEDLINE | ID: mdl-37696347

Apolipoprotein E (ApoE), a critical targeting protein, has been found to play an essential role in the protection against infection and inflammation. However, the immune functions of ApoE against bacterial infection in fish have not been investigated. In this study, a full-length cDNA for ApoE, named On-ApoEb was cloned from Oreochromis niloticus. The predicted cDNA sequence was 831bp in length and coded for a protein of 276 amino acid residues, which shared 63.87%-98.55% identity with ApoEb from other fishes, and about 22% identity with ApoEb from mammals. On-ApoEb from O. niloticus was highly expressed in the liver and could be activated in the tissues (liver, spleen, brain, and intestine) after infection with Streptococcus agalactiae. Moreover, the results revealed that On-ApoEb could decrease the expression levels of pro-inflammatory factors, immune-related pathways, and apoptosis, while increasing the expression levels of anti-inflammatory factors. Furthermore, On-ApoEb was noted to improve the survival rate and reduce the bacterial load in the liver and spleen. These results suggested that On-ApoEb was connected with immune response and had anti-inflammation and anti-apoptosis activities.


Cichlids , Fish Diseases , Streptococcal Infections , Animals , Amino Acid Sequence , Streptococcus agalactiae/physiology , DNA, Complementary/genetics , Apolipoproteins/genetics , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Fish Proteins/chemistry , Gene Expression Regulation , Mammals/metabolism
8.
Fish Shellfish Immunol ; 141: 109004, 2023 Oct.
Article En | MEDLINE | ID: mdl-37598734

Interleukin 8 (IL8) is vital in promoting inflammation and is a crucial mediator in various physiopathological processes while influencing immunological function. The effect of IL8 on the immunological response to acute bacterial infections in Nile tilapia (Oreochromis niloticus) remains unknown. This work found an IL8 gene from Nile tilapia (On-IL8). It includes a 285 bp open reading frame and codes for 94 amino acids. The transcript levels of On-IL8 were highest in the head-kidney tissue and sharply induced by Streptococcus agalactiae and Aeromonas hydrophila. Besides, in vitro experiments revealed that On-IL8 regulated a variety of immunological processes and promoted inflammatory responses. Moreover, On-IL8 suppressed the NF-κB signaling pathway, consistent with in vitro results. These significant findings serve as the basis for further investigation into how IL8 confers protection to bony fish in opposition to bacterial infections.


Cichlids , Fish Diseases , Streptococcal Infections , Animals , Interleukin-8/genetics , Streptococcal Infections/veterinary , Gene Expression Regulation , Amino Acid Sequence , Fish Proteins/chemistry , Streptococcus agalactiae/physiology
9.
Fish Shellfish Immunol ; 139: 108932, 2023 Aug.
Article En | MEDLINE | ID: mdl-37414305

C-type lectins (CTLs), as pattern recognition receptors (PRRs), play an important role in the innate immunity of Litopenaeus vannamei. In this study, a novel CTL, named perlucin-like protein (PLP), was identified from L. vannamei, which shared homology sequences of PLP from Penaeus monodon. PLP from L. vannamei was expressed in the hepatopancreas, eyestalk, muscle and brain and could be activated in the tissues (hepatopancreas, muscle, gill and intestine) after infection with the pathogen Vibrio harveyi. Bacteria (Vibrio alginolyticus, V. parahaemolyticus, V. harveyi, Streptococcus agalactiae and Bacillus subtilis) could be bound and agglutinated by the PLP recombinant protein in a Ca2+-dependent manner. Moreover, PLP could stabilise the expression of the immune-related genes (ALF, SOD, HSP70, Toll4 and IMD) and apoptosis gene (Caspase2). The RNAi of PLP could remarkably affect the expression of antioxidant gene, antimicrobial peptide genes, other CTLs, apoptosis genes, Toll signaling pathways, and IMD signaling pathways. Moreover, PLP reduced the bacterial load in the hepatopancreas. These results suggested that PLP was involved in the innate immune response against V. harveyi infection by recognising bacterial pathogens and activating the expression of immune-related and apoptosis genes.


Penaeidae , Vibrio Infections , Vibrio , Animals , Vibrio/physiology , Vibrio Infections/veterinary , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Immunity, Innate/genetics , Arthropod Proteins
10.
Fish Shellfish Immunol ; 139: 108925, 2023 Aug.
Article En | MEDLINE | ID: mdl-37414306

Apolipoprotein A-I (ApoA-I) is a lipoprotein involved in a variety of physiological and pathological processes. However, the immunomodulatory functions of ApoA-I in fish are not well understood. In this study, ApoA-I from Nile tilapia (Oreochromis niloticus) (On-ApoA-I) was identified, and its function in bacterial infection was investigated. The open reading frame of On-ApoA-I is 792 bp, which codes for a protein containing 263 amino acids. On-ApoA-I shared over 60% sequence similarity with other teleost fish and more than 20% with mammalian ApoA-I. On-ApoA-I was found to be highly expressed in the liver and significantly induced during Streptococcus agalactiae infection by qRT‒PCR analysis. Furthermore, invivo studies revealed that recombinant On-ApoA-I protein could suppress inflammation and apoptosis and improve the likelihood of surviving bacterial infection. Additionally, On-ApoA-I showed invitro antimicrobial properties against Gram-positive and Gram-negative bacteria. These findings offer a theoretical basis for further investigations into the role of ApoA-I in fish immunology.


Cichlids , Fish Diseases , Streptococcal Infections , Animals , Apolipoprotein A-I/genetics , Apolipoprotein A-I/metabolism , Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Positive Bacteria , Streptococcal Infections/veterinary , Streptococcus agalactiae/physiology , Fish Proteins/chemistry , Gene Expression Regulation , Mammals/metabolism
11.
Fish Shellfish Immunol ; 139: 108923, 2023 Aug.
Article En | MEDLINE | ID: mdl-37394017

CD27 is a member of the TNF-receptor superfamily and plays various roles in immunities. However, the detailed information and mechanism of CD27 in bony fish immunity remain unclear. Therefore, in this research, certain interesting roles of CD27 in Nile tilapia (On-CD27) were determined. On-CD27 was largely expressed in the immune organs, head kidney, and spleen, and was sharply induced during bacterial infection. The in vitro tests suggested On-CD27 was involved in regulating inflammatory responses, activating immune-related signal pathways, and inducing apoptosis and pyroptosis progress. The scRNA data and in vivo experiments indicated that On-CD27 is mainly expressed in CD4+ T cells and involved in both innate and adaptive immunities. The present data provide a theoretical principle for further research on the mechanisms of CD27 in the innate and adaptive immunities of fish.


Cichlids , Fish Diseases , Streptococcal Infections , Animals , Fish Proteins , Spleen , Head Kidney , Streptococcus agalactiae/physiology , Immunity, Innate/genetics , Gene Expression Regulation
12.
Fish Shellfish Immunol ; 135: 108621, 2023 Apr.
Article En | MEDLINE | ID: mdl-36803777

C-type lectins (CTLs), as a member of pattern recognition receptors, play a vital role in the innate immune response of invertebrates to eliminate micro-invaders. In this study, a novel CTL of Litopenaeus vannamei, namely, LvCTL7, was successfully cloned, with an open reading frame of 501 bp and a capability to encode 166 amino acids. Blast analysis showed that the amino acid sequence similarity between LvCTL7 and MjCTL7 (Marsupenaeus japonicus) was 57.14%. LvCTL7 was mainly expressed in hepatopancreas, muscle, gill and eyestalk. Vibrio harveyi can significantly affect LvCTL7 expression level in hepatopancreases, gills, intestines and muscles (p < 0.05). LvCTL7 recombinant protein can bind to Gram-positive bacteria (Bacillus subtilis) and Gram-negative bacteria (Vibrio parahaemolyticus and V. harveyi). It can cause the agglutination of V. alginolyticus and V. harveyi, but it had no effect on Streptococcus agalactiae and B. subtilis. The expression levels of SOD, CAT, HSP 70, Toll 2, IMD and ALF genes in the challenge group added with LvCTL7 protein were more stable than those in the direct challenge group (p < 0.05). Moreover, knockdown of LvCTL7 by double-stranded RNA interference downregulated the expression levels of genes (ALF, IMD and LvCTL5) that protect against bacterial infection (p < 0.05). These results indicated that LvCTL7 had microbial agglutination and immunoregulatory activity, and it was involved in the innate immune response against Vibrio infection in L. vannamei.


Penaeidae , Vibrio Infections , Vibrio parahaemolyticus , Animals , Lectins, C-Type/chemistry , Immunity, Innate/genetics , Vibrio Infections/veterinary , Vibrio parahaemolyticus/physiology , Receptors, Pattern Recognition/genetics , Arthropod Proteins , Phylogeny
13.
Fish Shellfish Immunol ; 133: 108547, 2023 Feb.
Article En | MEDLINE | ID: mdl-36646337

NF-E2-related factor-like-2 (Nrf2) is a transcription factor that belongs to the Cap'n'Collar transcription factor family and plays a role in regulating inflammation, autophagy, metabolism, proteostasis, and cancer prevention. However, its influence on Vibrio spp infection in L. vannamei remains uncertain. In this study, the effects of Nrf2 on the immune response in Vibrio spp infection was determined by RT-PCR and histopathological analysis. The results showed that RNAi of Nrf2 significantly decreased the expression of antioxidant-related genes (CAT, SOD and GST; p < 0.05), and significantly up-regulated inflammation-related genes (IMD, pro-PO, P38, Toll, Hsp70, NFκB and RAB6A; p < 0.05) and the apoptosis gene (caspase3). Under the infection of V. harveyi, histopathological analysis showed that after RNAi of Nrf2, the hepatopancreas of shrimp has an abnormal arrangement of hepatic tubules and vacuolization of hepatocyte; The basement membrane is peeled off and the epithelial cells are massively necrotic. Compared with the RNAi of Nrf2 group, the tissue damage in the SFN group was much lessened, and there were fewer apoptosis signals in the TUNEL assay. In conclusion, this experiment indicated that Nrf2 is involved in the regulation of inflammatory response, oxidative stress,and apoptosis induced by V. harveyi in L. vannamei.


Penaeidae , Vibrio Infections , Vibrio , Animals , NF-E2-Related Factor 2/genetics , Vibrio Infections/veterinary , Vibrio/physiology , Inflammation , Penaeidae/genetics
14.
Int J Mol Sci ; 23(23)2022 Nov 28.
Article En | MEDLINE | ID: mdl-36499231

Vasoactive intestinal peptide (VIP), a member of secretin/glucagon family, is involved in a variety of biological activities such as gut motility, immune responses, and carcinogenesis. In this study, the VIP precursor gene (On-VIP) and its receptor gene VIPR1 (On-VIPR1) were identified from Nile tilapia (Oreochromis niloticus), and the functions of On-VIP in the immunomodulation of Nile tilapia against bacterial infection were investigated and characterized. On-VIP and On-VIPR1 contain a 450 bp and a 1326 bp open reading frame encoding deduced protein of 149 and 441 amino acids, respectively. Simultaneously, the transcript of both On-VIP and On-VIPR1 were highly expressed in the intestine and sharply induced by Streptococcus agalatiae. Moreover, the positive signals of On-VIP and On-VIPR1 were detected in the longitudinal muscle layer and mucosal epithelium of intestine, respectively. Furthermore, both in vitro and in vivo experiments indicated several immune functions of On-VIP, including reduction of P65, P38, MyD88, STAT3, and AP1, upregulation of CREB and CBP, and suppression of inflammation. Additionally, in vivo experiments proved that On-VIP could protect Nile tilapia from bacterial infection and promote apoptosis and pyroptosis. These data lay a theoretical basis for further understanding of the mechanism of VIP guarding bony fish against bacterial infection.


Cichlids , Fish Diseases , Streptococcal Infections , Animals , Vasoactive Intestinal Peptide/genetics , Vasoactive Intestinal Peptide/metabolism , Streptococcal Infections/prevention & control , Streptococcal Infections/veterinary , Streptococcus agalactiae , Fish Diseases/genetics , Fish Diseases/prevention & control , Gene Expression Regulation
15.
Fish Shellfish Immunol ; 131: 929-938, 2022 Dec.
Article En | MEDLINE | ID: mdl-36343851

α-Melanocyte-stimulating hormone (α-MSH) is a well-studied neuropeptide controlling skin and hair color. Besides, numerous immunomodulation roles of α-MSH were recorded in humans and mice. However, the regulatory effects of α-MSH in teleost immunity haven't been well elucidated. In this study, several precursor molecules of α-MSH (POMCs) and its receptors (MCRs) in Nile tilapia (Oreochromis niloticus) were characterized, and their expression characteristics and specific functions on antibacterial immunity were determined. Overall, POMCs and MCRs were principally detected in the brain, skin, and liver, and were remarkably promoted post Streptococcus agalactiae infection. However, tiny POMCs and MCRs were observed in tilapia immune organs (head kidney and spleen) or lymphocytes, and no evident immunomodulation effect was detected in vitro. Moreover, the in vivo challenge experiments revealed that α-MSH protects tilapia from bacterial infection by regulating responses in the brain and intestine. This study lays theoretical data for a deeper comprehension of the immunomodulation mechanisms of teleost α-MSH and the evolutional process of the vertebrate melanocortin system.


Fish Diseases , Immunomodulation , Streptococcal Infections , Tilapia , alpha-MSH , Animals , alpha-MSH/metabolism , Amino Acid Sequence , Anti-Bacterial Agents , Cichlids/immunology , Cichlids/microbiology , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/chemistry , Gene Expression Regulation , Immunomodulation/physiology , Streptococcal Infections/veterinary , Streptococcus agalactiae/physiology , Tilapia/immunology , Tilapia/microbiology
16.
Fish Shellfish Immunol ; 131: 218-228, 2022 Dec.
Article En | MEDLINE | ID: mdl-36198379

C-type lectin (CLEC) is a family of carbohydrate-binding protein that has high affinity for calcium and mediates multiple biological events including adhesion between cells, the turnover of serum glycoproteins, and the innate immune system's reaction to prospective invaders. However, it's ill-defined for how CLEC effects bony fish's innate immunity to bacterial infection. Therefore, CLEC12B, a member of the C-type lectin domain family, was found in Nile tilapia (Oreochromis niloticus) and its functions in bacterial infection were examined. The OnCLEC12B consist of a C-type lectin domain, a transmembrane domain, and a hypothetical protein of 308 amino acids that encoded by 927 bp basic group. Besides, the OnCLEC12B protein have a series of highly conserved amino acid sites with other CLEC12B proteins. Subcellular localization showed that OnCLEC12B located in cell membrane. Transcriptional levels investigation showed that OnCLEC12B was extensively expressed in all selected organs and has high expression in the liver. The transcriptional levels of OnCLEC12B were induced by Streptococcus agalactiae and Aeromonas hydrophila in the liver, spleen, head kidney, brain, and intestine. Afterward, invitro study revealed that several kinds of pathogens could be bound and agglutinated by recombinant protein of OnCLEC12B (rOnCLEC12B). Moreover, rOnCLEC12B could not only promote the proliferation of monocytes/macrophages but also encourage its phagocytosis on S.agalactiae and A.hydrophila, and its over-expression could significantly suppress the activation of the NF-κB pathway. Summarily, our results indicated that OnCLEC12B gets involved in fish immunization activities to pathogens infection.


Cichlids , Fish Diseases , Streptococcal Infections , Animals , Fish Proteins/chemistry , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Prospective Studies , Streptococcal Infections/veterinary , Streptococcus agalactiae/physiology , Immunity, Innate/genetics , Gene Expression Regulation
17.
Fish Shellfish Immunol ; 130: 602-611, 2022 Nov.
Article En | MEDLINE | ID: mdl-36150410

Pyroptosis is an inflammatory and programmed cell death initiated by the formation of the inflammasome, which consists of NLR, ASC, and Caspase. Pyroptosis has received growing attention due to its association with innate immunity and various diseases. However, the involvement and induction of the NLRCs and pyroptosis-related genes in fish immunity remain poorly studied. In this study, several NLRCs and pyroptosis-related genes in Nile tilapia (Oreochromis niloticus) were identified and characterized. Their involvement in bacterial infection and expression profiles in Nile tilapia lymphocyte responses were also assessed. Overall, three NLRC members (NOD1, NOD2, and NLRC3) and five pyroptosis-related genes (ASC1, Caspase1, Gsdme, NLRP3, and NLRP14) in Nile tilapia were cloned and characterized. The transcript levels of these molecules were broadly distributed in various tissues with comparatively high expression in the gills, intestine, and spleen. Their transcripts were also induced during Streptococcus agalactiae or Aeromonas hydrophila infection. Moreover, they were primarily expressed in T cells, NCCs, and Mo/Mφ and showed antibacterial and partially antiviral responses. The present study lays a theoretical foundation for further investigation of the pyroptosis mechanisms in fish as well as the evolution of the antiviral roles of pyroptosis in vertebrates.


Cichlids , Fish Diseases , Streptococcal Infections , Animals , Anti-Bacterial Agents , Antiviral Agents , Caspases/genetics , Fish Proteins , Gene Expression Regulation , Immunity, Innate/genetics , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis/genetics , Streptococcal Infections/veterinary , Streptococcus agalactiae/physiology
18.
Fish Shellfish Immunol ; 130: 72-78, 2022 Nov.
Article En | MEDLINE | ID: mdl-36089224

Oxidative stress caused by ammonia and nitrite, affect the health and growth of aquaculture animals, results in oxidative damages. However, the toxic mechanism and pathogenesis of ammonia and nitrite to aquatic invertebrates are not completely clear. The present study was conducted to investigate the effects of sub-lethal ammonia and nitrite on autophagy and apoptosis in hepatopancreas of Pacific whiteleg shrimp Litopenaeus vannamei. Shrimps were exposed to sub-lethal ammonia (20 mg/L) and nitrite (20 mg/L) for 72 h, respectively. Hepatopancreas was collected for investigating the autophagy and apoptosis under stress conditions. The results showed that ammonia stress could induce up-regulated of autophagy (ATG3, ATG4, ATG10 and ATG12) and apoptosis (Caspase3 and P53) genes transcription. Nitrite stress could also induce up-regulated of autophagy (ATG3, ATG4, ATG5 and ATG10) and apoptosis (Caspase3) genes transcription. The expression of the autophagy related genes increased at first and then decreased with increasing exposure time. The atrophy, lysis, vacuolation of cell and other tissue damages in hepatopancreas were observed after 72h exposure to ammonia and nitrite. The results indicated that ammonia and nitrite stress could induce autophagy and apoptosis, and results in oxidative damage.


Hepatopancreas , Penaeidae , Ammonia/metabolism , Animals , Apoptosis , Autophagy , Hepatopancreas/metabolism , Nitrites/metabolism , Nitrites/toxicity , Tumor Suppressor Protein p53/metabolism
19.
Front Immunol ; 13: 944388, 2022.
Article En | MEDLINE | ID: mdl-35967362

Serotonin (5-hydroxytryptamine) is a well-known neurotransmitter affecting emotion, behavior, and cognition. Additionally, numerous immunomodulatory functions of serotonin have been discovered in mammals. However, the regulatory role of the serotonin system in fish immunity remains unclear. In this study, various serotonergic markers in Nile tilapia (Oreochromis niloticus) were identified and characterized. The involvement of the serotonin system during bacterial infection was investigated. Moreover, the expression characteristics and specific functions of serotonergic markers within Nile tilapia immune cells were also assessed. Overall, 22 evolutionarily conserved serotonergic marker genes in Nile tilapia were cloned and characterized. Transcriptional levels of these molecules were most abundant in the brain, and their transcripts were induced during Streptococcus agalactiae infection. Nevertheless, few serotonergic markers exist on Nile tilapia immune cells, and no distinct immunomodulation effect was observed during an immune response. The present study lays a theoretical foundation for further investigation of the immunological mechanisms in fish as well as the evolution of the serotonin system in animals.


Cichlids , Fish Diseases , Amino Acid Sequence , Animals , Fish Proteins/genetics , Gene Expression Regulation , Immunity , Immunomodulation , Mammals/metabolism , Serotonin , Streptococcus agalactiae/physiology
20.
Biology (Basel) ; 11(8)2022 Jul 30.
Article En | MEDLINE | ID: mdl-36009776

C-reactive protein (CRP) is an acute-phase protein that can be used as an early diagnostic marker for inflammation, which is also an evolutionarily conserved protein and has been identified from arthropods to mammals. However, the roles of CRP during the immune response of Nile tilapia (Oreochromis niloticus) remain unclear. In this study, a CRP gene from Nile tilapia (On-CRP) was identified, and its roles in response to bacterial infection were investigated in vivo or in vitro. On-CRP was found to contain an open reading frame of 675 bp, encoding a polypeptide of 224 amino acids with the conservative pentraxin domain. On-CRP shares more than 50% of its identity with other fish species, and 30% of its identity with mammals. The transcriptional level of On-CRP was most abundant in the liver and its transcripts can be remarkably induced following Streptococcus agalactiae and Aeromonas hydrophila infection. Furthermore, in vitro analysis indicated that the recombinant protein of On-CRP improved phagocytic activity of monocytes/macrophages, and possessed a bacterial agglutination activity in a calcium-dependent manner. Both in vivo and in vitro experiments indicated that On-CRP could promote inflammation and activate the complement pathway. However, a direct relationship between CRP and several immune pathways could not be confirmed. The present data lays a theoretical foundation to further explore the mechanism of how CRP protects fish against bacterial infection.

...