Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Inorg Biochem ; 259: 112666, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39029397

RESUMEN

Here, we designed, synthesized and characterized three new cyclometalated Ru(II) complexes, [Ru(phen)2(1-(4-Ph-Ph)-IQ)]+ (phen = 1,10-phenanthroline, IQ = isoquinoline, RuIQ9), [Ru(phen)2(1-(4-Ph-Ph)-7-OCH3-IQ)]+ (RuIQ10), and [Ru(phen)2(1-(4-Ph-Ph)-6,7-(OCH3)2-IQ)]+ (RuIQ11). The cytotoxicity experiments conducted on both 2D and 3D multicellular tumor spheroids (MCTSs) indicated that complexes RuIQ9-11 exhibited notably higher cytotoxicity against A549 and A549/DDP cells when compared to the ligands and precursor compounds as well as clinical cisplatin. Moreover, the Ru(II) complexes displayed low toxicity when tested on normal HBE cells in vitro and exposed to zebrafish embryos in vivo. In addition, complexes RuIQ9-11 could inhibit A549 and A549/DDP cell migration and proliferation by causing cell cycle arrest, mitochondrial dysfunction, and elevating ROS levels to induce apoptosis in these cells. Mechanistic studies revealed that RuIQ9-11 could suppress the expression of Nrf2 and its downstream antioxidant protein HO-1 by inhibiting Nrf2 gene transcription in drug-resistant A549/DDP cells. Simultaneously, they inhibited the expression of efflux proteins MRP1 and p-gp in drug-resistant cells, ensuring the accumulation of the complexes within the cells. This led to an increase in intracellular ROS levels in drug-resistant cells, ultimately causing damage and cell death, thus overcoming cisplatin resistance. More importantly, RuIQ11 could effectively inhibit the migration and proliferation of drug-resistant cells within zebrafish, addressing the issue of cisplatin resistance. Accordingly, the prepared Ru(II) complexes possess significant potential for development as highly effective and low-toxicity lung cancer therapeutic agents to overcome cisplatin resistance.

2.
J Inorg Biochem ; 259: 112655, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38943844

RESUMEN

Recent breakthroughs in cancer immunology have propelled immunotherapy to the forefront of cancer research as a promising treatment approach that harnesses the body's immune system to effectively identify and eliminate cancer cells. In this study, three novel cyclometalated Ir(III) complexes, Ir1, Ir2, and Ir3, were designed, synthesized, and assessed in vitro for cytotoxic activity against several tumor-derived cell lines. Among these, Ir1 exhibited the highest cytotoxic activity, with an IC50 value of 0.4 ± 0.1 µM showcasing its significant anticancer potential. Detailed mechanistic analysis revealed that co-incubation of Ir1 with 143B cells led to Ir1 accumulation within mitochondria and the endoplasmic reticulum (ER). Furthermore, Ir1 induced G0/G1 phase cell cycle arrest, while also diminishing mitochondrial membrane potential, disrupting mitochondrial function, and triggering ER stress. Intriguingly, in mice the Ir1-induced ER stress response disrupted calcium homeostasis to thereby trigger immunogenic cell death (ICD), which subsequently activated the host antitumor immune response while concurrently dampening the in vivo tumor-induced inflammatory response.

4.
J Biomol Struct Dyn ; : 1-14, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38444388

RESUMEN

Abnormal expression of PRDX has been found to play a significant role in the growth of colorectal cancer and other types of tumors. Despite the identification of several PRDX1 inhibitory compounds in recent years, none of them have been utilized in clinical treatments. Therefore, we conducted a virtual screening of 210,331 small molecules from the SPECS library using PRDX1 and multiple methods. From this screening, we identified 13 compounds with the highest scores from the molecular docking analysis. To further validate the accuracy of our pharmacophore model, we constructed a structure-based pharmacophore model and analyzed the receiver operating characteristic curve (ROC curve). Through this process, we selected nine compounds using skeleton jumping and virtual screening based on the highest pharmacophore model scores. Subsequently, we examined the ADMET properties of these nine compounds to assess their drug-forming potential, resulting in three compounds with the best drug properties. Finally, we assessed the binding stability of these three candidate molecules to proteins using molecular dynamics and MM-PBSA calculations. After a comprehensive evaluation, we found that compounds 6 and 9 formed stable complexes with PRDX1 proteins and could potentially serve as competitive inhibitors of PRDX1 substrates.Communicated by Ramaswamy H. Sarma.

5.
J Leukoc Biol ; 116(1): 146-165, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38393298

RESUMEN

The progression of acute myeloid leukemia (AML) is influenced by the immune microenvironment in the bone marrow and dysregulated intracellular competing endogenous RNA (ceRNA) networks. Our study utilized data from UCSC Xena, The Cancer Genome Atlas Program, the Gene Expression Omnibus, and the Immunology Database and Analysis Portal. Using Cox regression analysis, we identified an immune-related prognostic signature. Genomic analysis of prognostic messenger RNA (mRNA) was conducted through Gene Set Cancer Analysis (GSCA), and a prognostic ceRNA network was constructed using the Encyclopedia of RNA Interactomes. Correlations between signature mRNAs and immune cell infiltration, checkpoints, and drug sensitivity were assessed using R software, gene expression profiling interactive analysis (GEPIA), and CellMiner, respectively. Adhering to the ceRNA hypothesis, we established a potential long noncoding RNA (lncRNA)/microRNA (miRNA)/mRNA regulatory axis. Our findings pinpointed 9 immune-related prognostic mRNAs (KIR2DL1, CSRP1, APOBEC3G, CKLF, PLXNC1, PNOC, ANGPT1, IL1R2, and IL3RA). GSCA analysis revealed the impact of copy number variations and methylation on AML. The ceRNA network comprised 14 prognostic differentially expressed lncRNAs (DE-lncRNAs), 6 prognostic DE-miRNAs, and 3 prognostic immune-related DE-mRNAs. Correlation analyses linked these mRNAs' expression to 22 immune cell types and 6 immune checkpoints, with potential sensitivity to 27 antitumor drugs. Finally, we identified a potential LINC00963/hsa-miR-431-5p/CSRP1 axis. This study offers innovative insights for AML diagnosis and treatment through a novel immune-related signature and ceRNA axis. Identified novel biomarkers, including 2 mRNAs (CKLF, PNOC), 1 miRNA (hsa-miR-323a-3p), and 10 lncRNAs (SNHG25, LINC01857, AL390728.6, AC127024.5, Z83843.1, AP002884.1, AC007038.1, AC112512, AC020659.1, AC005921.3) present promising candidates as potential targets for precision medicine, contributing to the ongoing advancements in the field.


Asunto(s)
Redes Reguladoras de Genes , Leucemia Mieloide Aguda , MicroARNs , ARN Largo no Codificante , ARN Mensajero , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , ARN Largo no Codificante/genética , MicroARNs/genética , ARN Mensajero/genética , Pronóstico , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , ARN Endógeno Competitivo
6.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119698, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387508

RESUMEN

The integrated landscape of ferroptosis regulatory patterns and their association with colon microenvironment have been demonstrated in recent studies. However, the ferroptosis-related immunotherapeutic signature for colon cancer (CC) remains unclear. We comprehensively evaluated 1623 CC samples, identified patterns of ferroptosis modification based on ferroptosis-associated genes, and systematically correlated these patterns with tumor microenvironment (TME) cell infiltration characteristics. In addition, the ferroptosis-regulated gene score (FRG-score) was constructed to quantify the pattern of ferroptosis alterations in individual tumors. Three distinct patterns of ferroptosis modification were identified, including antioxidant defense, iron toxicity, and lipid peroxidation. The characteristics of TME cell infiltration under these three patterns were highly consistent with the three immune phenotypes of tumors, including immune-inflamed, immune-excluded and immune-desert phenotypes. We also demonstrated that evaluation of ferroptosis regulatory patterns within individual tumors can predict tumor inflammatory status, tumor subtype, TME stromal activity, genetic variation, and clinical outcome. Immunotherapy cohorts confirmed that patients with low FRG-scores showed remarkable therapeutic and clinical benefits. Furthermore, the hub gene apolipoprotein L6 (APOL6), a drug-sensitive target associated with cancer cell ferroptosis, was identified through our proposed novel key gene screening process and validated in CC cell lines and scRNA-seq.


Asunto(s)
Neoplasias del Colon , Ferroptosis , Humanos , Ferroptosis/genética , Microambiente Tumoral/genética , Neoplasias del Colon/genética , Neoplasias del Colon/terapia , Antioxidantes , Inmunoterapia
7.
J Biol Inorg Chem ; 29(2): 265-278, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38189962

RESUMEN

Transition metal complexes with characteristics of unique packaging in nanoparticles and remarkable cancer cell cytotoxicity have emerged as potential alternatives to platinum-based antitumor drugs. Here we report the synthesis, characterization, and antitumor activities of three new Ruthenium complexes that introduce 5-fluorouracil-derived ligands. Notably, encapsulation of one such metal complex, Ru3, within pluronic® F-127 micelles (Ru3-M) significantly enhanced Ru3 cytotoxicity toward A549 cells by a factor of four. To determine the mechanisms underlying Ru3-M cytotoxicity, additional in vitro experiments were conducted that revealed A549 cell treatment with lysosome-targeting Ru3-M triggered oxidative stress, induced mitochondrial membrane potential depolarization, and drastically reduced intracellular ATP levels. Taken together, these results demonstrated that Ru3-M killed cells mainly via a non-apoptotic pathway known as oncosis, as evidenced by observed Ru3-M-induced cellular morphological changes including cytosolic flushing, cell swelling, and cytoplasmic vacuolation. In turn, these changes together caused cytoskeletal collapse and activation of porimin and calpain1 proteins with known oncotic functions that distinguished this oncotic process from other cell death processes. In summary, Ru3-M is a potential anticancer agent that kills A549 cells via a novel mechanism involving Ru(II) complex triggering of cell death via oncosis.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Lisosomas , Poloxámero , Rutenio , Humanos , Poloxámero/química , Poloxámero/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Células A549 , Antineoplásicos/farmacología , Antineoplásicos/química , Rutenio/química , Rutenio/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Estrés Oxidativo/efectos de los fármacos
8.
Metallomics ; 16(1)2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183290

RESUMEN

Currently, cisplatin resistance remains a primary clinical obstacle in the successful treatment of non-small cell lung cancer. Here, we designed, synthesized, and characterized two novel cyclometalated Ru(II) complexes, [Ru(bpy)2(1-Ph-7-OCH3-IQ)] (PF6) (bpy = 2,2'-bipyridine, IQ = isoquinoline, RuIQ7)and [Ru(bpy)2(1-Ph-6,7-(OCH3)2-IQ)] (PF6) (RuIQ8). As experimental controls, we prepared complex [Ru(bpy)2(1-Ph-IQ)](PF6) (RuIQ6) lacking a methoxy group in the main ligand. Significantly, complexes RuIQ6-8 displayed higher in vitro cytotoxicity when compared to ligands, precursor cis-[Ru(bpy)2Cl2], and clinical cisplatin. Mechanistic investigations revealed that RuIQ6-8 could inhibit cell proliferation by downregulating the phosphorylation levels of Akt and mTOR proteins, consequently affecting the rapid growth of human lung adenocarcinoma cisplatin-resistant cells A549/DDP. Moreover, the results from qRT-PCR demonstrated that these complexes could directly suppress the transcription of the NF-E2-related factor 2 gene, leading to the inhibition of downstream multidrug resistance-associated protein 1 expression and effectively overcoming cisplatin resistance. Furthermore, the relationship between the chemical structures of these three complexes and their anticancer activity, ability to induce cell apoptosis, and their efficacy in overcoming cisplatin resistance has been thoroughly examined and discussed. Notably, the toxicity test conducted on zebrafish embryos indicated that the three Ru-IQ complexes displayed favorable safety profiles. Consequently, the potential of these developed compounds as innovative therapeutic agents for the efficient and low-toxic treatment of NSCLC appears highly promising.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Complejos de Coordinación , Neoplasias Pulmonares , Compuestos Organometálicos , Rutenio , Animales , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Rutenio/química , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Pulmonares/patología , Pez Cebra/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Antineoplásicos/química , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico
9.
J Pharm Pharmacol ; 76(3): 269-282, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38241189

RESUMEN

OBJECTIVE: The goal of the study is to examine the impact on the malignant biological behaviors of non-small cell lung cancer (NSCLC) of a novel coumarin derivative, ethyl 2,2-difluoro-2-(2-oxo-2H-chromen-3-yl) acetate (C2F). It also aims to define its underlying mechanism. METHODS: NSCLC cell lines and xenograft nude mice model were conducted to explore the anti-NSCLC effects of C2F in vitro and in vivo. Then, network pharmacology analysis and molecular docking were applied to estimate the possible targets of C2F in NSCLC. Finally, the underlying mechanism of C2F against NSCLC cellular proliferation and tumor development was confirmed using inhibitors or activators of the PI3K/AKT signaling pathway. RESULTS: Our results showed that C2F was able to inhibit proliferation, migration, and invasion of NSCLC cell lines, induce cell cycle arrest and apoptosis in vitro, and prevent tumor growth in vivo. In addition, the estimated glomerular filtration rate and its downstream pathway (PI3K/AKT/mTOR) were found to be critical for the anti-NSCLC activity of C2F. CONCLUSIONS: C2F inhibits malignant biological behaviors of NSCLC by suppressing EGFR/PI3K/AKT/mTOR signaling pathway.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Pulmonares/metabolismo , Ratones Desnudos , Simulación del Acoplamiento Molecular , Proliferación Celular , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Acetatos/farmacología , Línea Celular Tumoral
10.
J Inorg Biochem ; 249: 112397, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37844533

RESUMEN

In this study, we synthesized 4 cyclometalated iridium complexes using N-(1,10-phenanthrolin-5-yl)picolinamide (PPA) as the main ligand, denoted as [Ir(ppy)2PPA]PF6 (ppy = 2-phenylpyridine, Ir1), [Ir(bzq)2PPA]PF6 (bzq = benzo[h]quinoline, Ir2), [Ir(dfppy)2PPA]PF6 (dfppy = 2-(3,5-difluorophenyl)pyridine, Ir3), and [Ir(thpy)2PPA]PF6 (thpy = 2-(thiophene-2-yl)pyridine, Ir4). Compared to cisplatin and oxaliplatin, all four complexes exhibited significant anti-tumor activity. Among them, Ir2 demonstrated higher cytotoxicity against A549 cells, with an IC50 value of 1.6 ± 0.2 µM. The experimental results indicated that Ir2 primarily localized in the mitochondria, inducing a large amount of reactive oxygen species (ROS) generation, that decreased in mitochondrial membrane potential (MMP), reduced ATP production, and further impaired mitochondrial function, leading to cytochrome c release. Additionally, Ir2 caused cell cycle arrest at the S phase and induced apoptosis through the AKT-mediated signaling pathway. Further investigations revealed that Ir2 could simultaneously induce both apoptosis and autophagy in A549 cells, with the latter acting as a non-protective mechanism that promoted cell death. More importantly, Ir2 exhibited low toxicity to both normal LO2 cells in vitro and zebrafish embryos in vivo. Consequently, these newly developed Ir(III) complexes show great potential in the development of novel and low-toxicity anticancer agents.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Animales , Humanos , Células A549 , Iridio/farmacología , Iridio/metabolismo , Pez Cebra , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Apoptosis , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Piridinas/farmacología , Autofagia , Complejos de Coordinación/farmacología , Complejos de Coordinación/metabolismo , Línea Celular Tumoral
11.
Molecules ; 28(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37894639

RESUMEN

The introduction of computational techniques to pharmaceutical chemistry and molecular biology in the 20th century has changed the way people develop drugs [...].


Asunto(s)
Diseño Asistido por Computadora , Descubrimiento de Drogas , Humanos , Descubrimiento de Drogas/métodos , Diseño de Fármacos , Química Farmacéutica
12.
J Inorg Biochem ; 248: 112365, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37690267

RESUMEN

Ruthenium complexes are one of the most promising anticancer drugs triggered extensive research. Here, the synthesis and characterization of two ruthenium(II) polypyridine complexes containing 8-hydroxylquinoline as ligand, [Ru(dip)2(8HQ)]PF6 (Ru1), [Ru(dpq)2(8HQ)]PF6 (Ru2) (8HQ = 8-hydroxylquinoline; dip = 4,7-diphenyl-1,10-phenanthroline; dpq = pyrazino[2,3-f][1,10]phenanthroline) were reported. On the basis of cytotoxicity tests, Ru1 (IC50 = 1.98 ± 0.02 µM) and Ru2 (IC50 = 10.02 ± 0.19 µM) both showed good anticancer activity in a panel of cell lines, especially in HeLa cells. Researches on mechanism indicated that Ru1 and Ru2 acted on mitochondria and nuclei and induced reactive oxygen species (ROS) accumulation, while the morphology of nuclei and cell cycle had no significant change. Western blot assay further proved that GPX4 and Ferritin were down-regulated, which eventually triggered ferroptosis in HeLa cells. In addition, the toxicity test of zebrafish embryos showed that the concentrations of Ru1 and Ru2 below 120 µM and 60 µM were safe and did not have obvious effect on the normal development of zebrafish embryos.


Asunto(s)
Ferroptosis , Rutenio , Humanos , Animales , Células HeLa , Ferritinas , Pez Cebra , Oxiquinolina
13.
Bioorg Chem ; 140: 106837, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37683535

RESUMEN

Immunotherapy has been shown to provide superior antitumor efficacy by activating the innate immune system to recognize, attack and eliminate tumor cells without seriously harming normal cells. Herein, we designed and synthesized three new cyclometalated iridium(III) complexes (Ir1, Ir2, Ir3) then evaluated their antitumor activity. When co-incubated with HepG2 cells, the complex Ir1 localized in the lysosome, where it induced paraptosis and endoplasmic reticulum stress (ER stress). Notably, Ir1 also induced immunogenic cell death (ICD), promoted dendritic cell maturation that enhanced effector T cell chemotaxis to tumor tissues, down-regulated proportions of immunosuppressive regulatory T cells within tumor tissues and triggered activation of antitumor immunity throughout the body. To date, Ir1 is the first reported iridium(III) complex-based paraptosis inducer to successfully induce tumor cell ICD. Furthermore, Ir1 induced ICD of HepG2 cells without affecting cell cycle or reactive oxygen species levels.


Asunto(s)
Muerte Celular Inmunogénica , Iridio , Humanos , Células Hep G2 , Iridio/farmacología , Ciclo Celular , Diferenciación Celular
14.
Comput Biol Med ; 166: 107432, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37729701

RESUMEN

BACKGROUND: The development and progression of colorectal cancer (CRC) is closely associated with its complex tumor microenvironment (TME). Assessment of the modified pattern of immune cell infiltration (ICI) will help increase knowledge regarding the characteristics of TME infiltration. Yi-Yi-Fu-Zi-Bai-Jiang-San (YYFZBJS) has been shown to have positive effects on the regulation of the immune microenvironment of CRC. However, its pharmacological targets and molecular mechanisms remain to be elucidated. METHODS: Network pharmacological analysis was used to identify the target of YYFZBJS in the TME of CRC. Patients with the immune-inflamed phenotype (IIP) were identified using CRC samples from The Cancer Genome Atlas (TCGA) database. Consensus genes were identified by intersecting YYFZBJS targets, CRC disease targets and differentially expressed genes in the CRC microenvironment. Then, least absolute shrinkage and selection operator (LASSO) Cox analyses were used to identify a prognostic signature from the consensus genes. Cytoscape software was further used to build a unique herb-compound-target network diagram of the important components of YYFZBJS and prognostic gene targets. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed using the prognostic gene sets to explore the molecular mechanism of the prognostic genes in drug therapy for CRC IIP patients. Finally, single-cell analysis was performed to validate the expression of the prognostic genes in the TME of CRC using the TISCH2 database. RESULTS: A total of 284 IIP patients were identified from 480 patients with CRC. A total of 35 consensus genes were identified as targets of YYFZBJS in the TME of CRC patients. An eleven-gene prognostic signature, including PIK3CG, C5AR1, PRF1, CAV1, HPGDS, PTGS2, SERPINE1, IDO1, TGFB1, CXCR2 and MMP9, was identified from the consensus genes, with areas under the receiver operating characteristic (ROC) curve (AUCs) values of 0.84 and 0.793 for the training and test cohorts, respectively. In the herb-compound-target network, twenty-four compounds were shown to interact with the 11 prognostic genes, which were significantly enriched in the IL-17 signaling, arachidonic acid metabolism and metabolic pathways. Single-cell analysis of the prognostic genes confirmed that their abnormal expression was associated with the TME of CRC. CONCLUSION: This study organically integrated network pharmacology and bioinformatics analyses to identify prognostic genes in CRC IIP patients from the targets of YYFZBJS. Although this data mining work was limited to the study of mechanisms related to prognosis based on the immune microenvironment, the methodology provides new perspectives in the search for novel therapeutic targets of traditional Chinese medicines (TCMs) and accurate diagnostic indicators of cancers targeted by TCMs.

15.
J Inorg Biochem ; 247: 112333, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37480763

RESUMEN

The main challenge of cancer chemotherapy is the resistance of tumor cells to oxidative damage. Herein, we proposed a novel antitumor strategy: cyclic metal­ruthenium (Ru) complexes mediate reductive damage to kill tumor cells. We designed and synthesized Ru(II) complexes with ß-carboline as ligands: [Ru (phen)2(NO2-Ph-ßC)](PF6) (RußC-7) and [Ru(phen)2(1-Ph-ßC)](PF6) (RußC-8). In vitro experimental results showed that RußC-7 and RußC-8 can inhibit cell proliferation, promote mitochondrial abnormalities, and induce DNA damage. Interestingly, RußC-7 with SOD activity could reduce intracellular reactive oxygen species (ROS) levels, while RußC-8 has the opposite effect. Accordingly, this study identified the reductive damage mechanism of tumor apoptosis, and may provide a new ideas for the design of novel metal complexes.


Asunto(s)
Complejos de Coordinación , Rutenio , Humanos , Células HeLa , Rutenio/farmacología , Apoptosis , Proliferación Celular , Complejos de Coordinación/farmacología
16.
Bioorg Chem ; 139: 106688, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37423053

RESUMEN

A flexible asymmetric synthesis of both enantiomers of euphopilolide (1) and jolkinolide E (2) [(+)-and (-)-1, (+)-and (-)-2] has been accomplished. This synthesis features an intramolecular oxa-Pauson-Khand reaction (o-PKR) to expeditiously construct the challenging tetracyclic [6.6.6.5] abietane-type diterpene framework, elegantly showcasing the complexity-generating features of o-PKR synthetic methodology leveraging on a judiciously chosen suitable chiral pool scaffold. Furthermore, the anti-hepatocellular carcinoma (HCC) activity of synthetic (-)-euphopilolide (1), (-)-jolkinolide E (2) and their analogues was evaluated. We found that (-)-euphopilolide (1) and (-)-jolkinolide E (2) inhibited the proliferation and induced apoptosis in HCC cells. These findings lay a good foundation for further pharmacology studies of abietane lactone derivatives and provide valuable insight for the development of anti-HCC small molecule drug of natural product origin.

17.
J Inorg Biochem ; 246: 112295, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37348172

RESUMEN

Two new ruthenium(II) complexes [Ru(dip)2(PPßC)]PF6 (Ru1, dip = 4,7-diphenyl-1,10-phenanthroline, PPßC = N-(1,10-phenanthrolin-5-yl)-1-phenyl-9H-pyrido[3,4-b]indole-3-carboxamide) and [Ru(phen)2(PPßC)]PF6 (Ru2, phen = 1, 10-phenanthroline) with ß-carboline derivative PPßC as the primary ligand, were designed and synthesized. Ru1 and Ru2 displayed higher antiproliferative activity than cisplatin against the test cancer cells, with IC50 values ranging from 0.5 to 3.6 µM. Moreover, Ru1 and Ru2 preferentially accumulated in mitochondria and caused a series of changes in mitochondrial events, including the depolarization of mitochondrial membrane potential, the damage of mitochondrial DNA, the depletion of cellular ATP, and the elevation of intracellular reactive oxygen species levels. Then, it induced caspase-3/7-mediated A549 cell apoptosis. More importantly, both complexes could act as topoisomerase I catalytic inhibitors to inhibit mitochondrial DNA synthesis. Accordingly, the developed Ru(II) complexes hold great potential to be developed as novel therapeutics for cancer treatment.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Humanos , Células A549 , Rutenio/farmacología , Rutenio/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Mitocondrias/metabolismo , Apoptosis , ADN Mitocondrial/metabolismo , ADN Mitocondrial/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral
18.
Metallomics ; 15(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37204038

RESUMEN

Natural products and metals play a crucial role in cancer research and the development of antitumor drugs. We designed and synthesized three new carboline-based cyclometalated iridium complexes [Ir(C-N)2(PPßC)](PF6), where PPßC = N-(1,10-phenanthrolin-5-yl)-1-phenyl-9H-pyrido[3,4-b]indole-3-carboxamide, C-N = 2-phenylpyridine (ppy, Ir1), 2-(2,4-difluorophenyl) pyridine (dfppy, Ir2), 7,8-benzoquinoline (bzq, Ir3), by combining iridium with ß-carboline derivative. These iridium complexes exhibited high potential antitumor effects after being promptly taken up by A549 cells. Accumulating in mitochondria rapidly and preferentially, Ir1-3 caused a series of changes in mitochondrial events, including the loss of mitochondrial membrane potential, the depletion of cellular ATP, and the elevation of reactive oxygen species, leading to significant death of A549 cells. Moreover, the activation of intracellular caspase pathway and apoptosis was further validated to contribute to iridium complexes-induced cytotoxicity. These novel iridium complexes exerted a prominent inhibitory effect on tumor growth in a three-dimensional multicellular tumor spheroid model.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Complejos de Coordinación , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Iridio/farmacología , Neoplasias Pulmonares/patología , Antineoplásicos/metabolismo , Carbolinas/farmacología , Carbolinas/metabolismo , Apoptosis , Mitocondrias/metabolismo , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Complejos de Coordinación/metabolismo , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular
19.
Arch Toxicol ; 97(6): 1627-1647, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120773

RESUMEN

Hepatocellular carcinoma (HCC) is a type of cancer characterized by high recurrence rates. Overcoming chemoresistance can reduce HCC recurrence and improve patients' prognosis. This work aimed to identify HCC chemoresistance-associated long non-coding RNA (lncRNA) and find an effective drug targeting the identified lncRNA for ameliorating the chemoresistance. In this investigation, bioinformatics analysis based on The Cancer Genome Atlas revealed a new chemoresistance index and suggested LINC02331 as an HCC chemoresistance and patients' prognosis-associated lncRNA that served as an independent prognostic indicator. Moreover, LINC02331 promoted DNA damage repair, DNA replication, and epithelial-mesenchymal transition as well as attenuated cell cycle arrest and apoptosis through regulating Wnt/ß-catenin signaling, thus stimulating HCC resistance to cisplatin cytotoxicity, proliferation, and metastasis. Interestingly, we developed a novel oxidative coupling approach to synthesize a dimeric oxyberberine CT4-1, which exerted superior anti-HCC activities without obvious side effects measured by in vivo mice model and could downregulate LINC02331 mice model and could downregulate LINC02331 to mitigate LINC02331-induced HCC progression by suppressing Wnt/ß-catenin signaling. RNA sequencing analyses verified the involvement of CT4-1-affected differential expression genes in dysregulated pathways and processes, including Wnt, DNA damage repair, cell cycle, DNA replication, apoptosis, and cell adhesion molecules. Furthermore, CT4-1 was demonstrated to be an effective cytotoxic drug in ameliorating HCC patients' prognosis with a prediction model constructed based on RNA-sequencing data from CT4-1-treated cancer cells and public cancer database. In summary, HCC chemoresistance-associated LINC02331 independently predicted poor patients' prognosis and enhanced HCC progression by promoting resistance to cisplatin cytotoxicity, proliferation, and metastasis. Targeting LINC02331 by the dimeric oxyberberine CT4-1 that exhibited synergistic cytotoxicity with cisplatin could alleviate HCC progression and improve patients' prognosis. Our study identified LINC02331 as an alternative target and suggested CT4-1 as an effective cytotoxic drug in HCC treatment.


Asunto(s)
Antineoplásicos , Berberina , Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Animales , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , ARN Largo no Codificante/genética , Vía de Señalización Wnt , Berberina/análogos & derivados , Berberina/farmacología
20.
Comput Biol Med ; 159: 106870, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37084637

RESUMEN

OBJECTIVE: The aim of this study was to illuminate the similarities and differences of two prescriptions as "cold" and "heat" drugs for treating ulcerative colitis (UC) with the simultaneous occurrence of heat and cold syndrome via network pharmacology. METHODS: (1) Active compounds of Fuzi-Lizhong Pill (FLP) and Huangqin Decoction (HQT) were retrieved from the TCMSP database, and their common active compounds were compared using the Venn diagram. (2) Potential proteins targeted to three sets of compounds either (i) shared by FLP and HQT, (ii) unique to FLP or (iii) unique to HQT were screened from the STP, STITCH and TCMSP databases, and three corresponding core compound sets were identified in Herb-Compound-Target (H-C-T) networks. (3) Targets related to UC were identified from the DisGeNET and GeneCards databases and compared with the FLP-HQT common targets to identify potential targets of FLP-HQT compounds related to UC. (4) Three potential target sets were imported into the STRING database for protein‒protein interaction (PPI) analysis, and three core target sets were defined. (5) The binding capabilities and interacting modes between core compounds and key targets were verified by molecular docking via Discovery Studio 2019 and molecular dynamics (MD) simulations via Amber 2018. (6) The target sets were enriched for KEGG pathways using the DAVID database. RESULTS: (1) FLP and HQT included 95 and 113 active compounds, respectively, with 46 common compounds, 49 FLP-specific compounds and 67 HQT-specific compounds. (2) 174 targets of FLP-HQT common compounds, 168 targets of FLP-specific compounds, and 369 targets of HQT-specific compounds were predicted from the STP, STITCH and TCMSP databases; six core compounds specific to FLP and HQT were screened in the FLP-specific and HQT-specific H-C-T networks, respectively. (3) 103 targets overlapped from the 174 predicted targets and the 4749 UC-related targets; two core compounds for FLP-HQT were identified from the FLP-HQT H-C-T network. (4) 103 FLP-HQT-UC common targets, 168 of FLP-specific targets and 369 of HQT-specific targets had shared core targets (AKT1, MAPK3, TNF, JUN and CASP3) based on the PPI network analysis. (5) Molecular docking demonstrated that naringenin, formononetin, luteolin, glycitein, quercetin, kaempferol and baicalein of FLP and HQT play a critical role in treating UC; meanwhile, MD simulations revealed the stability of protein‒ligand interactions. (6) The enriched pathways indicated that most targets were related to anti-inflammatory, immunomodulatory and other pathways. Compared with the pathways identified using traditional methods, FLP-specific pathways included the PPAR signaling pathway and the bile secretion pathway, and HQT-specific pathways included the vascular smooth muscle contraction pathway and the natural killer cell-mediated cytotoxicity pathway etc. CONCLUSION: In this study, we clarified the common mechanisms of FLP and HQT in treating UC and their specific mechanisms in treating cold and heat syndrome in UC through compound, target and pathway distinction and a literature comparison based on network pharmacology; these results provide a new perspective on the detailed mechanism of "multidrugs and single-disease" thought in traditional Chinese medicine.


Asunto(s)
Colitis Ulcerosa , Medicamentos Herbarios Chinos , Farmacología en Red , Scutellaria baicalensis , Colitis Ulcerosa/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA