Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 10: 2665, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849856

RESUMEN

The enteric pathogen, Salmonella enterica is a major cause of human gastroenteritis globally and with increasing bacterial resistance to antibiotics, alternative solutions are urgently needed. Single domain antibodies (sdAbs), the smallest antibody fragments that retain antigen binding specificity and affinity, are derived from variable heavy-chain only fragments (VHH) of camelid heavy-chain-only immunoglobulins. SdAbs typically contain a single disulfide bond simplifying recombinant protein production in microbial systems. These factors make sdAbs ideally suited for the development of effective anti-bacterial therapeutics. To this end, we generated an anti-Salmonella VHH library from which we screened for high affinity sdAbs. We present a novel sdAb (Abi-Se07) that targets the Salmonella virulence factor, FliC, required for bacterial motility and invasion of host cells. We demonstrate that Abi-Se07 bound FliC with a K D of 16.2 ± 0.1 nM. In addition, Abi-Se07 exhibited cross-serovar binding to whole cells of S. enterica serovar Typhimurium, Heidelberg, and Hadar. Abi-Se07 significantly inhibited bacterial motility and significantly reduced S. enterica colonization in a more native environment of chicken jejunum epithelium. Taken together, we have identified a novel anti-Salmonella sdAb and discuss future efforts toward therapeutic development.

2.
Cell Rep ; 20(11): 2735-2748, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28903051

RESUMEN

A comprehensive view of molecular chaperone function in the cell was obtained through a systematic global integrative network approach based on physical (protein-protein) and genetic (gene-gene or epistatic) interaction mapping. This allowed us to decipher interactions involving all core chaperones (67) and cochaperones (15) of Saccharomyces cerevisiae. Our analysis revealed the presence of a large chaperone functional supercomplex, which we named the naturally joined (NAJ) chaperone complex, encompassing Hsp40, Hsp70, Hsp90, AAA+, CCT, and small Hsps. We further found that many chaperones interact with proteins that form foci or condensates under stress conditions. Using an in vitro reconstitution approach, we demonstrate condensate formation for the highly conserved AAA+ ATPases Rvb1 and Rvb2, which are part of the R2TP complex that interacts with Hsp90. This expanded view of the chaperone network in the cell clearly demonstrates the distinction between chaperones having broad versus narrow substrate specificities in protein homeostasis.


Asunto(s)
Chaperonas Moleculares/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Epistasis Genética , Redes Reguladoras de Genes , Genes Esenciales , Proteínas HSP90 de Choque Térmico/metabolismo , Concentración de Iones de Hidrógeno , Unión Proteica , Saccharomyces cerevisiae/genética , Estrés Fisiológico
3.
Structure ; 25(3): 469-481, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28238534

RESUMEN

CshA is a dimeric DEAD-box helicase that cooperates with ribonucleases for mRNA turnover. The molecular mechanism for how a dimeric DEAD-box helicase aids in RNA decay remains unknown. Here, we report the crystal structure and small-angle X-ray scattering solution structure of the CshA from Geobacillus stearothermophilus. In contrast to typical monomeric DEAD-box helicases, CshA is exclusively a dimeric protein with the RecA-like domains of each protomer forming a V-shaped structure. We show that the C-terminal domains protruding outward from the tip of the V-shaped structure is critical for mediating strong RNA binding and is crucial for efficient RNA-dependent ATP hydrolysis. We also show that RNA remains bound with CshA during ATP hydrolysis cycles and thus bulk RNAs could be unwound and degraded in a processive manner through cooperation between exoribonucleases and CshA. A dimeric helicase is hence preserved in RNA-degrading machinery for efficient RNA turnover in prokaryotes and eukaryotes.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Geobacillus stearothermophilus/metabolismo , ARN/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Exorribonucleasas/metabolismo , Hidrólisis , Modelos Moleculares , Multimerización de Proteína , Estabilidad del ARN , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
J Mol Biol ; 427(10): 1875-86, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25636407

RESUMEN

Rvb1 and Rvb2 are conserved AAA+ (ATPases associated with diverse cellular activities) proteins found at the core of large multicomponent complexes that play key roles in chromatin remodeling, integrity of the telomeres, ribonucleoprotein complex biogenesis and other essential cellular processes. These proteins contain an AAA+ domain for ATP binding and hydrolysis and an insertion domain proposed to bind DNA/RNA. Yeast Rvb1 and Rvb2 proteins oligomerize primarily as heterohexameric rings. The six AAA+ core domains form the body of the ring and the insertion domains protrude from one face of the ring. Conversely, human Rvbs form a mixture of hexamers and dodecamers made of two stacked hexamers interacting through the insertion domains. Human dodecamers adopt either a contracted or a stretched conformation. Here, we found that yeast Rvb1/Rvb2 complexes when assembled in vivo mainly form hexamers but they also assemble as dodecamers with a frequency lower than 10%. Yeast dodecamers adopt not only the stretched and contracted structures that have been described for human Rvb1/Rvb2 dodecamers but also intermediate conformations in between these two extreme states. The orientation of the insertion domains of Rvb1 and Rvb2 proteins in these conformers changes as the dodecamer transitions from the stretched structure to a more contracted structure. Finally, we observed that for the yeast proteins, oligomerization as a dodecamer inhibits the ATPase activity of the Rvb1/Rvb2 complex. These results indicate that although human and yeast Rvb1 and Rvb2 proteins share high degree of homology, there are significant differences in their oligomeric behavior and dynamics.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/química , ADN Helicasas/química , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/química , Proteínas Portadoras/metabolismo , Ensamble y Desensamble de Cromatina , Cristalografía por Rayos X , ADN Helicasas/metabolismo , Humanos , Hidrólisis , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
5.
J Mol Biol ; 404(3): 478-92, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-20934430

RESUMEN

Rvb1 and Rvb2 are essential AAA(+) (ATPases associated with diverse cellular activities) helicases, which are important components of critical complexes such as chromatin remodeling and telomerase complexes. The oligomeric state of the Rvb proteins has been controversial. Independent studies from several groups have described the yeast and human Rvb1/Rvb2 complex both as a single and as a double hexameric ring complex. We found that histidine-tagged constructs of yeast Rvb proteins employed in some of these studies induced the assembly of double hexameric ring Rvb1/Rvb2 complexes. Instead, untagged versions of these proteins assemble into single hexameric rings. Furthermore, purified endogenous untagged Rvb1/Rvb2 complexes from Saccharomyces cerevisiae were also found as single hexameric rings, similar to the complexes assembled in vitro from the purified untagged components. These results demonstrate that some of the differences between the reported structures are caused by histidine tags and imply that further studies on the purified proteins should be carried out using untagged constructs.


Asunto(s)
Adenosina Trifosfatasas/química , ADN Helicasas/química , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Proteínas Portadoras/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN Helicasas/genética , Histidina/química , Humanos , Imagenología Tridimensional , Técnicas In Vitro , Modelos Moleculares , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
6.
Biochem Cell Biol ; 88(1): 29-40, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20130677

RESUMEN

Rvb1 and Rvb2 are highly conserved, essential AAA+ helicases found in a wide range of eukaryotes. The versatility of these helicases and their central role in the biology of the cell is evident from their involvement in a wide array of critical cellular complexes. Rvb1 and Rvb2 are components of the chromatin-remodeling complexes INO80, Swr-C, and BAF. They are also members of the histone acetyltransferase Tip60 complex, and the recently identified R2TP complex present in Saccharomyces cerevisiae and Homo sapiens; a complex that is involved in small nucleolar ribonucleoprotein (snoRNP) assembly. Furthermore, in humans, Rvb1 and Rvb2 have been identified in the URI prefoldin-like complex. In Drosophila, the Polycomb Repressive complex 1 contains Rvb2, but not Rvb1, and the Brahma complex contains Rvb1 and not Rvb2. Both of these complexes are involved in the regulation of growth and development genes in Drosophila. Rvbs are therefore crucial factors in various cellular processes. Their importance in chromatin remodeling, transcription regulation, DNA damage repair, telomerase assembly, mitotic spindle formation, and snoRNP biogenesis is discussed in this review.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Animales , Proteínas Portadoras/genética , Ensamble y Desensamble de Cromatina , ADN Helicasas/genética , Eucariontes/enzimología , Humanos , Modelos Biológicos , Modelos Moleculares , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo
7.
Biochem Cell Biol ; 88(1): 77-88, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20130681

RESUMEN

The Rvb1 and Rvb2 proteins are 2 members of the AAA+ family, involved in roles as diverse as chromatin remodeling, transcription, small nucleolar RNA maturation, cellular transformation, signaling of apoptosis and mitosis. These proteins are capable of playing a role in such diverse cellular activities because they are components of different macromolecular assemblies. In the last few years, there has been a number of groups reporting on the structure of purified Rvbs. The reported results have been rather controversial, because there are significant differences observed among the published structures in spite of the high degree of homology among these proteins. Surprisingly, contradictions are observed not only between structures representing the Rvb proteins from different species, but also between protein structures from the same species. This review describes the available Rvb structures from different species and also makes a comparative analysis of them. Finally, we identify some aspects of these structural studies worth pursuing in additional investigations to ensure that the reported structures reflect physiologically relevant conformations of the Rvb1-Rvb2 complex.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Proteínas Portadoras/genética , ADN Helicasas/genética , Humanos , Modelos Moleculares , Unión Proteica/genética , Conformación Proteica , Estructura Terciaria de Proteína/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
8.
J Cell Biol ; 180(3): 563-78, 2008 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-18268103

RESUMEN

Hsp90 is a highly conserved molecular chaperone that is involved in modulating a multitude of cellular processes. In this study, we identify a function for the chaperone in RNA processing and maintenance. This functionality of Hsp90 involves two recently identified interactors of the chaperone: Tah1 and Pih1/Nop17. Tah1 is a small protein containing tetratricopeptide repeats, whereas Pih1 is found to be an unstable protein. Tah1 and Pih1 bind to the essential helicases Rvb1 and Rvb2 to form the R2TP complex, which we demonstrate is required for the correct accumulation of box C/D small nucleolar ribonucleoproteins. Together with the Tah1 cofactor, Hsp90 functions to stabilize Pih1. As a consequence, the chaperone is shown to affect box C/D accumulation and maintenance, especially under stress conditions. Hsp90 and R2TP proteins are also involved in the proper accumulation of box H/ACA small nucleolar RNAs.


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , ARN Nucleolar Pequeño/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Sustancias Macromoleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Pliegue de Proteína , Procesamiento Postranscripcional del ARN/genética , ARN Nucleolar Pequeño/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción
9.
J Mol Biol ; 376(5): 1320-33, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18234224

RESUMEN

Rvb1 and Rvb2 are highly conserved proteins present in archaea and eukaryotes. These proteins are members of a large superfamily of ATPases associated with diverse cellular activities--the AAA(+) superfamily. The Rvbs have been found in multiprotein complexes that have wide ranges of functions, including DNA repair, transcription, chromatin remodeling, ribosomal RNA processing, and small nucleolar RNA accumulation. Here we show that yeast Rvb1 and Rvb2 form a heterohexameric ring structure rather than the double-hexameric ring structure proposed to be formed by the human proteins. The yeast Rvb1/2 complex has enhanced ATPase activity compared with the individual Rvb proteins; furthermore, the ATPase activity of the Rvb1/2 complex is further increased in the presence of double-stranded DNA with 5' or 3' overhangs. The yeast Rvb1/2 ring undergoes nucleotide-dependent conformational changes as observed by electron microscopy. In addition, consistent with a role for these proteins in chromatin remodeling and DNA repair, the yeast Rvb1/2 complex exhibits DNA helicase activity with a preference for unwinding in the 5'-to-3' direction. The individual Rvb proteins also exhibit helicase activity, albeit weaker than that of the Rvb1/2 complex. These results clearly establish the yeast Rvb1/2 complex as a heterohexameric ATP-dependent DNA helicase and highlight the possible roles played by the Rvb proteins within multiprotein complexes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Proteínas Portadoras/química , ADN Helicasas/química , Humanos , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Alineación de Secuencia , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA