Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Magn Reson ; 342: 107268, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35930941

RESUMEN

NMR is a valuable experimental tool in the structural biologist's toolkit to elucidate the structures, functions, and motions of biomolecules. The progress of machine learning, particularly in structural biology, reveals the critical importance of large, diverse, and reliable datasets in developing new methods and understanding in structural biology and science more broadly. Biomolecular NMR research groups produce large amounts of data, and there is renewed interest in organizing these data to train new, sophisticated machine learning architectures and to improve biomolecular NMR analysis pipelines. The foundational data type in NMR is the free-induction decay (FID). There are opportunities to build sophisticated machine learning methods to tackle long-standing problems in NMR data processing, resonance assignment, dynamics analysis, and structure determination using NMR FIDs. Our goal in this study is to provide a lightweight, broadly available tool for archiving FID data as it is generated at the spectrometer, and grow a new resource of FID data and associated metadata. This study presents a relational schema for storing and organizing the metadata items that describe an NMR sample and FID data, which we call Spectral Database (SpecDB). SpecDB is implemented in SQLite and includes a Python software library providing a command-line application to create, organize, query, backup, share, and maintain the database. This set of software tools and database schema allow users to store, organize, share, and learn from NMR time domain data. SpecDB is freely available under an open source license at https://github.rpi.edu/RPIBioinformatics/SpecDB.


Asunto(s)
Programas Informáticos , Espectroscopía de Resonancia Magnética/métodos , Resonancia Magnética Nuclear Biomolecular/métodos
2.
Structure ; 23(8): 1382-1393, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26165597

RESUMEN

RAS binding is a critical step in the activation of BRAF protein serine/threonine kinase and stimulation of the mitogen-activated protein kinase signaling pathway. Mutations in both RAS and BRAF are associated with many human cancers. Here, we report the solution nuclear magnetic resonance (NMR) and X-ray crystal structures of the RAS-binding domain (RBD) from human BRAF. We further studied the complex between BRAF RBD and the GppNHp bound form of HRAS in solution. Backbone, side-chain, and (19)F NMR chemical shift perturbations reveal unexpected changes distal to the RAS-binding face that extend through the core of the RBD structure. Moreover, backbone amide hydrogen/deuterium exchange NMR data demonstrate conformational ensemble changes in the RBD core structure upon complex formation. These changes in BRAF RBD reveal a basis for allosteric regulation of BRAF structure and function, and suggest a mechanism by which RAS binding can signal the drastic domain rearrangements required for activation of BRAF kinase.


Asunto(s)
Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas p21(ras)/química , Regulación Alostérica , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alineación de Secuencia , Transducción de Señal
3.
Biomol NMR Assign ; 9(1): 135-138, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24722902

RESUMEN

The 500 kDa protein plectin is essential for the cytoskeletal organization of most mammalian cells and it is up-regulated in some types of cancer. Here, we report nearly complete sequence-specific polypeptide backbone, (13)C(ß) and methyl group resonance assignments for 24 kDa human plectin(4403-4606) containing the C-terminal plectin repeat domain 6.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Plectina/química , Humanos , Estructura Terciaria de Proteína
4.
J Struct Funct Genomics ; 15(4): 209-14, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24989974

RESUMEN

High-quality solution NMR structures of immunoglobulin-like domains 7 and 12 from human obscurin-like protein 1 were solved. The two domains share 30% sequence identity and their structures are, as expected, rather similar. The new structures contribute to structural coverage of human cancer associated proteins. Mutations of Arg 812 in domain 7 cause the rare 3-M syndrome, and this site is located in a surface area predicted to be involved in protein-protein interactions.


Asunto(s)
Proteínas del Citoesqueleto/química , Proteínas de Neoplasias/química , Neoplasias/química , Humanos , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína
5.
Proteins ; 82 Suppl 2: 219-30, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24327305

RESUMEN

Maximizing the scientific impact of NMR-based structure determination requires robust and statistically sound methods for assessing the precision of NMR-derived structures. In particular, a method to define a core atom set for calculating superimpositions and validating structure predictions is critical to the use of NMR-derived structures as targets in the CASP competition. FindCore (Snyder and Montelione, Proteins 2005;59:673-686) is a superimposition independent method for identifying a core atom set and partitioning that set into domains. However, as FindCore optimizes superimposition by sensitively excluding not-well-defined atoms, the FindCore core may not comprise all atoms suitable for use in certain applications of NMR structures, including the CASP assessment process. Adapting the FindCore approach to assess predicted models against experimental NMR structures in CASP10 required modification of the FindCore method. This paper describes conventions and a standard protocol to calculate an "Expanded FindCore" atom set suitable for validation and application in biological and biophysical contexts. A key application of the Expanded FindCore method is to identify a core set of atoms in the experimental NMR structure for which it makes sense to validate predicted protein structure models. We demonstrate the application of this Expanded FindCore method in characterizing well-defined regions of 18 NMR-derived CASP10 target structures. The Expanded FindCore protocol defines "expanded core atom sets" that match an expert's intuition of which parts of the structure are sufficiently well defined to use in assessing CASP model predictions. We also illustrate the impact of this analysis on the CASP GDT assessment scores.


Asunto(s)
Biología Computacional/métodos , Modelos Moleculares , Conformación Proteica , Proteínas/química , Programas Informáticos , Modelos Estadísticos , Resonancia Magnética Nuclear Biomolecular
6.
Proteins ; 82 Suppl 2: 43-56, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24323734

RESUMEN

Template-based modeling (TBM) is a major component of the critical assessment of protein structure prediction (CASP). In CASP10, some 41,740 predicted models submitted by 150 predictor groups were assessed as TBM predictions. The accuracy of protein structure prediction was assessed by geometric comparison with experimental X-ray crystal and NMR structures using a composite score that included both global alignment metrics and distance-matrix-based metrics. These included GDT-HA and GDC-all global alignment scores, and the superimposition-independent LDDT distance-matrix-based score. In addition, a superimposition-independent RPF metric, similar to that described previously for comparing protein models against experimental NMR data, was used for comparing predicted protein structure models against experimental protein structures. To score well on all four of these metrics, models must feature accurate predictions of both backbone and side-chain conformations. Performance rankings were determined independently for server and the combined server plus human-curated predictor groups. Final rankings were made using paired head-to-head Student's t-test analysis of raw metric scores among the top 25 performing groups in each category.


Asunto(s)
Biología Computacional/métodos , Conformación Proteica , Proteínas/química , Algoritmos , Simulación por Computador , Modelos Moleculares , Modelos Estadísticos , Análisis de Secuencia de Proteína
7.
Proteins ; 82 Suppl 2: 14-25, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24123179

RESUMEN

For the 10th experiment on Critical Assessment of the techniques of protein Structure Prediction (CASP), the prediction target proteins were broken into independent evaluation units (EUs), which were then classified into template-based modeling (TBM) or free modeling (FM) categories. We describe here how the EUs were defined and classified, what issues arose in the process, and how we resolved them. EUs are frequently not the whole target proteins but the constituting structural domains. However, the assessors from CASP7 on combined more than one domain into 1 EU for some targets, which implied that the assessment also included evaluation of the prediction of the relative position and orientation of these domains. In CASP10, we followed and expanded this notion by defining multidomain EUs for a number of targets. These included 3 EUs, each made of two domains of familiar fold but arranged in a novel manner and for which the focus of evaluation was the interdomain arrangement. An EU was classified to the TBM category if a template could be found by sequence similarity searches and to FM if a structural template could not be found by structural similarity searches. The EUs that did not fall cleanly in either of these cases were classified case-by-case, often including consideration of the overall quality and characteristics of the predictions.


Asunto(s)
Biología Computacional/métodos , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína/química , Proteínas/química , Bases de Datos de Proteínas , Subunidades de Proteína/clasificación , Proteínas/clasificación
8.
J Am Chem Soc ; 135(8): 2999-3010, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23167435

RESUMEN

SecA is an intensively studied mechanoenzyme that uses ATP hydrolysis to drive processive extrusion of secreted proteins through a protein-conducting channel in the cytoplasmic membrane of eubacteria. The ATPase motor of SecA is strongly homologous to that in DEAD-box RNA helicases. It remains unclear how local chemical events in its ATPase active site control the overall conformation of an ~100 kDa multidomain enzyme and drive protein transport. In this paper, we use biophysical methods to establish that a single electrostatic charge in the ATPase active site controls the global conformation of SecA. The enzyme undergoes an ATP-modulated endothermic conformational transition (ECT) believed to involve similar structural mechanics to the protein transport reaction. We have characterized the effects of an isosteric glutamate-to-glutamine mutation in the catalytic base, a mutation which mimics the immediate electrostatic consequences of ATP hydrolysis in the active site. Calorimetric studies demonstrate that this mutation facilitates the ECT in Escherichia coli SecA and triggers it completely in Bacillus subtilis SecA. Consistent with the substantial increase in entropy observed in the course of the ECT, hydrogen-deuterium exchange mass spectrometry demonstrates that it increases protein backbone dynamics in domain-domain interfaces at remote locations from the ATPase active site. The catalytic glutamate is one of ~250 charged amino acids in SecA, and yet neutralization of its side chain charge is sufficient to trigger a global order-disorder transition in this 100 kDa enzyme. The intricate network of structural interactions mediating this effect couples local electrostatic changes during ATP hydrolysis to global conformational and dynamic changes in SecA. This network forms the foundation of the allosteric mechanochemistry that efficiently harnesses the chemical energy stored in ATP to drive complex mechanical processes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Adenosina Trifosfatasas/química , Dominio Catalítico , Modelos Moleculares , Conformación Proteica , Canales de Translocación SEC , Proteína SecA , Electricidad Estática
9.
J Biol Chem ; 287(34): 28349-61, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22740688

RESUMEN

Despite the passage of ∼30 years since the complete primary sequence of the intermediate filament (IF) protein vimentin was reported, the structure remains unknown for both an individual protomer and the assembled filament. In this report, we present data describing the structure of vimentin linker 1 (L1) and rod 1B. Electron paramagnetic resonance spectra collected from samples bearing site-directed spin labels demonstrate that L1 is not a flexible segment between coiled-coils (CCs) but instead forms a rigid, tightly packed structure. An x-ray crystal structure of a construct containing L1 and rod 1B shows that it forms a tetramer comprising two equivalent parallel CC dimers that interact with one another in the form of a symmetrical anti-parallel dimer. Remarkably, the parallel CC dimers are themselves asymmetrical, which enables them to tetramerize rather than undergoing higher order oligomerization. This functionally vital asymmetry in the CC structure, encoded in the primary sequence of rod 1B, provides a striking example of evolutionary exploitation of the structural plasticity of proteins. EPR and crystallographic data consistently suggest that a very short region within L1 represents a minor local distortion in what is likely to be a continuous CC from the end of rod 1A through the entirety of rod 1B. The concordance of this structural model with previously published cross-linking and spectral data supports the conclusion that the crystallographic oligomer represents a native biological structure.


Asunto(s)
Modelos Moleculares , Multimerización de Proteína , Marcadores de Spin , Vimentina/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Vimentina/genética
10.
Proteins ; 80(7): 1901-6, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22422653

RESUMEN

The ribosome consists of small and large subunits each composed of dozens of proteins and RNA molecules. However, the functions of many of the individual protomers within the ribosome are still unknown. In this article, we describe the solution NMR structure of the ribosomal protein RP-L35Ae from the archaeon Pyrococcus furiosus. RP-L35Ae is buried within the large subunit of the ribosome and belongs to Pfam protein domain family PF01247, which is highly conserved in eukaryotes, present in a few archaeal genomes, but absent in bacteria. The protein adopts a six-stranded anti-parallel ß-barrel analogous to the "tRNA binding motif" fold. The structure of the P. furiosus RP-L35Ae presented in this article constitutes the first structural representative from this protein domain family.


Asunto(s)
Proteínas Arqueales/química , Pyrococcus furiosus/química , Proteínas Ribosómicas/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Pyrococcus furiosus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Ribosómicas/genética , Alineación de Secuencia , Electricidad Estática
11.
Structure ; 20(2): 227-36, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22325772

RESUMEN

The protocols currently used for protein structure determination by nuclear magnetic resonance (NMR) depend on the determination of a large number of upper distance limits for proton-proton pairs. Typically, this task is performed manually by an experienced researcher rather than automatically by using a specific computer program. To assess whether it is indeed possible to generate in a fully automated manner NMR structures adequate for deposition in the Protein Data Bank, we gathered 10 experimental data sets with unassigned nuclear Overhauser effect spectroscopy (NOESY) peak lists for various proteins of unknown structure, computed structures for each of them using different, fully automatic programs, and compared the results to each other and to the manually solved reference structures that were not available at the time the data were provided. This constitutes a stringent "blind" assessment similar to the CASP and CAPRI initiatives. This study demonstrates the feasibility of routine, fully automated protein structure determination by NMR.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Programas Informáticos , Automatización de Laboratorios , Interpretación Estadística de Datos , Procesamiento Automatizado de Datos , Modelos Moleculares , Conformación Proteica , Proyectos de Investigación
12.
Protein Sci ; 21(2): 229-38, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22113924

RESUMEN

Large-scale initiatives for obtaining spatial protein structures by experimental or computational means have accentuated the need for the critical assessment of protein structure determination and prediction methods. These include blind test projects such as the critical assessment of protein structure prediction (CASP) and the critical assessment of protein structure determination by nuclear magnetic resonance (CASD-NMR). An important aim is to establish structure validation criteria that can reliably assess the accuracy of a new protein structure. Various quality measures derived from the coordinates have been proposed. A universal structural quality assessment method should combine multiple individual scores in a meaningful way, which is challenging because of their different measurement units. Here, we present a method based on a generalized linear model (GLM) that combines diverse protein structure quality scores into a single quantity with intuitive meaning, namely the predicted coordinate root-mean-square deviation (RMSD) value between the present structure and the (unavailable) "true" structure (GLM-RMSD). For two sets of structural models from the CASD-NMR and CASP projects, this GLM-RMSD value was compared with the actual accuracy given by the RMSD value to the corresponding, experimentally determined reference structure from the Protein Data Bank (PDB). The correlation coefficients between actual (model vs. reference from PDB) and predicted (model vs. "true") heavy-atom RMSDs were 0.69 and 0.76, for the two datasets from CASD-NMR and CASP, respectively, which is considerably higher than those for the individual scores (-0.24 to 0.68). The GLM-RMSD can thus predict the accuracy of protein structures more reliably than individual coordinate-based quality scores.


Asunto(s)
Biología Computacional/métodos , Conformación Proteica , Análisis de Secuencia de Proteína/métodos , Predicción , Proteínas Activadoras de GTPasa , Humanos , Modelos Lineales , Modelos Moleculares , Modelos Estadísticos , Proyectos de Investigación , Proteínas Supresoras de Tumor/química , Estudios de Validación como Asunto
15.
J Biomol NMR ; 46(1): 11-22, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19915800

RESUMEN

As part of efforts to develop improved methods for NMR protein sample preparation and structure determination, the Northeast Structural Genomics Consortium (NESG) has implemented an NMR screening pipeline for protein target selection, construct optimization, and buffer optimization, incorporating efficient microscale NMR screening of proteins using a micro-cryoprobe. The process is feasible because the newest generation probe requires only small amounts of protein, typically 30-200 microg in 8-35 microl volume. Extensive automation has been made possible by the combination of database tools, mechanization of key process steps, and the use of a micro-cryoprobe that gives excellent data while requiring little optimization and manual setup. In this perspective, we describe the overall process used by the NESG for screening NMR samples as part of a sample optimization process, assessing optimal construct design and solution conditions, as well as for determining protein rotational correlation times in order to assess protein oligomerization states. Database infrastructure has been developed to allow for flexible implementation of new screening protocols and harvesting of the resulting output. The NESG micro NMR screening pipeline has also been used for detergent screening of membrane proteins. Descriptions of the individual steps in the NESG NMR sample design, production, and screening pipeline are presented in the format of a standard operating procedure.


Asunto(s)
Bases de Datos Genéticas , Genómica/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Ingeniería de Proteínas/métodos , Proteínas/química , Tampones (Química) , Clonación Molecular/métodos , Medición de Intercambio de Deuterio/métodos , Conformación Proteica , Multimerización de Proteína , Proteínas/síntesis química , Proteínas/genética
16.
J Am Chem Soc ; 132(1): 202-7, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20000319

RESUMEN

Conventional NMR structure determination requires nearly complete assignment of the cross peaks of a refined NOESY peak list. Depending on the size of the protein and quality of the spectral data, this can be a time-consuming manual process requiring several rounds of peak list refinement and structure determination. Programs such as Aria, CYANA, and AutoStructure can generate models using unassigned NOESY data but are very sensitive to the quality of the input peak lists and can converge to inaccurate structures if the signal-to-noise of the peak lists is low. Here, we show that models with high accuracy and reliability can be produced by combining the strengths of the high-resolution structure prediction program Rosetta with global measures of the agreement between structure models and experimental data. A first round of models generated using CS-Rosetta (Rosetta supplemented with backbone chemical shift information) are filtered on the basis of their goodness-of-fit with unassigned NOESY peak lists using the DP-score, and the best fitting models are subjected to high resolution refinement with the Rosetta rebuild-and-refine protocol. This hybrid approach uses both local backbone chemical shift and the unassigned NOESY data to direct Rosetta trajectories toward the native structure and produces more accurate models than AutoStructure/CYANA or CS-Rosetta alone, particularly when using raw unedited NOESY peak lists. We also show that when accurate manually refined NOESY peak lists are available, Rosetta refinement can consistently increase the accuracy of models generated using CYANA and AutoStructure.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Automatización , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica
18.
Proteins ; 76(4): 882-94, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19306341

RESUMEN

Disordered or unstructured regions of proteins, while often very important biologically, can pose significant challenges for resonance assignment and three-dimensional structure determination of the ordered regions of proteins by NMR methods. In this article, we demonstrate the application of (1)H/(2)H exchange mass spectrometry (DXMS) for the rapid identification of disordered segments of proteins and design of protein constructs that are more suitable for structural analysis by NMR. In this benchmark study, DXMS is applied to five NMR protein targets chosen from the Northeast Structural Genomics project. These data were then used to design optimized constructs for three partially disordered proteins. Truncated proteins obtained by deletion of disordered N- and C-terminal tails were evaluated using (1)H-(15)N HSQC and (1)H-(15)N heteronuclear NOE NMR experiments to assess their structural integrity. These constructs provide significantly improved NMR spectra, with minimal structural perturbations to the ordered regions of the protein structure. As a representative example, we compare the solution structures of the full length and DXMS-based truncated construct for a 77-residue partially disordered DUF896 family protein YnzC from Bacillus subtilis, where deletion of the disordered residues (ca. 40% of the protein) does not affect the native structure. In addition, we demonstrate that throughput of the DXMS process can be increased by analyzing mixtures of up to four proteins without reducing the sequence coverage for each protein. Our results demonstrate that DXMS can serve as a central component of a process for optimizing protein constructs for NMR structure determination.


Asunto(s)
Medición de Intercambio de Deuterio , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Proteínas/química , Amidas/química , Secuencia de Aminoácidos , Animales , Bacterias/química , Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/química , Proteínas de Escherichia coli/química , Espectroscopía de Resonancia Magnética/economía , Espectrometría de Masas/economía , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Conformación Proteica , Factores de Tiempo
19.
J Struct Funct Genomics ; 10(2): 127-36, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19101823

RESUMEN

For cell regulation, E2-like ubiquitin-fold modifier conjugating enzyme 1 (Ufc1) is involved in the transfer of ubiquitin-fold modifier 1 (Ufm1), a ubiquitin like protein which is activated by E1-like enzyme Uba5, to various target proteins. Thereby, Ufc1 participates in the very recently discovered Ufm1-Uba5-Ufc1 ubiquination pathway which is found in metazoan organisms. The structure of human Ufc1 was solved by using both NMR spectroscopy and X-ray crystallography. The complementary insights obtained with the two techniques provided a unique basis for understanding the function of Ufc1 at atomic resolution. The Ufc1 structure consists of the catalytic core domain conserved in all E2-like enzymes and an additional N-terminal helix. The active site Cys(116), which forms a thio-ester bond with Ufm1, is located in a flexible loop that is highly solvent accessible. Based on the Ufc1 and Ufm1 NMR structures, a model could be derived for the Ufc1-Ufm1 complex in which the C-terminal Gly(83) of Ufm1 may well form the expected thio-ester with Cys(116), suggesting that Ufm1-Ufc1 functions as described for other E1-E2-E3 machineries. alpha-helix 1 of Ufc1 adopts different conformations in the crystal and in solution, suggesting that this helix plays a key role to mediate specificity.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras/química , Ubiquitinas/química , Animales , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Pliegue de Proteína , Enzimas Activadoras de Ubiquitina/química
20.
Biochemistry ; 47(37): 9715-7, 2008 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-18715016

RESUMEN

Escherichia coli Spr is a membrane-anchored cell wall hydrolase. The solution NMR structure of the C-terminal NlpC/P60 domain of E. coli Spr described here reveals that the protein adopts a papain-like alpha+beta fold and identifies a substrate-binding cleft featuring several highly conserved residues. The active site features a novel Cys-His-His catalytic triad that appears to be a unique structural signature of this cysteine peptidase family. Moreover, the relative orientation of these catalytic residues is similar to that observed in the analogous Ser-His-His triad, a variant of the classic Ser-His-Asp charge relay system, suggesting the convergent evolution of a catalytic mechanism in quite distinct peptidase families.


Asunto(s)
Cisteína Endopeptidasas/química , Cisteína/genética , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Hidrolasas/química , Péptido Hidrolasas/química , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico/genética , Cisteína/química , Cisteína Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Histidina/química , Histidina/genética , Hidrolasas/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Péptido Hidrolasas/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...