Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Mater ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223271

RESUMEN

'Anode-free' Li metal batteries offer the highest possible energy density but face low Li coulombic efficiency when operated in carbonate electrolytes. Here we report a performance improvement of anode-free Li metal batteries using p-block tin octoate additive in the carbonate electrolyte. We show that the preferential adsorption of the octoate moiety on the Cu substrate induces the construction of a carbonate-less protective layer, which inhibits the side reactions and contributes to the uniform Li plating. In the mean time, the reduction of Sn2+ at the initial charging process builds a stable lithophilic layer of Cu6Sn5 alloy and Sn, improving the affinity between the Li and the Cu substrate. Notably, anode-free Li metal pouch cells with tin octoate additive demonstrate good cycling stability with a high coulombic efficiency of ~99.1%. Furthermore, this in situ p-block layer plating strategy is also demonstrated with other types of p-block metal octoate, as well as a Na metal battery system, demonstrating the high level of universality.

2.
Angew Chem Int Ed Engl ; : e202412222, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106271

RESUMEN

In recent years, sodium-ion batteries (SIBs) have attracted a lot of attention and are considered an ideal alternative to lithium-ion batteries (LIBs). The hard carbon (HC) anode in SIBs presents a unique challenge for studying the formation process of the solid electrolyte interphase (SEI) during initial cycling, owing to its distinctive porous structure. This study employs a combination of ultrasonic scanning techniques and differential electrochemical mass spectrometry to conduct an in-depth analysis of the two-dimensional distribution and composition of gases during the formation process. The findings reveal distinct gas evolution behaviors in SIBs compared to LIBs during formation. Notably, significant gas evolution is observed during the discharge phase of the formation cycle in SIBs, with higher discharge rates leading to increased gas evolution rates. This phenomenon is likely attributed to the adsorption of CO2 gas by the abundant pores in HC, followed by desorption during discharge. Furthermore, the study demonstrates that the addition of 5A molecular sieves, which competitively adsorb gases, effectively reduces gas adsorption on the anode during formation, thereby significantly enhancing battery performance. This research elucidates the gas adsorption and desorption behavior at the battery interface, providing new insights into the SEI formation process in SIBs.

3.
Natl Sci Rev ; 11(9): nwae254, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39184135

RESUMEN

Ni-rich LiNi x Co y Mn z O2 (NCMxyz, x + y + z = 1, x ≥ 0.8) layered oxide materials are considered the main cathode materials for high-energy-density Li-ion batteries. However, the endless cracking of polycrystalline NCM materials caused by stress accelerates the loss of active materials and electrolyte decomposition, limiting the cycle life. Hence, understanding the chemo-mechanical evolution during (de)lithiation of NCM materials is crucial to performance improvement. In this work, an optical fiber with µÎµ resolution is designed to in operando detect the stress evolution of a polycrystalline LiNi0.8Co0.1Mn0.1O2 (P-NCM811) cathode during cycling. By integrating the sensor inside the cathode, the stress variation of P-NCM811 is completely transferred to the optical fiber. We find that the anisotropy of primary particles leads to the appearance of structural stress, inducing the formation of microcracks in polycrystalline particles, which is the main reason for capacity decay. The isotropy of primary particles reduces the structural stress of polycrystalline particles, eliminating the generation of microcracks. Accordingly, the P-NCM811 with an ordered arrangement structure delivered high electrochemical performance with capacity retention of 82% over 500 cycles. This work provides a brand-new perspective with regard to understanding the operando chemo-mechanical evolution of NCM materials during battery operation, and guides the design of electrode materials for rechargeable batteries.

4.
ACS Appl Mater Interfaces ; 16(28): 36281-36288, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38949968

RESUMEN

Superionic halides have attracted widespread attention as solid electrolytes due to their excellent ionic conductivity, soft texture, and stability toward high-voltage electrode materials. Among them, Li3InCl6 has aroused interest since it can be easily synthesized in water or ethanol. However, investigations into the influence of solvents on both the crystal structure and properties remain unexplored. In this work, Li3InCl6 is synthesized by three different solvents: water, ethanol, and water-ethanol mixture, and the difference in properties has been studied. The results show that the product obtained by the ethanol solvent demonstrates the largest unit cell parameters with more vacancies, which tend to crystallize on the (131) plane and provide the 3D isotropic network migration for lithium-ions. Thus, it exhibits the highest ionic conductivity (1.06 mS cm-1) at room temperature and the lowest binding energy (0.272 eV). The assembled all-solid-state lithium metal batteries (ASSLMBs) employing Li3InCl6 electrolytes demonstrate a high initial discharge capacity of 153.9 mA h g-1 at 0.1 C (1 C = 170 mA h g-1) and the reversible capacity retention rate can reach 82.83% after 50 cycles. This work studies the difference in ionic conductivity between Li3InCl6 electrolytes synthesized by different solvents, which can provide a reference for the future synthesis of halide electrolytes and enable their practical application in halide-based ASSLMBs with a high energy density.

5.
Angew Chem Int Ed Engl ; : e202407658, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982589

RESUMEN

Metallene is considered as an emerging family of electrocatalysts due to its atomically layered structure and unique surface stress. Here we propose a strategy to modulate the Bader charge transfer (BCT) between Pd surface and oxygenated intermediates via p-d electronic interaction by introducing single-atom p-block metal (M=In, Sn, Pb, Bi) into Pd metallene nanosheets towards efficient oxygen reduction reaction (ORR). X-ray absorption and photoelectron spectroscopy suggests that doping p-block metals could facilitate electron transfer to Pd sites and thus downshift the d-band center of Pd and weaken the adsorption energy of O intermediates. Among them, the developed Bi-Pd metallene shows extraordinarily high ORR mass activity of 11.34 A mgPd -1 and 0.86 A mgPd -1 at 0.9 V and 0.95 V in alkaline solution, respectively, representing the best Pd-based ORR electrocatalysts ever reported. In the cathode of a Zinc-air battery, Bi-Pd metallene could achieve an open-circuit voltage of 1.546 V and keep stable for 760 h at 10 mA cm-2. Theoretical calculations suggest that the BCT between Pd surface and *OO intermediates greatly affects the bond length between them (dPd-*OO) and Bi doping could appropriately reduce the amount of BCT and stretch the dPd-*OO, thus enhancing the ORR activity.

6.
Nanomicro Lett ; 16(1): 260, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39085663

RESUMEN

Li-rich layered oxide (LRLO) cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density, which combines cationic and anionic redox activities. However, continuous voltage decay during cycling remains the primary obstacle for practical applications, which has yet to be fundamentally addressed. It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions, which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions. Recently, constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay. In this review, the relationship between voltage decay and structural evolution is systematically elucidated. Strategies to suppress voltage decay are systematically summarized. Additionally, the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed. Unfortunately, the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles. Herein, the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored, while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.

7.
ACS Nano ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066714

RESUMEN

Graphite-based lithium-ion batteries have succeeded greatly in the electric vehicle market. However, they suffer from performance deterioration, especially at fast charging and low temperatures. Traditional electrolytes based on carbonated esters have sluggish desolvation kinetics, recognized as the rate-determining step. Here, a weakly solvating ether electrolyte with tetrahydropyran (THP) as the solvent is designed to enable reversible and fast lithium-ion (Li+) intercalation in the graphite anode. Unlike traditional ether-based electrolytes which easily cointercalate into the graphite layers, the THP-based electrolyte shows fast desolvation ability and can match well with the graphite anode. In addition, the weak interconnection between Li+ and THP allows more anions to come into the solvating shell of Li+, inducing an inorganic-rich interface and thus suppressing the side reactions. As a result, the lithium iron phosphate/graphite pouch cell (3 Ah) with the THP electrolyte shows a capacity retention of 80.3% after 500 cycles at 2 C charging, much higher than that of the ester electrolyte system (7.6% after 200 cycles). At 4 C charging, the discharging capacity is increased from 2.29 Ah of esters to 2.96 Ah of THP. Furthermore, the cell can work normally over wide working temperatures (-20 to 60 °C). Our electrolyte design provides some understanding of lithium-ion batteries at fast charging and wide temperatures.

9.
J Am Chem Soc ; 146(26): 17659-17668, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904433

RESUMEN

Reactive metal-support interaction (RMSI) is an emerging way to regulate the catalytic performance for supported metal catalysts. However, the induction of RMSI by the thermal reduction is often accompanied by the encapsulation effect on metals, which limits the mechanism research and applications of RMSI. In this work, a gradient orbital coupling construction strategy was successfully developed to induce RMSI in Pt-carbide system without a reductant, leading to the formation of L12-PtxM-MCy (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) intermetallic electrocatalysts. Density functional theory (DFT) calculations suggest that the gradient coupling of the d(M)-2p(C)-5d(Pt) orbital would induce the electron transfer from M to C covalent bonds to Pt NPs, which facilitates the formation of C vacancy (Cv) and the subsequent M migration (occurrence of RMSI). Moreover, the good correlation between the formation energy of Cv and the onset temperature of RMSI in Pt-MCx systems proves the key role of nonmetallic atomic vacancy formation for inducing RMSI. The developed L12-Pt3Ti-TiC catalyst exhibits excellent acidic methanol oxidation reaction activity, with mass activity of 2.36 A mgPt-1 in half-cell and a peak power density of 187.9 mW mgPt-1 in a direct methanol fuel cell, which is one of the best catalysts ever reported. DFT calculations reveal that L12-Pt3Ti-TiC favorably weakens *CO absorption compared to Pt-TiC due to the change of the absorption site from Pt to Ti, which accounts for the enhanced MOR performance.

10.
ACS Nano ; 18(25): 16063-16090, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38868937

RESUMEN

Aqueous zinc-ion batteries (AZIBs) have emerged as one of the most promising candidates for next-generation energy storage devices due to their outstanding safety, cost-effectiveness, and environmental friendliness. However, the practical application of zinc metal anodes (ZMAs) faces significant challenges, such as dendrite growth, hydrogen evolution reaction, corrosion, and passivation. Fortunately, the rapid rise of nanomaterials has inspired solutions for addressing these issues associated with ZMAs. Nanomaterials with unique structural features and multifunctionality can be employed to modify ZMAs, effectively enhancing their interfacial stability and cycling reversibility. Herein, an overview of the failure mechanisms of ZMAs is presented, and the latest research progress of nanomaterials in protecting ZMAs is comprehensively summarized, including electrode structures, interfacial layers, electrolytes, and separators. Finally, a brief summary and optimistic perspective are given on the development of nanomaterials for ZMAs. This review provides a valuable reference for the rational design of efficient ZMAs and the promotion of large-scale application of AZIBs.

11.
Adv Mater ; 36(33): e2405097, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876140

RESUMEN

Extensively-used rechargeable lithium-ion batteries (LIBs) face challenges in achieving high safety and long cycle life. To address such challenges, ultrathin solid polymer electrolyte (SPE) is fabricated with reduced phonon scattering by depositing the composites of ionic-liquid (1-ethyl-3-methylimidazolium dicyamide, EMIM:DCA), polyurethane (PU) and lithium salt on the polyethylene separator. The robust and flexible separator matrix not only reduces the electrolyte thickness and improves the mobility of Li+, but more importantly provides a relatively regular thermal diffusion channel for SPE and reduces the external phonon scattering. Moreover, the introduction of EMIM:DCA successfully breaks the random intermolecular attraction of the PU polymer chain and significantly decreases phonon scattering to enhance the internal thermal conductivity of the polymer. Thus, the thermal conductivity of the as-obtained SPE increases by approximately six times, and the thermal runaway (TR) of the battery is effectively inhibited. This work demonstrates that optimizing thermal safety of the battery by phonon engineering sheds a new light on the design principle for high-safety Li-ion batteries.

12.
Mater Horiz ; 11(16): 3935-3945, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38868994

RESUMEN

O3-type layered oxide cathodes are promising for practical sodium-ion batteries (SIBs) owing to their high theoretical capacity, facile synthesis, and sufficient Na+ storage. However, they face challenges such as rapid capacity loss and poor cycling stability, mainly attributed to irreversible phase transitions. To address these challenges, a novel cathode material, Li/Sn co-substituted O3-Na0.95Li0.07Sn0.01Ni0.22Fe0.2Mn0.5O2 (LSNFM), has been designed by regulating the electronic structure, in which Li+ activates more redox reactions of Ni2+/3+ and Fe3+/4+ above 2.5 V and suppresses the redox reactivity of Mn3+/4+ below 2.5 V, while Sn4+ can prevent the charge delocalization in the transition metal layer, contributing to structural stability. Due to this synergistic effect, the as-prepared LSNFM electrode with high structural reversibility displays a 27.2% capacity increase contributed by the high-voltage transition metal ion redox activity and exhibits excellent long-term cycling stability, an 84.0% capacity retention after 500 cycles at 1 C and an 84.7% capacity retention after 2000 cycles at 5 C. The fundamental mechanism is fully investigated using systematic in situ/ex situ characterization techniques and density functional theory computations. This work provides a paradigm for designing long-term cycle life cathode materials by synergistically regulating the electronic structure in practical SIBs.

13.
J Colloid Interface Sci ; 669: 265-274, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38718580

RESUMEN

HYPOTHESIS: Metal-organic frameworks (MOFs) are highly suitable precursors for supercapacitor electrode materials owing to their high porosity and stable backbone structures that offer several advantages for redox reactions and rapid ion transport. EXPERIMENTS: In this study, a carbon-coated Ni9S8 composite (Ni9S8@C-5) was prepared via sulfuration at 500 ℃ using a spherical Ni-MOF as the sacrificial template. FINDING: The stable carbon skeleton derived from Ni-MOF and positive structure-activity relationship due to the multinuclear Ni9S8 components resulted in a specific capacity of 278.06 mAh·g-1 at 1 A·g-1. Additionally, the hybrid supercapacitor (HSC) constructed using Ni9S8@C-5 as the positive electrode and the laboratory-prepared coal pitch-based activated carbon (CTP-AC) as the negative electrode achieved an energy density of 69.32 Wh·kg-1 at a power density of 800.06 W·kg-1, and capacity retention of 83.06 % after 5000 cycles of charging and discharging at 5 A·g-1. The Ni-MOF sacrificial template method proposed in this study effectively addresses the challenges associated with structural collapse and agglomeration of Ni9S8 during electrochemical reactions, thus improving its electrochemical performance. Hence, a simple preparation method is demonstrated, with broad application prospects in supercapacitor electrodes.

14.
Nat Mater ; 23(9): 1259-1267, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38769206

RESUMEN

Structurally ordered L10-PtM (M = Fe, Co, Ni and so on) intermetallic nanocrystals, benefiting from the chemically ordered structure and higher stability, are one of the best electrocatalysts used for fuel cells. However, their practical development is greatly plagued by the challenge that the high-temperature (>600 °C) annealing treatment necessary for realizing the ordered structure usually leads to severe particle sintering, morphology change and low ordering degree, which makes it very difficult for the gram-scale preparation of desirable PtM intermetallic nanocrystals with high Pt content for practical fuel cell applications. Here we report a new concept involving the low-melting-point-metal (M' = Sn, Ga, In)-induced bond strength weakening strategy to reduce Ea and promote the ordering process of PtM (M = Ni, Co, Fe, Cu and Zn) alloy catalysts for a higher ordering degree. We demonstrate that the introduction of M' can reduce the ordering temperature to extremely low temperatures (≤450 °C) and thus enable the preparation of high-Pt-content (≥40 wt%) L10-Pt-M-M' intermetallic nanocrystals as well as ten-gram-scale production. X-ray spectroscopy studies, in situ electron microscopy and theoretical calculations reveal the fundamental mechanism of the Sn-facilitated ordering process at low temperatures, which involves weakened bond strength and consequently reduced Ea via Sn doping, the formation and fast diffusion of low-coordinated surface free atoms, and subsequent L10 nucleation. The developed L10-Ga-PtNi/C catalysts display outstanding performance in H2-air fuel cells under both light- and heavy-duty vehicle conditions. Under the latter condition, the 40% L10-Pt50Ni35Ga15/C catalyst delivers a high current density of 1.67 A cm-2 at 0.7 V and retains 80% of the current density after extended 90,000 cycles, which exceeds the United States Department of Energy performance metrics and represents among the best cathodic electrocatalysts for practical proton-exchange membrane fuel cells.

15.
Small ; : e2402466, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742945

RESUMEN

Aqueous Zinc-sulfur (Zn-S) batteries are promising for the field of energy storage due to their low cost, high theoretical capacity, and safety. However, the large volume expansion and the inherently poor conductivity of sulfur would result in electrode cracking and sluggish reaction kinetics, limiting the practical application of Zn-S batteries. Herein, commercial zinc sulfide (ZnS) is employed instead of S as cathode and proposed a doping modification strategy to solve the above problems. The designed ZnS0.93Se0.07 cathode shows good cycle stability and much-improved reaction kinetics, which is due to the smaller bandgap of ZnS0.93Se0.07 (1.40 eV) compared to ZnS (1.86 eV). As a result, the obtained ZnS0.93Se0.07 cathode exhibits a high specific capacity of 552 mAh g-1 (1672.6 mAh g-1 based on S) at 0.1 A g-1 and 330 mAh g-1 (1000 mAh g-1 based on S) at 2 A g-1. Moreover, the ZnS0.93Se0.07 cathode can provide a high areal capacity of 3.8 mAh cm-2 at a high mass loading of 10 mg cm-2 and limited electrolyte (4 µL mg-1). This work provides a simple and effective cathode modification strategy, which is conducive to promoting the practical application of Zn-S batteries.

16.
Angew Chem Int Ed Engl ; 63(26): e202400751, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38634352

RESUMEN

Developing efficient and anti-corrosive oxygen reduction reaction (ORR) catalysts is of great importance for the applications of proton exchange membrane fuel cells (PEMFCs). Herein, we report a novel approach to prepare metal oxides supported intermetallic Pt alloy nanoparticles (NPs) via the reactive metal-support interaction (RMSI) as ORR catalysts, using Ni-doped cubic ZrO2 (Ni/ZrO2) supported L10-PtNi NPs as a proof of concept. Benefiting from the Ni migration during RMSI, the oxygen vacancy concentrations in the support are increased, leading to an electron enrichment of Pt. The optimal L10-PtNi-Ni/ZrO2-RMSI catalyst achieves remarkably low mass activity (MA) loss (17.8 %) after 400,000 accelerated durability test cycles in a half-cell and exceptional PEMFC performance (MA=0.76 A mgPt -1 at 0.9 V, peak power density=1.52/0.92 W cm-2 in H2-O2/-air, and 18.4 % MA decay after 30,000 cycles), representing the best reported Pt-based ORR catalysts without carbon supports. Density functional theory (DFT) calculations reveal that L10-PtNi-Ni/ZrO2-RMSI requires a lower energetic barrier for ORR than L10-PtNi-Ni/ZrO2 (direct loading), which is ascribed to a decreased Bader charge transfer between Pt and *OH, and the improved stability of L10-PtNi-Ni/ZrO2-RMSI compared to L10-PtNi-C can be contributed to the increased adhesion energy and Ni vacancy formation energy within the PtNi alloy.

17.
ACS Appl Mater Interfaces ; 16(17): 21924-21931, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647706

RESUMEN

The solid-state battery with a lithium metal anode is a promising candidate for next-generation batteries with improved energy density and safety. However, the current polymer electrolytes still cannot fulfill the demands of solid-state batteries. In this work, we propose a "5H" poly(ethylene oxide) (PEO) electrolyte via introducing a multifunctional additive of tris(pentafluorophenyl)borane (TPFPB) for high-performance lithium metal batteries. The addition of TPFPB improves the ionic conductivity from 6.08 × 10-5 to 1.54 × 10-4 S cm-1 via reducing the crystallinity of the PEO electrolyte and enhances the lithium-ion transference number from 0.19 to 0.53 via anion trapping due to its Lewis acid nature. Furthermore, the fluorine and boron segments from TPFPB can optimize the composition of the solid-electrolyte interphase and cathode-electrolyte interphase, providing a high electrochemical stability window over 4.6 V of the PEO electrolyte along with significantly improved interface stability. At last, TPFPB can ensure improved safety through a self-extinguishing effect. As a result, the "5H" electrolyte enables the Li/Li symmetric cells to achieve a stable cycle over 2200 h at the current density of 0.2 mA cm-2 with a capacity of 0.2 mA h cm-2; the LiFePO4/Li full cells with a high LFP loading of 8 mg cm-2 exhibits decay-free capacity of 140 mA h g-1 (99% capacity retention) after 100 cycles; and the NCM811/Li cells exhibit a high capacity of 160 mA h g-1 after 50 cycles at 0.5 C. This work presents an innovative approach to utilizing a "5H" electrolyte for high-performance solid-state lithium batteries.

18.
Adv Mater ; 36(21): e2312773, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38349072

RESUMEN

Constructing large-area artificial solid electrolyte interphase (SEI) to suppress Li dendrites growth and electrolyte consumption is essential for high-energy-density Li metal batteries (LMBs). Herein, chemically exfoliated ultrathin MoS2 nanosheets (EMoS2) as an artificial SEI are scalable transfer-printed on Li-anode (EMoS2@Li). The EMoS2 with a large amount of sulfur vacancies and 1T phase-rich acts as a lithiophilic interfacial ion-transport skin to reduce the Li nucleation overpotential and regulate Li+ flux. With favorable Young's modulus and homogeneous continuous layered structure, the proposed EMoS2@Li effectively suppresses the growth of Li dendrites and repeat breaking/reforming of the SEI. As a result, the assembled EMoS2@Li||LiFePO4 and EMoS2@Li||LiNi0.8Co0.1Mn0.1O2 batteries demonstrate high-capacity retention of 93.5% and 92% after 1000 cycles and 300 cycles, respectively, at ultrahigh cathode loading of 20 mg cm-2. Ultrasonic transmission technology confirms the admirable ability of EMoS2@Li to inhibit Li dendrites in practical pouch batteries. Remarkably, the Ah-class EMoS2@Li||LiNi0.8Co0.1Mn0.1O2 pouch battery exhibits an energy density of 403 Wh kg-1 over 100 cycles with the low negative/positive capacity ratio of 1.8 and electrolyte/capacity ratio of 2.1 g Ah-1. The strategy of constructing an artificial SEI by sulfur vacancies-rich and 1T phase-rich ultrathin MoS2 nanosheets provides new guidance to realize high-energy-density LMBs with long cycling stability.

19.
Small ; 20(29): e2311299, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38366314

RESUMEN

Silicon (Si) anode has attracted broad attention because of its high theoretical specific capacity and low working potential. However, the severe volumetric changes of Si particles during the lithiation process cause expansion and contraction of the electrodes, which induces a repeatedly repair of solid electrolyte interphase, resulting in an excessive consuming of electrolyte and rapid capacity decay. Clearly known the deformation and stress changing at µÎµ resolution in the Si-based electrode during battery operation provides invaluable information for the battery research and development. Here, an in operando approach is developed to monitor the stress evolution of Si anode electrodes via optical fiber Bragg grating (FBG) sensors. By implanting FBG sensor at specific locations in the pouch cells with different Si anodes, the stress evolution of Si electrodes has been systematically investigated, and Δσ/areal capacity is proposed for stress assessment. The results indicate that the differences in stress evolution are nested in the morphological changes of Si particles and the evolution characteristics of electrode structures. The proposed technique provides a brand-new view for understanding the electrochemical mechanics of Si electrodes during battery operation.

20.
Adv Mater ; 36(19): e2312548, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38323869

RESUMEN

Solid electrolyte interface (SEI) is arguably the most important concern in graphite anodes, which determines their achievable Coulombic efficiency (CE) and cycling stability. In spent graphite anodes, there are already-formed (yet loose and/or broken) SEIs and some residual active lithium, which, if can be inherited in the regenerated electrodes, are highly desired to compensate for the lithium loss due to SEI formation. However, current graphite regenerated approaches easily destroy the thin SEIs and residue active lithium, making their reuse impossible. Herein, this work reports a fast-heating strategy (e.g., 1900 K for ≈150 ms) to upcycle degraded graphite via instantly converting the loose original SEI layer (≈100 nm thick) to a compact and mostly inorganic one (≈10-30 nm thick with a 26X higher Young's Modulus) and still retaining the activity of residual lithium. Thanks to the robust SEI and enclosed active lithium, the regenerated graphite exhibited 104.7% initial CE for half-cell and gifted the full cells with LiFePO4 significantly improved initial CE (98.8% versus 83.2%) and energy density (309.4 versus 281.4 Wh kg-1), as compared with commercial graphite. The as-proposed upcycling strategy turns the "waste" graphite into high-value prelithiated ones, along with significant economic and environmental benefits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA