Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Cell Rep ; 43(5): 114226, 2024 May 28.
Article En | MEDLINE | ID: mdl-38733586

Cognitive dysfunction is a feature in multiple sclerosis (MS), a chronic inflammatory demyelinating disorder. A notable aspect of MS brains is hippocampal demyelination, which is closely associated with cognitive decline. However, the mechanisms underlying this phenomenon remain unclear. Chitinase-3-like (CHI3L1), secreted by activated astrocytes, has been identified as a biomarker for MS progression. Our study investigates CHI3L1's function within the demyelinating hippocampus and demonstrates a correlation between CHI3L1 expression and cognitive impairment in patients with MS. Activated astrocytes release CHI3L1 in reaction to induced demyelination, which adversely affects the proliferation and differentiation of neural stem cells and impairs dendritic growth, complexity, and spine formation in neurons. Our findings indicate that the astrocytic deletion of CHI3L1 can mitigate neurogenic deficits and cognitive dysfunction. We showed that CHI3L1 interacts with CRTH2/receptor for advanced glycation end (RAGE) by attenuating ß-catenin signaling. The reactivation of ß-catenin signaling can revitalize neurogenesis, which holds promise for therapy of inflammatory demyelination.


Astrocytes , Chitinase-3-Like Protein 1 , Cognition , Hippocampus , Neurogenesis , Signal Transduction , Chitinase-3-Like Protein 1/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Animals , Astrocytes/metabolism , Humans , Mice , Cognition/physiology , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Male , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Receptor for Advanced Glycation End Products/metabolism , Female , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , beta Catenin/metabolism , Cell Proliferation , Cell Differentiation
2.
NPJ Regen Med ; 9(1): 4, 2024 Jan 20.
Article En | MEDLINE | ID: mdl-38242900

Neuromyelitis optica (NMO) is a severe autoimmune inflammatory disease of the central nervous system that affects motor function and causes relapsing disability. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have been used extensively in the treatment of various inflammatory diseases, due to their potent regulatory roles that can mitigate inflammation and repair damaged tissues. However, their use in NMO is currently limited, and the mechanism underlying the beneficial effects of hUC-MSCs on motor function in NMO remains unclear. In this study, we investigate the effects of hUC-MSCs on the recovery of motor function in an NMO systemic model. Our findings demonstrate that milk fat globule epidermal growth 8 (MFGE8), a key functional factor secreted by hUC-MSCs, plays a critical role in ameliorating motor impairments. We also elucidate that the MFGE8/Integrin αvß3/NF-κB signaling pathway is partially responsible for structural and functional recovery, in addition to motor functional enhancements induced by hUC-MSC exposure. Taken together, these findings strongly support the involvement of MFGE8 in mediating hUC-MSCs-induced improvements in motor functional recovery in an NMO mouse model. In addition, this provides new insight on the therapeutic potential of hUC-MSCs and the mechanisms underlying their beneficial effects in NMO.

3.
Sci Adv ; 9(39): eadg8148, 2023 Sep 29.
Article En | MEDLINE | ID: mdl-37756391

Chitinase-3-like protein 1 (CHI3L1) is primarily secreted by activated astrocytes in the brain and is known as a reliable biomarker for inflammatory central nervous system (CNS) conditions such as neurodegeneration and autoimmune disorders like neuromyelitis optica (NMO). NMO is an astrocyte disease caused by autoantibodies targeting the astroglial protein aquaporin 4 (AQP4) and leads to vision loss, motor deficits, and cognitive decline. In this study examining CHI3L1's biological function in neuroinflammation, we found that CHI3L1 expression correlates with cognitive impairment in our NMO patient cohort. Activated astrocytes secrete CHI3L1 in response to AQP4 autoantibodies, and this inhibits the proliferation and neuronal differentiation of neural stem cells. Mouse models showed decreased hippocampal neurogenesis and impaired learning behaviors, which could be rescued by depleting CHI3L1 in astrocytes. The molecular mechanism involves CHI3L1 engaging the CRTH2 receptor and dampening ß-catenin signaling for neurogenesis. Blocking this CHI3L1/CRTH2/ß-catenin cascade restores neurogenesis and improves cognitive deficits, suggesting the potential for therapeutic development in neuroinflammatory disorders.

4.
Prog Neurobiol ; 230: 102513, 2023 11.
Article En | MEDLINE | ID: mdl-37536482

Angelman Syndrome (AS) is a severe cognitive disorder caused by loss of neuronal expression of the E3 ubiquitin ligase UBE3A. In an AS mouse model, we previously reported a deficit in brain-derived neurotrophic factor (BDNF) signaling, and set out to develop a therapeutic that would restore normal signaling. We demonstrate that CN2097, a peptidomimetic compound that binds postsynaptic density protein-95 (PSD-95), a TrkB associated scaffolding protein, mitigates deficits in PLC-CaMKII and PI3K/mTOR pathways to restore synaptic plasticity and learning. Administration of CN2097 facilitated long-term potentiation (LTP) and corrected paired-pulse ratio. As the BDNF-mTORC1 pathway is critical for inhibition of autophagy, we investigated whether autophagy was disrupted in AS mice. We found aberrantly high autophagic activity attributable to a concomitant decrease in mTORC1 signaling, resulting in decreased levels of synaptic proteins, including Synapsin-1 and Shank3. CN2097 increased mTORC1 activity to normalize autophagy and restore hippocampal synaptic protein levels. Importantly, treatment mitigated cognitive and motor dysfunction. These findings support the use of neurotrophic therapeutics as a valuable approach for treating AS pathology.


Angelman Syndrome , Peptidomimetics , Animals , Mice , Angelman Syndrome/drug therapy , Angelman Syndrome/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Long-Term Potentiation , Mechanistic Target of Rapamycin Complex 1/metabolism , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Peptidomimetics/metabolism , Transcription Factors/metabolism
5.
Methods Mol Biol ; 2683: 69-78, 2023.
Article En | MEDLINE | ID: mdl-37300767

The following protocol describes the generation of microglia cells from human-induced pluripotent stem cells (hiPSCs) using commercially available kits by StemCell Technologies. This protocol consists of three major steps: (1) Differentiation of hematopoietic precursor cells, (2) Microglia differentiation, and (3) Microglia maturation. Assays are described to characterize hematopoietic precursor cells and mature microglia.


Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Microglia , Embryonic Stem Cells , Hematopoietic Stem Cells , Cell Differentiation
6.
Methods Mol Biol ; 2683: 79-87, 2023.
Article En | MEDLINE | ID: mdl-37300768

Neuroinflammation is a common early pathological feature in many neurodegenerative disorders, including Alzheimer's disease (AD), which has been heavily implicated as a causative factor in disease pathology. However, the role neuroinflammation and inflammatory cells, including microglia and astrocytes, play in AD development and progression has not been fully defined. To try to better understand and study this neuroinflammatory role in AD pathogenesis, researchers use a variety of model systems, particularly in vivo animal models. Despite their usefulness, these models do come with a variety of limitations due to the inherent complexity of the brain and the human-specific nature of AD. Here, we describe a reductionist approach at modeling neuroinflammation by utilizing an in vitro tri-culture system of neurons, astrocytes, and microglia induced from human pluripotent stem cells. This tri-culture model is a powerful tool to dissect intercellular interactions that can facilitate future studies on neuroinflammation, particularly in the context of neurodegeneration and AD.


Alzheimer Disease , Induced Pluripotent Stem Cells , Animals , Humans , Microglia/pathology , Astrocytes/pathology , Induced Pluripotent Stem Cells/pathology , Neuroinflammatory Diseases , Neurons , Alzheimer Disease/pathology
7.
Methods Mol Biol ; 2683: 221-233, 2023.
Article En | MEDLINE | ID: mdl-37300779

Autophagy is a highly conserved, cytoprotective, catabolic process induced in response to conditions of cellular stress and nutrient deprivation. It is responsible for the degradation of large intracellular substrates such as misfolded or aggregated proteins and organelles. This self-degradative mechanism is crucial for proteostasis in post-mitotic neurons, requiring its careful regulation. Due to its homeostatic role and the implications, it has for certain disease pathologies, autophagy has become a growing area of research. We describe here two assays that can be used as part of a tool kit for measuring autophagy-lysosomal flux in human iPSC-derived neurons.One way to measure autophagic flux is through a western blotting assay, which can be used to analyze two important autophagy proteins: microtubule-associated protein 1 light chain 3 (LC3) and p62. In this chapter, we describe a western blotting assay for use in human iPSC neurons that can be used to quantify these two proteins of interest to measure autophagic flux.In addition to conventional western blotting techniques, more sophisticated tools have come available to readout autophagic flux in a sensitive and high-throughput manner. In the latter portion of this chapter, we describe a flow cytometry assay which utilizes a pH-sensitive fluorescent reporter which can also be used to measure autophagic flux.


Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Microtubule-Associated Proteins/metabolism , Autophagy/physiology , Blotting, Western , Neurons/metabolism
8.
Nat Commun ; 14(1): 2982, 2023 05 24.
Article En | MEDLINE | ID: mdl-37221202

In age-related neurodegenerative diseases, pathology often develops slowly across the lifespan. As one example, in diseases such as Alzheimer's, vascular decline is believed to onset decades ahead of symptomology. However, challenges inherent in current microscopic methods make longitudinal tracking of such vascular decline difficult. Here, we describe a suite of methods for measuring brain vascular dynamics and anatomy in mice for over seven months in the same field of view. This approach is enabled by advances in optical coherence tomography (OCT) and image processing algorithms including deep learning. These integrated methods enabled us to simultaneously monitor distinct vascular properties spanning morphology, topology, and function of the microvasculature across all scales: large pial vessels, penetrating cortical vessels, and capillaries. We have demonstrated this technical capability in wild-type and 3xTg male mice. The capability will allow comprehensive and longitudinal study of a broad range of progressive vascular diseases, and normal aging, in key model systems.


Aging , Longevity , Male , Animals , Mice , Longitudinal Studies , Microvessels , Brain
9.
Alzheimers Dement ; 19(1): 9-24, 2023 01.
Article En | MEDLINE | ID: mdl-35234337

Chitinase-3-like protein 1 (CHI3L1/YKL-40) has long been known as a biomarker for early detection of neuroinflammation and disease diagnosis of Alzheimer's disease (AD). In the brain, CHI3L1 is primarily provided by astrocytes and heralds the reactive, neurotoxic state triggered by inflammation and other stress signals. However, how CHI3L1 acts in neuroinflammation or how it contributes to AD and relevant neurodegenerative conditions remains unknown. In peripheral tissues, our group and others have uncovered that CHI3L1 is a master regulator for a wide range of injury and repair events, including the innate immunity pathway that resembles the neuroinflammation process governed by microglia and astrocytes. Based on assessment of current knowledge regarding CHI3L1 biology, we hypothesize that CHI3L1 functions as a signaling molecule mediating distinct neuroinflammatory responses in brain cells and misfunctions to precipitate neurodegeneration. We also recommend future research directions to validate such assertions for better understanding of disease mechanisms.


Alzheimer Disease , Chitinases , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Chitinase-3-Like Protein 1/genetics , Neuroinflammatory Diseases , Inflammation
10.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article En | MEDLINE | ID: mdl-34035170

Heterozygous NRXN1 deletions constitute the most prevalent currently known single-gene mutation associated with schizophrenia, and additionally predispose to multiple other neurodevelopmental disorders. Engineered heterozygous NRXN1 deletions impaired neurotransmitter release in human neurons, suggesting a synaptic pathophysiological mechanism. Utilizing this observation for drug discovery, however, requires confidence in its robustness and validity. Here, we describe a multicenter effort to test the generality of this pivotal observation, using independent analyses at two laboratories of patient-derived and newly engineered human neurons with heterozygous NRXN1 deletions. Using neurons transdifferentiated from induced pluripotent stem cells that were derived from schizophrenia patients carrying heterozygous NRXN1 deletions, we observed the same synaptic impairment as in engineered NRXN1-deficient neurons. This impairment manifested as a large decrease in spontaneous synaptic events, in evoked synaptic responses, and in synaptic paired-pulse depression. Nrxn1-deficient mouse neurons generated from embryonic stem cells by the same method as human neurons did not exhibit impaired neurotransmitter release, suggesting a human-specific phenotype. Human NRXN1 deletions produced a reproducible increase in the levels of CASK, an intracellular NRXN1-binding protein, and were associated with characteristic gene-expression changes. Thus, heterozygous NRXN1 deletions robustly impair synaptic function in human neurons regardless of genetic background, enabling future drug discovery efforts.


Calcium-Binding Proteins/genetics , Mutation , Neural Cell Adhesion Molecules/genetics , Neurons/metabolism , Neurotransmitter Agents/metabolism , Schizophrenia/metabolism , Case-Control Studies , Cell Transdifferentiation , Cells, Cultured , Cohort Studies , Embryonic Stem Cells/cytology , Gene Expression , Guanylate Kinases/metabolism , Heterozygote , Humans , Induced Pluripotent Stem Cells/cytology
11.
J Vis Exp ; (165)2020 11 09.
Article En | MEDLINE | ID: mdl-33226027

In Alzheimer's disease (AD) and other neurodegenerative disorders, oligodendroglial failure is a common early pathological feature, but how it contributes to disease development and progression, particularly in the gray matter of the brain, remains largely unknown. The dysfunction of oligodendrocyte lineage cells is hallmarked by deficiencies in myelination and impaired self-renewal of oligodendrocyte precursor cells (OPCs). These two defects are caused at least in part by the disruption of interactions between neuron and oligodendrocytes along the buildup of pathology. OPCs give rise to myelinating oligodendrocytes during CNS development. In the mature brain cortex, OPCs are the major proliferative cells (comprising ~5% of total brain cells) and control new myelin formation in a neural activity-dependent manner. Such neuron-to-oligodendrocyte communications are significantly understudied, especially in the context of neurodegenerative conditions such as AD, due to the lack of appropriate tools. In recent years, our group and others have made significant progress to improve currently available protocols to generate functional neurons and oligodendrocytes individually from human pluripotent stem cells. In this manuscript, we describe our optimized procedures, including the establishment of a co-culture system to model the neuron-oligodendrocyte connections. Our illustrative results suggest an unexpected contribution from OPCs/oligodendrocytes to the brain amyloidosis and synapse integrity and highlight the utility of this methodology for AD research. This reductionist approach is a powerful tool to dissect the specific hetero-cellular interactions out of the inherent complexity inside the brain. The protocols we describe here are expected to facilitate future studies on oligodendroglial defects in the pathogenesis of neurodegeneration.


Cell Communication , Cell Culture Techniques/methods , Neurons/cytology , Oligodendroglia/cytology , Pluripotent Stem Cells/cytology , Cell Differentiation , Cell Lineage , Coculture Techniques , Dimethyl Sulfoxide/pharmacology , HEK293 Cells , Humans , Myelin Sheath/physiology
12.
J Neurosci ; 39(37): 7408-7427, 2019 09 11.
Article En | MEDLINE | ID: mdl-31331998

In blood, apolipoprotein E (ApoE) is a component of circulating lipoproteins and mediates the clearance of these lipoproteins from blood by binding to ApoE receptors. Humans express three genetic ApoE variants, ApoE2, ApoE3, and ApoE4, which exhibit distinct ApoE receptor-binding properties and differentially affect Alzheimer's disease (AD), such that ApoE2 protects against, and ApoE4 predisposes to AD. In brain, ApoE-containing lipoproteins are secreted by activated astrocytes and microglia, but their functions and role in AD pathogenesis are largely unknown. Ample evidence suggests that ApoE4 induces microglial dysregulation and impedes Aß clearance in AD, but the direct neuronal effects of ApoE variants are poorly studied. Extending previous studies, we here demonstrate that the three ApoE variants differentially activate multiple neuronal signaling pathways and regulate synaptogenesis. Specifically, using human neurons (male embryonic stem cell-derived) cultured in the absence of glia to exclude indirect glial mechanisms, we show that ApoE broadly stimulates signal transduction cascades. Among others, such stimulation enhances APP synthesis and synapse formation with an ApoE4>ApoE3>ApoE2 potency rank order, paralleling the relative risk for AD conferred by these ApoE variants. Unlike the previously described induction of APP transcription, however, ApoE-induced synaptogenesis involves CREB activation rather than cFos activation. We thus propose that in brain, ApoE acts as a glia-secreted signal that activates neuronal signaling pathways. The parallel potency rank order of ApoE4>ApoE3>ApoE2 in AD risk and neuronal signaling suggests that ApoE4 may in an apparent paradox promote AD pathogenesis by causing a chronic increase in signaling, possibly via enhancing APP expression.SIGNIFICANCE STATEMENT Humans express three genetic variants of apolipoprotein E (ApoE), ApoE2, ApoE3, and ApoE4. ApoE4 constitutes the most important genetic risk factor for Alzheimer's disease (AD), whereas ApoE2 protects against AD. Significant evidence suggests that ApoE4 impairs microglial function and impedes astrocytic Aß clearance in brain, but the direct neuronal effects of ApoE are poorly understood, and the differences between ApoE variants in these effects are unclear. Here, we report that ApoE acts on neurons as a glia-secreted signaling molecule that, among others, enhances synapse formation. In activating neuronal signaling, the three ApoE variants exhibit a differential potency of ApoE4>ApoE3>ApoE2, which mirrors their relative effects on AD risk, suggesting that differential signaling by ApoE variants may contribute to AD pathogenesis.


Alzheimer Disease/genetics , Apolipoprotein E2/genetics , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Embryonic Stem Cells/physiology , Genetic Predisposition to Disease/genetics , Alzheimer Disease/metabolism , Animals , Animals, Newborn , Apolipoprotein E2/biosynthesis , Apolipoprotein E3/biosynthesis , Apolipoprotein E4/biosynthesis , Cells, Cultured , Double-Blind Method , Female , Genetic Variation/physiology , HEK293 Cells , Humans , Male , Mice , Neurons/physiology , Random Allocation , Signal Transduction/physiology
13.
Neurobiol Dis ; 130: 104503, 2019 10.
Article En | MEDLINE | ID: mdl-31202913

One in three people will develop Alzheimer's disease (AD) or another dementia and, despite intense research efforts, treatment options remain inadequate. Understanding the mechanisms of AD pathogenesis remains our principal hurdle to developing effective therapeutics to tackle this looming medical crisis. In light of recent discoveries from whole-genome sequencing and technical advances in humanized models, studying disease risk genes with induced human neural cells presents unprecedented advantages. Here, we first review the current knowledge of the proposed mechanisms underlying AD and focus on modern genetic insights to inform future studies. To highlight the utility of human pluripotent stem cell-based innovations, we then present an update on efforts in recapitulating the pathophysiology by induced neuronal, non-neuronal and a collection of brain cell types, departing from the neuron-centric convention. Lastly, we examine the translational potentials of such approaches, and provide our perspectives on the promise they offer to deepen our understanding of AD pathogenesis and to accelerate the development of intervention strategies for patients and risk carriers.


Alzheimer Disease/metabolism , Brain/metabolism , Cell Differentiation/physiology , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/pathology , Humans , Induced Pluripotent Stem Cells/pathology , Neurons/pathology , tau Proteins/metabolism
14.
Cell ; 168(3): 427-441.e21, 2017 01 26.
Article En | MEDLINE | ID: mdl-28111074

Human apolipoprotein E (ApoE) apolipoprotein is primarily expressed in three isoforms (ApoE2, ApoE3, and ApoE4) that differ only by two residues. ApoE4 constitutes the most important genetic risk factor for Alzheimer's disease (AD), ApoE3 is neutral, and ApoE2 is protective. How ApoE isoforms influence AD pathogenesis, however, remains unclear. Using ES-cell-derived human neurons, we show that ApoE secreted by glia stimulates neuronal Aß production with an ApoE4 > ApoE3 > ApoE2 potency rank order. We demonstrate that ApoE binding to ApoE receptors activates dual leucine-zipper kinase (DLK), a MAP-kinase kinase kinase that then activates MKK7 and ERK1/2 MAP kinases. Activated ERK1/2 induces cFos phosphorylation, stimulating the transcription factor AP-1, which in turn enhances transcription of amyloid-ß precursor protein (APP) and thereby increases amyloid-ß levels. This molecular mechanism also regulates APP transcription in mice in vivo. Our data describe a novel signal transduction pathway in neurons whereby ApoE activates a non-canonical MAP kinase cascade that enhances APP transcription and amyloid-ß synthesis.


Amyloid beta-Protein Precursor/genetics , Apolipoproteins E/metabolism , MAP Kinase Signaling System , Alzheimer Disease/metabolism , Animals , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Fibroblasts/metabolism , Humans , Mice , Neurons/metabolism , Protein Isoforms/metabolism
...