Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Front Microbiol ; 15: 1458258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309528

RESUMEN

Background: The skin fungal communities of animals play a crucial role in maintaining host health and defending against pathogens. Because fungal infections can affect the skin microbiota of bats, gaining a comprehensive understanding of the characteristics of healthy bat skin fungal communities and the ecological processes driving them provides valuable insights into the interactions between pathogens and fungi. Methods: We used Kruskal-Wallis tests and Permutational Multivariate Analysis of Variance (PERMANOVA) to clarify differences in skin fungal community structure among bat species. A Generalized Linear Model (GLM) based on a quasi-Poisson distribution and partial distance-based redundancy analysis (db-RDA) was performed to assess the influence of variables on skin fungal communities. Using community construction models to explore the ecological processes driving fungal community changes, t-tests and Wilcoxon tests were used to compare the alpha diversity and species abundance differences between the fungal structure on bat species' skin and the environmental fungal pool. Results: We found significant differences in the composition and diversity of skin fungal communities among bat species influenced by temperature, sampling site, and body mass index. Trophic modes and skin fungal community complexity also varied among bat species. Null model and neutral model analysis demonstrated that deterministic processes dominated the assembly of skin fungal communities, with homogeneous selection as the predominant process. Skin fungal communities on bat species were impacted by the environmental fungal reservoir, and actively selected certain amplicon sequence variants (ASVs) from the environmental reservoir to adhere to the skin. Conclusion: In this study, we revealed the structure and the ecological process driving the skin fungal community across bat species in northern China. Overall, these results broaden our knowledge of skin fungal communities among bat species, which may be beneficial to potential strategies for the protection of bats in China.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39236138

RESUMEN

Histopathological whole-slide image (WSI) segmentation is essential for precise tissue characterization in medical diagnostics. However, traditional approaches require labor-intensive pixel-level annotations. To this end, we study weakly supervised semantic segmentation (WSSS) which uses patch-level classification labels, reducing annotation efforts significantly. However, the complexity of WSIs and the challenge of sparse classification labels hinder effective dense pixel predictions. Moreover, due to the multi-label nature of WSI, existingapproachesofsingle-labelcontrastivelearningdesignedfortherepresentationofsingle-category, neglecting the presence of other relevant categories and thus fail to adapt to WSI tasks. This paper presents a novel multilabel contrastive learning method for WSSS by incorporating class-specific embedding extraction with LLM features guidance. Specifically, we propose to obtain class-specific embeddings by utilizing classifier weights, followed by a dot-product-based attention fusion method that leverages LLM features to enrich their semantics, facilitating contrastive learning between different classes from single image. Besides, we propose a Robust Learning approach that leverages multi-layer features to evaluate the uncertainty of pseudo-labels, thereby mitigating the impact of noisy pseudo-labels on the learning process of segmentation. Extensive experiments have been conducted on two Histopathological image segmentation datasets, i.e. LUAD dataset and BCSS dataset, demonstrating the effectiveness of our methods with leading performance.

3.
J Am Chem Soc ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298380

RESUMEN

Electrosynthesis of multicarbon products, such as C2H4, from CO2 reduction on copper (Cu) catalysts holds promise for achieving carbon neutrality. However, maintaining a steady high current-level C2H4 electrosynthesis still encounters challenges, arising from unstable alkalinity and carbonate precipitation caused by undesired ion migration at the cathode under a repulsive electric field. To address these issues, we propose a universal "charge release" concept by incorporating tiny amounts of an oppositely charged anionic ionomer (e.g., perfluorinated sulfonic acid, PFSA) into a cationic covalent organic framework on the Cu surface (cCOF/PFSA). This strategy effectively releases the hidden positive charge within the cCOF, enhancing surface immobilization of cations to impede both outward migration of generated OH- and inward migration of cations, inhibiting carbonate precipitation and creating a strong alkaline microenvironment. Meanwhile, the ionomer's hydrophobic chains create a hydrophobic environment within the cCOF, facilitating efficient gas transport. In situ characterizations and theoretical calculations demonstrate that the cCOF/PFSA catalyst establishes a hydrophobic strong alkaline microenvironment, optimizing the adsorption strength and configuration of *CO intermediates to promote the C2H4 formation. The optimized catalyst achieves a 70.5% Faradaic efficiency for C2H4 with a partial current density over 470 mA cm-2. Notably, it delivers a high single-pass carbon efficiency of 96.5% for CO2RR and sustains an exceptional stability over 760 h. When implemented in a large-area MEA electrolyzer and a 5-cell MEA stack, the system achieves an industrial current of 15 A and continuous C2H4 production exceeding 19 mL min-1, marking a significant step toward industrial feasibility in CO2RR-to-C2H4 conversion.

4.
Nat Commun ; 15(1): 6109, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030195

RESUMEN

The collective modes of the superconducting order parameter fluctuation can provide key insights into the nature of the superconductor. Recently, a family of superconductors has emerged in non-magnetic kagome materials AV3Sb5 (A = K, Rb, Cs), exhibiting fertile emergent phenomenology. However, the collective behaviors of Cooper pairs have not been studied. Here, we report a distinct collective mode in CsV3-xTaxSb5 using scanning tunneling microscope/spectroscopy. The spectral line-shape is well-described by one isotropic and one anisotropic superconducting gap, and a bosonic mode due to electron-mode coupling. With increasing x, the two gaps move closer in energy, merge into two isotropic gaps of equal amplitude, and then increase synchronously. The mode energy decreases monotonically to well below 2 Δ and survives even after the charge density wave order is suppressed. We propose the interpretation of this collective mode as Leggett mode between different superconducting components or the Bardasis-Schrieffer mode due to a subleading superconducting component.

5.
Ultrasonics ; 142: 107358, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901149

RESUMEN

Stiffness measurement using shear wave propagation velocity has been the most common non-invasive method for liver fibrosis assessment. The velocity is captured through a trace recorded by transient ultrasonographic elastography, with the slope indicating the velocity of the wave. However, due to various factors such as noise and shear wave attenuation, detecting shear wave trajectory on wave propagation maps is a challenging task. In this work, we made the first attempt to use deep learning methods for shear wave trajectory detection on wave propagation maps. Specifically, we adopted five deep learning models in this task and evaluated them by using a well-acknowledged metric based on EA-Angular-Score (EAA) and task-specific metric based on Young s-Score (Ys) in the line-detection field. Furthermore, we proposed an end-to-end framework based on a Transformer and Hough transform, named Transformer-enhanced Hough Transform (TEHT). It took a wave propagation map as input image and directly output the slope of the shear wave trajectory. The framework extracts multi-scale local features from wave propagation maps, employs a deformable attention mechanism for feature fusion, identifies the target line using the Hough transform's voting mechanism, and calculates the contribution of each scale through channel attention. Wave propagation maps from 68 patients were utilized in this study, with manual annotation performed by a rater who was trained as a radiologist, serving as the reference value. The evaluation revealed that the SLNet model exhibited F-measure of EA and Ys values as 40.33 % and 40.72 %, respectively, while the TEHT model showed F-measure of EA and Ys values as 80.96 % and 98.00 %, respectively. TEHT yielded significantly better performance than other deep learning models. Moreover, TEHT demonstrated strong concordance with the gold standard, yielding R2 values of 0.967 and 0.968 for velocity and liver stiffness, respectively. The present study therefore suggests the application of the TEHT model for assessing liver fibrosis owing to its superiority among the five deep learning models.


Asunto(s)
Aprendizaje Profundo , Diagnóstico por Imagen de Elasticidad , Cirrosis Hepática , Cirrosis Hepática/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Hígado/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Anciano , Procesamiento de Imagen Asistido por Computador/métodos
6.
Insights Imaging ; 15(1): 114, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38734997

RESUMEN

OBJECTIVES: Liver transient elastography (TE) has been endorsed by the WHO as the first-line diagnostic tool for liver diseases. Although unreliable and invalid results caused by intercostal space (ICS)-associated factors (including excessive subcutaneous fat and a narrow ICS relative to the transducer size) and operator inexperience are not uncommon, no standard guidelines for ideal probe placement are currently available. Herein, we conducted a prospective observational study to identify an ideal measurement site and respiratory condition for TE by characterizing anatomical and biomechanical properties of the ICSs using ultrasound B-mode and elasticity imaging. METHODS: Intercostal ultrasound was performed pointwise at four specific sites in 59 patients to simultaneously measure the width, stiffness, and skin‒liver capsule distance (SCD) of the ICSs over the liver, under end-inspiratory and end-expiratory conditions. Intersections between the 8th ICS and anterior axillary line, the 7th ICS and anterior axillary line, the 8th ICS and mid-axillary line, and the 7th ICS and mid-axillary line were defined as Sites 1 to 4, respectively. RESULTS: Results indicated that Sites 2 and 3 presented greater intercostal width; Sites 3 and 4 displayed lower intercostal stiffness; Sites 2 and 3 exhibited a shorter SCD. The ICSs were significantly wider and stiffer at end-inspiration. Additionally, the liver was more easily visualized at Sites 1 and 3. CONCLUSION: We recommend Site 3 for TE probe placement owing to its greater width, lower stiffness, and smaller abdominal wall thickness. Performing TE at end-inspiration is preferred to minimize transducer-rib interferences. This study paves the way toward a standardized TE examination procedure. CRITICAL RELEVANCE STATEMENT: A standardized measurement protocol for WHO-recommended liver TE was first established to improve the success and efficiency of the examination procedure. KEY POINTS: WHO-recommended TE is unreliable or fails due to intercostal space-related factors. The 8th intercostal space on the mid-axillary line and end-inspiration are recommended. This standardized protocol aids in handling challenging cases and simplifies operational procedures.

7.
Nano Lett ; 24(20): 6023-6030, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739284

RESUMEN

Construction of diatomic rotors, which is crucial for artificial nanomachines, remains challenging due to surface constraints and limited chemical design. Here we report the construction of diatomic Cr-Cs and Fe-Cs rotors where a Cr or Fe atom switches around a Cs atom at the Sb surface of the newly discovered kagome superconductor CsV3Sb5. The switching rate is controlled by the bias voltage between the rotor and scanning tunneling microscope (STM) tip. The spatial distribution of rates exhibits C2 symmetry, possibly linked to the symmetry-breaking charge orders of CsV3Sb5. We have expanded the rotor construction to include different transition metals (Cr, Fe, V) and alkali metals (Cs, K). Remarkably, designed configurations of rotors are achieved through STM manipulation. Rotor orbits and quantum states are precisely controlled by tuning the inter-rotor distance. Our findings establish a novel platform for the controlled fabrication of atomic motors on symmetry-breaking quantum materials, paving the way for advanced nanoscale devices.

8.
J Environ Manage ; 360: 121185, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788407

RESUMEN

Chlorophyll fluorescence is the long-wave light released by the residual energy absorbed by vegetation after photosynthesis and dissipation, which can directly and non-destructively reflect the photosynthetic state of plants from the perspective of the mechanism of photosynthetic process. Moso bamboo has a substantial carbon sequestration ability, and leaf-expansion stage is an important phenological period for carbon sequestration. Gross primary production (GPP) is a key parameter reflecting vegetation carbon sequestration process. However, the ability of chlorophyll fluorescence in moso bamboo to explain GPP changes is unclear. The research area of this study is located in the bamboo forest near the flux station of Anji County, Zhejiang Province, where an observation tower is built to monitor the carbon flux and meteorological change of bamboo forest. The chlorophyll fluorescence physiological parameters (Fp) and fluorescence yield (Fy) indices were measured and calculated for the leaves of newborn moso bamboo (I Du bamboo) and the old leaves of 4- to 5-year-old moso bamboo (Ⅲ Du bamboo) during the leaf-expansion stage. The chlorophyll fluorescence in response to the environment and its effect on carbon flux were analyzed. The results showed that: Fv/Fm, Y(II) and α of Ⅰ Du bamboo gradually increased, while Ⅲ Du bamboo gradually decreased, and FYint and FY687/FY738 of Ⅰ Du bamboo were higher than those of Ⅲ Du bamboo; moso bamboo was sensitive to changes in air temperature(Ta), relative humidity(RH), water vapor pressure(E), soil temperature(ST) and soil water content (SWC), the Fy indices of the upper, middle and lower layers were significantly correlated with Ta, E and ST; single or multiple vegetation indices were able to estimate the fluorescence yield indices well (all with R2 greater than 0.77); chlorophyll fluorescence (Fp and Fy indices) of Ⅰ Du bamboo and Ⅲ Du bamboo could explain 74.4% and 72.7% of the GPP variation, respectively; chlorophyll fluorescence and normalized differential vegetation index of the canopy (NDVIc) could estimate GPP well using random forest (Ⅰ Du bamboo: r = 0.929, RMSE = 0.069 g C·m-2; Ⅲ Du bamboo: r = 0.899, RMSE = 0.134 g C·m-2). The results of this study show that chlorophyll fluorescence can provide a basis for judging the response of moso bamboo to environmental changes and can well explain GPP. This study has important scientific significance for evaluating the potential mechanisms of growth, stress feedback and photosynthetic carbon sequestration of bamboo.


Asunto(s)
Clorofila , Fotosíntesis , Hojas de la Planta , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Fluorescencia , Poaceae/metabolismo , Poaceae/crecimiento & desarrollo , Secuestro de Carbono , Carbono/metabolismo
9.
ACS Nano ; 18(23): 15303-15311, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38803281

RESUMEN

Electroreduction of CO2 in highly acidic environments holds promise for enhancing CO2 utilization efficiency. Due to the HER interference and structural instability, however, challenges in improving the selectivity and stability toward multicarbon (C2+) products remain. In this study, we proposed an "armor protection" strategy involving the deposition of ultrathin, hydrophobic SiO2 onto the Cu surface (Cu/SiO2) through a simple one-step hydrolysis. Our results confirmed the effective inhibition of HER by a hydrophobic SiO2 layer, leading to a high Faradaic efficiency (FE) of up to 76.9% for C2+ products at a current density of 900 mA cm-2 under a strongly acidic condition with a pH of 1. The observed high performance surpassed the reported performance for most previously studied Cu-based catalysts in acidic CO2RR systems. Furthermore, the ultrathin hydrophobic SiO2 shell was demonstrated to effectively prevent the structural reconstruction of Cu and preserve the oxidation state of Cuδ+ active sites during CO2RR. Additionally, it hindered the accumulation of K+ ions on the catalyst surface and diffusion of in situ generated OH- ions away from the electrode, thereby favoring C2+ product generation. In situ Raman analyses coupled with DFT simulations further elucidated that the SiO2 shell proficiently modulated *CO adsorption behavior on the Cu/SiO2 catalyst by reducing *CO adsorption energy, facilitating the C-C coupling. This work offers a compelling strategy for rationally designing and exploiting highly stable and active Cu-based catalysts for CO2RR in highly acidic environments.

10.
Vis Comput Ind Biomed Art ; 7(1): 8, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625580

RESUMEN

This study addresses a limitation of prior research on pectoralis major (PMaj) thickness changes during the pectoralis fly exercise using a wearable ultrasound imaging setup. Although previous studies used manual measurement and subjective evaluation, it is important to acknowledge the subsequent limitations of automating widespread applications. We then employed a deep learning model for image segmentation and automated measurement to solve the problem and study the additional quantitative supplementary information that could be provided. Our results revealed increased PMaj thickness changes in the coronal plane within the probe detection region when real-time ultrasound imaging (RUSI) visual biofeedback was incorporated, regardless of load intensity (50% or 80% of one-repetition maximum). Additionally, participants showed uniform thickness changes in the PMaj in response to enhanced RUSI biofeedback. Notably, the differences in PMaj thickness changes between load intensities were reduced by RUSI biofeedback, suggesting altered muscle activation strategies. We identified the optimal measurement location for the maximal PMaj thickness close to the rib end and emphasized the lightweight applicability of our model for fitness training and muscle assessment. Further studies can refine load intensities, investigate diverse parameters, and employ different network models to enhance accuracy. This study contributes to our understanding of the effects of muscle physiology and exercise training.

11.
Nat Commun ; 15(1): 2301, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485746

RESUMEN

Atomically precise defect engineering is essential to manipulate the properties of emerging topological quantum materials for practical quantum applications. However, this remains challenging due to the obstacles in modifying the typically complex crystal lattice with atomic precision. Here, we report the atomically precise engineering of the vacancy-localized spin-orbit polarons in a kagome magnetic Weyl semimetal Co3Sn2S2, using scanning tunneling microscope. We achieve the step-by-step repair of the selected vacancies, leading to the formation of artificial sulfur vacancies with elaborate geometry. We find that that the bound states localized around these vacancies undergo a symmetry dependent energy shift towards Fermi level with increasing vacancy size. As the vacancy size increases, the localized magnetic moments of spin-orbit polarons become tunable and eventually become itinerantly negative due to spin-orbit coupling in the kagome flat band. These findings provide a platform for engineering atomic quantum states in topological quantum materials at the atomic scale.

12.
Int J Biol Macromol ; 264(Pt 2): 130739, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460639

RESUMEN

Extradiol dioxygenases (EDOs) catalyzing meta-cleavage of catecholic compounds promise an effective way to detoxify aromatic pollutants. This work reported a novel scenario to engineer our recently identified Type I EDO from Tcu3516 for a broader substrate scope and enhanced activity, which was based on 2,3-dihydroxybiphenyl (2,3-DHB)-liganded molecular docking of Tcu3516 and multiple sequence alignment with other 22 Type I EDOs. 11 non-conservative residues of Tcu3516 within 6 Å distance to the 2,3-DHB ligand center were selected as potential hotspots and subjected to semi-rational design using 6 catecholic analogues as substrates; the mutants V186L and V212N returned with progressive evolution in substrate scope and catalytic activity. Both mutants were combined with D285A for construction of double mutants and final triple mutant V186L/V212N/D285A. Except for 2,3-DHB (the mutant V186L/D285A gave the best catalytic performance), the triple mutant prevailed all other 5 catecholic compounds for their degradation; affording the catalytic efficiency kcat/Km value increase by 10-30 folds, protein Tm (structural rigidity) increase by 15 °C and the half-life time enhancement by 10 times compared to the wild type Tcu3516. The molecular dynamic simulation suggested that a stabler core and a more flexible entrance are likely accounting for enhanced catalytic activity and stability of enzymes.


Asunto(s)
Compuestos Orgánicos , Oxigenasas , Simulación del Acoplamiento Molecular , Oxigenasas/química , Alineación de Secuencia , Especificidad por Sustrato
13.
JAMA Netw Open ; 7(2): e240219, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386318

RESUMEN

Importance: Prior findings from the Look AHEAD trial showed no significant reduction in the risk of cardiovascular events by lifestyle-induced weight loss among individuals with type 2 diabetes (T2D) and overweight or obesity. However, physical activity (PA) may modify the changes in cardiovascular risk associated with weight loss. Objective: To examine the joint association of weight loss and PA with the risk of adverse cardiovascular events in patients with T2D and overweight or obesity. Design, Setting, and Participants: This cohort study was a post hoc analysis of the Look AHEAD randomized clinical trial, which compared the cardiovascular effects of weight loss by intensive lifestyle intervention vs diabetes support and education among individuals with T2D and overweight or obesity. The study was conducted from June 2001 to September 2012, and participants were patients in the substudy of accelerometry-measured PA from 8 locations in the United States. Data were analyzed from June to August 2023. Exposures: Body weight change and accelerometer-derived PA volume across the first 4 years. Main Outcomes and Measures: The primary outcome was a composite cardiovascular outcome including cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for angina. Results: Among a total of 1229 participants (mean [SD] age, 60 [7] years; 533 male [43%]), 333 (27%) achieved and maintained weight loss for the first 4 years. Among the individuals who maintained weight loss, 105 (32%) maintained high PA volume. During a median of 9.5 years of follow-up, 198 participants (16.1%) experienced the primary outcome. Compared with those with low PA volume and no weight loss (105 [15.8%]), maintaining high PA volume and weight loss was associated with a 61% lower risk of the primary end point (hazard ratio, 0.39; 95% CI, 0.19-0.81; P = .01). However, there was no significant difference in the risk of the primary end point among those with either weight loss only or high PA only. The multiplicative interaction between weight loss and PA for the risk of cardiovascular events was also significant (P for interaction = .01). Conclusions and Relevance: In this cohort study, maintaining weight loss and higher PA volume was associated with a lower risk of the composite cardiovascular outcome. The findings suggest that the cardiovascular benefits of PA may vary and be enhanced by weight loss among individuals with T2D and overweight or obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sobrepeso , Adulto , Humanos , Masculino , Persona de Mediana Edad , Angina de Pecho , Estudios de Cohortes , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/terapia , Ejercicio Físico , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/terapia , Sobrepeso/complicaciones , Sobrepeso/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Femenino , Anciano
14.
Sci Bull (Beijing) ; 69(7): 885-892, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38383234

RESUMEN

Vortices and bound states offer an effective means of comprehending the electronic properties of superconductors. Recently, surface-dependent vortex core states have been observed in the newly discovered kagome superconductors CsV3Sb5. Although the spatial distribution of the sharp zero energy conductance peak appears similar to Majorana bound states arising from the superconducting Dirac surface states, its origin remains elusive. In this study, we present observations of tunable vortex bound states (VBSs) in two chemically-doped kagome superconductors Cs(V1-xTrx)3Sb5 (Tr = Ta or Ti), using low-temperature scanning tunneling microscopy/spectroscopy. The CsV3Sb5-derived kagome superconductors exhibit full-gap-pairing superconductivity accompanied by the absence of long-range charge orders, in contrast to pristine CsV3Sb5. Zero-energy conductance maps demonstrate a field-driven continuous reorientation transition of the vortex lattice, suggesting multiband superconductivity. The Ta-doped CsV3Sb5 displays the conventional cross-shaped spatial evolution of Caroli-de Gennes-Matricon bound states, while the Ti-doped CsV3Sb5 exhibits a sharp, non-split zero-bias conductance peak (ZBCP) that persists over a long distance across the vortex. The spatial evolution of the non-split ZBCP is robust against surface effects and external magnetic field but is related to the doping concentrations. Our study reveals the tunable VBSs in multiband chemically-doped CsV3Sb5 system and offers fresh insights into previously reported Y-shaped ZBCP in a non-quantum-limit condition at the surface of kagome superconductor.

15.
Mol Neurobiol ; 61(9): 6920-6933, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38363533

RESUMEN

Multiple sclerosis (MS) is a leading cause of chronic neurological dysfunction in young to middle-aged adults, affecting approximately 2.5 million people worldwide. It is characterized by inflammation, multifocal demyelination, axonal loss, and white and gray matter gliosis. Autophagy is a highly conserved protein degradation pathway. Polymorphisms in autophagy-related genes have been implicated in a variety of autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, psoriasis and MS. However, the significance of autophagy in MS remains to be elucidated. This paper aims to explore the potential role of autophagy-related genes in MS diseases by using bioinformatics combined with machine learning methods. Finally, we obtained 9 autophagy genes with the highest correlation with MS, and further changes in these autophagy genes were verified in the experimental autoimmune encephalomyelitis (EAE) model and oligodendrocyte precursor cells (OPCs) engulfed myelin debris (MD). Combined with bioinformatic analysis and experimental data, Becn1 showed obvious expression abnormalities suggesting that this gene has vital functions in autophagy and MD engulfed by OPCs. This work will be of great significance for the further exploration of autophagy-related genes in demyelinating diseases.


Asunto(s)
Autofagia , Esclerosis Múltiple , Células Precursoras de Oligodendrocitos , Fagocitosis , Autofagia/genética , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Fagocitosis/genética , Células Precursoras de Oligodendrocitos/inmunología , Biología Computacional , Aprendizaje Automático , Animales , Ratones , Femenino , Ratones Endogámicos C57BL , Beclina-1/genética , Beclina-1/inmunología , Perfilación de la Expresión Génica , Vaina de Mielina/metabolismo , Vaina de Mielina/patología
16.
Bioinspir Biomim ; 19(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38176107

RESUMEN

This study investigates the interaction of a two-manta-ray school using computational fluid dynamics simulations. The baseline case consists of two in-phase undulating three-dimensional manta models arranged in a stacked configuration. Various vertical stacked and streamwise staggered configurations are studied by altering the locations of the top manta in the upstream and downstream directions. Additionally, phase differences between the two mantas are considered. Simulations are conducted using an in-house developed incompressible flow solver with an immersed boundary method. The results reveal that the follower will significantly benefit from the upstroke vortices (UVs) and downstroke vortices depending on its streamwise separation. We find that placing the top manta 0.5 body length (BL) downstream of the bottom manta optimizes its utilization of UVs from the bottom manta, facilitating the formation of leading-edge vortices (LEVs) on the top manta's pectoral fins during the downstroke. This LEV strengthening mechanism, in turn, generates a forward suction force on the follower that results in a 72% higher cycle-averaged thrust than a solitary swimmer. This benefit harvested from UVs can be further improved by adjusting the phase of the top follower. By applying a phase difference ofπ/3to the top manta, the follower not only benefits from the UVs of the bottom manta but also leverages the auxiliary vortices during the upstroke, leading to stronger tip vortices and a more pronounced forward suction force. The newfound interaction observed in schooling studies offers significant insights that can aid in the development of robot formations inspired by manta rays.


Asunto(s)
Hidrodinámica , Natación , Fenómenos Biomecánicos
17.
J Colloid Interface Sci ; 660: 458-468, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246049

RESUMEN

The high activity barriers of Li2S nucleation and deposition limit the redox reaction kinetics of lithium polysulfides (LiPSs), meanwhile, the significant shuttle effect of LiPSs hampers the advancement of Li-S batteries (LSBs). In this work, a NiSe2/CoSe2-rGO (NiSe2/CoSe2-G) sulfur host with bifunctional catalytic activity was prepared through a hard template method. Electrochemical experiment results confirm that the combination of NiSe2 and CoSe2 not only facilitates the bidirectional catalytic function during charge and discharge processes, but also increases the active sites toward LiPSs adsorption. Simultaneously, the highly conductive rGO network enhances the electronic conductivity of NiSe2/CoSe2-G/S and provides convenience for loading NiSe2/CoSe2 catalysts. Benefitting from the exceptional catalytic-adsorption capability of NiSe2/CoSe2 and the presence of rGO, the NiSe2/CoSe2-G/S electrode exhibits excellent electrochemical properties. At 1C, it demonstrates a low capacity attenuation of 0.087 % per cycle during 500 cycles. The electrode can maintain a discharge capacity of 927 mAh/g at a sulfur loading of 3.3 mg cm-2. The bidirectional catalytic activity of NiSe2/CoSe2-G offers a prospective approach to expedite the redox reactions of active S, meanwhile, this work also offers an ideal approach for designing efficient S hosts for LSBs.

18.
Diagnostics (Basel) ; 14(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38248066

RESUMEN

Transient elastography (TE), recommended by the WHO, is an established method for characterizing liver fibrosis via liver stiffness measurement (LSM). However, technical barriers remain towards point-of-care application, as conventional TE requires wired connections, possesses a bulky size, and lacks adequate imaging guidance for precise liver localization. In this work, we report the design, phantom validation, and clinical evaluation of a palm-sized TE system that enables simultaneous B-mode imaging and LSM. The performance of this system was validated experimentally using tissue-equivalent reference phantoms (1.45-75 kPa). Comparative studies against other liver elastography techniques, including conventional TE and two-dimensional shear wave elastography (2D-SWE), were performed to evaluate its reliability and validity in adults with various chronic liver diseases. Intra- and inter-operator reliability of LSM were established by an elastography expert and a novice. A good agreement was observed between the Young's modulus reported by the phantom manufacturer and this system (bias: 1.1-8.6%). Among 121 patients, liver stiffness measured by this system and conventional TE were highly correlated (r = 0.975) and strongly agreed with each other (mean difference: -0.77 kPa). Inter-correlation of this system with conventional TE and 2D-SWE was observed. Excellent-to-good operator reliability was demonstrated in 60 patients (ICCs: 0.824-0.913). We demonstrated the feasibility of employing a fully integrated phased array probe for reliable and valid LSM, guided by real-time B-mode imaging of liver anatomy. This system represents the first technical advancement toward point-of-care liver fibrosis assessment. Its small footprint, along with B-mode guidance capability, improves examination efficiency and scales up screening for liver fibrosis.

19.
Adv Mater ; 36(6): e2309371, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37769436

RESUMEN

Polarimetric photodetector can acquire higher resolution and more surface information of imaging targets in complex environments due to the identification of light polarization. To date, the existing technologies yet sustain the poor polarization sensitivity (<10), far from market application requirement. Here, the photovoltaic detectors with polarization- and gate-tunable optoelectronic reverse phenomenon are developed based on semimetal 1T'-MoTe2 and ambipolar WSe2 . The device exhibits gate-tunable reverse in rectifying and photovoltaic characters due to the directional inversion of energy band, yielding a wide range of current rectification ratio from 10-2 to 103 and a clear object imaging with 100 × 100 pixels. Acting as a polarimetric photodetector, the polarization ratio (PR) value can reach a steady state value of ≈30, which is compelling among the state-of-the-art 2D-based polarized detectors. The sign reversal of polarization-sensitive photocurrent by varying the light polarization angles is also observed, that can enable the PR value with a potential to cover possible numbers (1→+∞/-∞→-1). This work develops a photovoltaic detector with polarization- and gate-tunable optoelectronic reverse phenomenon, making a significant progress in polarimetric imaging and multifunction integration applications.

20.
J Nutr Biochem ; 124: 109509, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37907170

RESUMEN

Maternal glucose intolerance in late pregnancy can easily impair pregnancy outcomes and placental development. The impairment of placental angiogenesis is closely related to the occurrence of glucose intolerance during pregnancy, but the mechanism remains largely unknown. In this study, the pregnant mouse model of maternal high-fat diet and endothelial injury model of porcine vascular endothelial cells (PVECs) was used to investigate the effect of glucose intolerance on pregnancy outcomes and placental development. Feeding pregnant mice, a high-fat diet was shown to induce glucose intolerance in late pregnancy, and significantly increase the incidence of resorbed fetuses. Moreover, a decrease was observed in the proportion of blood sinusoids area and the expression level of CD31 in placenta, indicating that placental vascular development was impaired by high-fat diet. Considering that hyperglycemia is an important symptom of glucose intolerance, we exposed PVECs to high glucose (50 mM), which verified the negative effects of high glucose on endothelial function. Bioinformatics analysis further emphasized that high glucose exposure could significantly affect the angiogenesis-related functions of PVECs and predicted that Krüppel-like factor 4 (KLF4) may be a key mediator of these functional changes. The subsequent regulation of KLF4 expression confirmed that the inhibition of KLF4 expression was an important reason why high glucose impaired the endothelial function and angiogenesis of PVECs. These results indicate that high-fat diet can aggravate maternal glucose intolerance and damage pregnancy outcome and placental angiogenesis, and that regulating the expression of KLF4 may be a potential therapeutic strategy for maintaining normal placental angiogenesis.


Asunto(s)
Intolerancia a la Glucosa , Placenta , Animales , Femenino , Ratones , Embarazo , Angiogénesis , Dieta Alta en Grasa/efectos adversos , Regulación hacia Abajo , Células Endoteliales/metabolismo , Glucosa/metabolismo , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Factor 4 Similar a Kruppel , Placenta/metabolismo , Placentación , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA