Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Dev Biol ; 54(6-7): 991-1002, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20711977

RESUMEN

Embryonic stem cells (ESCs) have been successfully used to study the generation of the hematopoietic lineage. The ESC differentiation model provides access to distinct developmental stages during hematopoietic differentiation enabling us to study developmental transitions in a manner that is difficult to do with embryos. The identification of the bipotential hemangioblast/blast-colony forming cell (BL-CFC) which represents the earliest stage of hematopoietic commitment in ESC cultures has enabled the study of signalling pathways, transcription factors and enzymes at the level of this developmental stage. Reporter ESC lines, flow cytometry and serum-free culture reagents are helping the field to transition from serum-containing protocols to step-wise serum-free differentiation strategies that attempt to mimic the developmental processes in the embryo. This serves as a framework with which to approach directed differentiation of human ESCs for the purposes of regenerative medicine. This review is focused on the contributions that the ESC differentiation system has made to understanding hematopoiesis and will highlight the strengths of this model of development and the challenges it still faces.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Hematopoyéticas/citología , Animales , Linaje de la Célula , Hemangioblastos/citología , Humanos , Modelos Biológicos
2.
Development ; 135(20): 3447-58, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18799543

RESUMEN

During embryonic development, the establishment of the primitive erythroid lineage in the yolk sac is a temporally and spatially restricted program that defines the onset of hematopoiesis. In this report, we have used the embryonic stem cell differentiation system to investigate the regulation of primitive erythroid development at the level of the hemangioblast. We show that the combination of Wnt signaling with inhibition of the Notch pathway is required for the development of this lineage. Inhibition of Notch signaling at this stage appears to be mediated by the transient expression of Numb in the hemangioblast-derived blast cell colonies. Activation of the Notch pathway was found to inhibit primitive erythropoiesis efficiently through the upregulation of inhibitors of the Wnt pathway. Together, these findings demonstrate that specification of the primitive erythroid lineage is controlled, in part, by the coordinated interaction of the Wnt and Notch pathways, and position Numb as a key mediator of this process.


Asunto(s)
Eritropoyesis , Hemangioblastos/citología , Células Madre Hematopoyéticas/citología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Notch/metabolismo , Proteínas Wnt/metabolismo , Animales , Embrión de Mamíferos , Eritropoyesis/genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Proteínas de la Membrana/genética , Ratones , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Receptores Notch/genética , Proteínas Wnt/genética
3.
Dev Cell ; 11(5): 723-32, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17084363

RESUMEN

Cell-tracing studies in the mouse indicate that the cardiac lineage arises from a population that expresses the vascular endothelial growth factor receptor 2 (VEGFR2, Flk-1), suggesting that it may develop from a progenitor with vascular potential. Using the embryonic stem (ES) cell differentiation model, we have identified a cardiovascular progenitor based on the temporal expression of the primitive streak (PS) marker brachyury and Flk-1. Comparable progenitors could also be isolated from head-fold stage embryos. When cultured with cytokines known to function during cardiogenesis, individual cardiovascular progenitors generated colonies that displayed cardiomyocyte, endothelial, and vascular smooth muscle (VSM) potential. Isolation and characterization of this previously unidentified population suggests that the mammalian cardiovascular system develops from multipotential progenitors.


Asunto(s)
Células Madre Embrionarias/citología , Células Endoteliales/citología , Células Madre Multipotentes/citología , Músculo Liso Vascular/citología , Miocitos Cardíacos/citología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Sistema Cardiovascular/citología , Sistema Cardiovascular/embriología , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Proteínas Fetales/metabolismo , Ratones , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/biosíntesis
4.
Proc Natl Acad Sci U S A ; 103(45): 16806-11, 2006 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-17077151

RESUMEN

The establishment of the primitive streak and its derivative germ layers, mesoderm and endoderm, are prerequisite steps in the formation of many tissues. To model these developmental stages in vitro, an ES cell line was established that expresses CD4 from the foxa2 locus in addition to GFP from the brachyury locus. A GFP-Bry(+) population expressing variable levels of CD4-Foxa2 developed upon differentiation of this ES cell line. Analysis of gene-expression patterns and developmental potential revealed that the CD4-Foxa2(hi)GFP-Bry(+) population displays characteristics of the anterior primitive streak, whereas the CD4-Foxa2(lo)GFP-Bry(+) cells resemble the posterior streak. Using this model, we were able to demonstrate that Wnt and TGF-beta/nodal/activin signaling simultaneously were required for the generation of the CD4-Foxa2(+)GFP-Bry(+) population. Wnt or low levels of activin-induced a posterior primitive streak population, whereas high levels of activin resulted in an anterior streak fate. Finally, sustained activin signaling was found to stimulate endoderm commitment from the CD4-Foxa2(+)GFP-Bry(+) ES cell population. These findings demonstrate that the early developmental events involved in germ-layer induction in the embryo are recapitulated in the ES cell model and uncover insights into the signaling pathways involved in the establishment of mesoderm and endoderm.


Asunto(s)
Inducción Embrionaria/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Activinas/metabolismo , Animales , Antígenos CD4/genética , Línea Celular , Inducción Embrionaria/genética , Femenino , Proteínas Fetales/genética , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Proteínas Fluorescentes Verdes/genética , Factor Nuclear 3-beta del Hepatocito/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Modelos Biológicos , Embarazo , Transducción de Señal , Proteínas de Dominio T Box/genética
5.
Exp Hematol ; 33(9): 955-64, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16140142

RESUMEN

Embryonic stem (ES) cells have the potential to develop into all cell types of the adult body. This capability provides the basis for considering the ES cell system as a novel and unlimited source of cells for replacement therapies for the treatment of a wide range of diseases. Before the cell-based therapy potential of ES cells can be realized, a better understanding of the pathways regulating lineage-specific differentiation is required. Current studies suggest that the bone morphogenic protein, transforming growth factor-beta, Wnt, and fibroblast growth factor pathways that are required for gastrulation and germ layer induction in the embryo are also essential for differentiation of ES cells in culture. The current understanding of how these factors influence germ layer induction in both the embryo and in the ES cell differentiation system is addressed in this review.


Asunto(s)
Desarrollo Embrionario , Inducción Embrionaria , Estratos Germinativos/citología , Células Madre/fisiología , Animales , Estratos Germinativos/fisiología , Sustancias de Crecimiento/fisiología , Ratones , Transducción de Señal , Células Madre/citología
6.
Nature ; 432(7017): 625-30, 2004 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-15577911

RESUMEN

Haematopoietic and vascular cells are thought to arise from a common progenitor called the haemangioblast. Support for this concept has been provided by embryonic stem (ES) cell differentiation studies that identified the blast colony-forming cell (BL-CFC), a progenitor with both haematopoietic and vascular potential. Using conditions that support the growth of BL-CFCs, we identify comparable progenitors that can form blast cell colonies (displaying haematopoietic and vascular potential) in gastrulating mouse embryos. Cell mixing and limiting dilution analyses provide evidence that these colonies are clonal, indicating that they develop from a progenitor with haemangioblast potential. Embryo-derived haemangioblasts are first detected at the mid-streak stage of gastrulation and peak in number during the neural plate stage. Analysis of embryos carrying complementary DNA of the green fluorescent protein targeted to the brachyury locus demonstrates that the haemangioblast is a subpopulation of mesoderm that co-expresses brachyury (also known as T) and Flk-1 (also known as Kdr). Detailed mapping studies reveal that haemangioblasts are found at highest frequency in the posterior region of the primitive streak, indicating that initial stages of haematopoietic and vascular commitment occur before blood island development in the yolk sac.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos/citología , Gástrula/citología , Células Madre Hematopoyéticas/citología , Mesodermo/citología , Animales , Diferenciación Celular , Células Clonales/citología , Embrión de Mamíferos/embriología , Femenino , Hemangioblastoma , Masculino , Ratones , Saco Vitelino/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...