Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Chem Commun (Camb) ; 60(12): 1509-1516, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38224214

Chemical reagents with special groups as enrichable handles have empowered the ability to label and enrich modified peptides. Here is an overview of different chemical reagents with affinity tags to isolate labeled peptides and the latest developments of enrichment strategies. Biotin is the most used affinity tag due to its high interaction with avidin. To decrease the unfavorable influence of biotin for its poor efficiency in ionization and fragmentation in downstream MS analysis, cleavable moieties were installed between the reactive groups and biotin to release labeled peptides from the biotin. To minimize the steric hindrance of biotin, a two-step method was developed, for which alkyne- or azide-tagged linkers were firstly used to label peptides and then biotin was installed through click chemistry. Recently, new linkers using a small phosphonic acid as the affinity tag for IMAC or TiO2 enrichment have been developed and successfully used to isolate chemically labeled peptides in XL-MS. A stable P-C instead of P-O bond was introduced to linkers to differentiate labeled and endogenous phosphopeptides. Furthermore, a membrane-permeable phosphonate-containing reagent was reported, which facilitated the study of living systems. Taking a cue from classic chemical reactions, stable metal-complex intermediates, including cobalt and palladium complexes, have been developed as peptide purification systems. Advanced enrichment strategies have also been proposed, such as the two-stage IMAC enrichment method and biotin-based two-step reaction strategy, allowing the reduction of unwanted peptides and improvements for the analysis of specific labeled peptides. Finally, future trends in the area are briefly discussed.


Biotin , Peptides , Biotin/chemistry , Peptides/chemistry , Azides/chemistry
2.
Biomater Sci ; 9(13): 4630-4638, 2021 Jun 29.
Article En | MEDLINE | ID: mdl-34190235

Photodynamic therapy (PDT) holds great potential in cancer treatment due to the advantages of non-invasiveness, negligible side-effect, and high spatiotemporal selectivity. Porphyrin is the most widely used photosensitizer in clinical treatment. However, its PDT efficacy is always limited by the undesired aggregation caused quenching (ACQ) effect originating from the planar and rigid structure. In this work, a linear polymeric porphyrin with "structure defects" was developed to overcome the ACQ effect for most of the photosensitizers with conjugated macrocycles. Compared to porphyrin monomers, poly-porphyrins could improve singlet oxygen generation ability, and the singlet oxygen quantum yield enhanced with increasing molecular weight of poly-porphyrins. To achieve efficient in vivo PDT, PEG and acetazolamide were conjugated to the optimized poly-porphyrins to afford pP-PEG-AZ nanoparticles (pP-PEG-AZ NPs) with excellent stability, efficient in vitro intracellular internalization, negligible dark-toxicity, notable photo-toxicity, and in vivo anti-cancer efficacy based on combined PDT and anti-angiogenesis therapy.


Nanoparticles , Photochemotherapy , Porphyrins , Photosensitizing Agents , Singlet Oxygen
...