Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
F1000Res ; 5: 2471, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27853518

RESUMEN

Background: The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM) testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR) approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial) fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the Cannabis and food safety testing industries.

2.
J Chromatogr A ; 1060(1-2): 153-63, 2004 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-15628158

RESUMEN

The important experimental design criteria for an accelerated low-pH RPLC column stability test are discussed. The influence of method variables on the amount and rate of retention-loss and the final optimized parameters for the accelerated low-pH RPLC stability test are presented. The retention-loss curves for selected C8 and C18 stationary phases are compared. These studies indicate that ligand chain length, functionality and bonding density play an important role in determining the low-pH stability of a stationary phase. Additionally, elemental analysis data are used to infer the mechanism responsible for the observed retention-loss under low-pH conditions.


Asunto(s)
Cromatografía Líquida de Alta Presión/instrumentación , Concentración de Iones de Hidrógeno , Temperatura
3.
Anal Chem ; 75(24): 6781-8, 2003 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-14670036

RESUMEN

The characterization and evaluation of three novel 5-microm HPLC column packings, prepared using ethyl-bridged hybrid organic/inorganic materials, is described. These highly spherical hybrid particles, which vary in specific surface area (140, 187, and 270 m(2)/g) and average pore diameter (185, 148, and 108 A), were characterized by elemental analysis, SEM, and nitrogen sorption analysis and were chemically modified in a two-step process using octadecyltrichlorosilane and trimethylchlorosilane. The resultant bonded materials had an octadecyl surface concentration of 3.17-3.35 micromol/m(2), which is comparable to the coverage obtained for an identically bonded silica particle (3.44 micromol/m(2)) that had a surface area of 344 m(2)/g. These hybrid materials were shown to have sufficient mechanical strength under conditions normally employed for traditional reversed-phase HPLC applications, using a high-pressure column flow test. The chromatographic properties of the C(18) bonded hybrid phases were compared to a C(18) bonded silica using a variety of neutral and basic analytes under the same mobile-phase conditions. The hybrid phases exhibited similar selectivity to the silica-based column, yet had improved peak tailing factors for the basic analytes. Column retentivity increased with increasing particle surface area. Elevated pH aging studies of these hybrid materials showed dramatic improvement in chemical stability for both bonded and unbonded hybrid materials compared to the C(18) bonded silica phase, as determined by monitoring the loss in column efficiency through 140-h exposure to a pH 10 triethylamine mobile phase at 50 degrees C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...