Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Proc Natl Acad Sci U S A ; 120(12): e2211522120, 2023 03 21.
Article En | MEDLINE | ID: mdl-36917672

Ribosome-associated quality control (RQC) pathway is responsible for degradation of nascent polypeptides in aberrantly stalled ribosomes, and its defects may lead to neurological diseases. However, the underlying molecular mechanism of how RQC dysfunction elicits neurological disorders remains poorly understood. Here we revealed that neurons with knockout (KO) of ubiquitin ligase LTN1, a key gene in the RQC pathway, show developmental defects in neurons via upregulation of TTC3 and UFMylation signaling proteins. The abnormally enhanced TTC3 protein in Ltn1 KO neurons reduced further accumulation of translationally arrested products by preventing translation initiation of selective genes. However, the overaccumulated TTC3 protein in turn caused dendritic abnormalities and reduced surface-localized GABAA receptors during neuronal development. Ltn1 KO mice showed behavioral deficits associated with cognitive disorders, a subset of which were restored by TTC3 knockdown in medial prefrontal cortex. Together, the overactivated cellular compensatory mechanism against defective RQC through TTC3 overaccumulation induced synaptic and cognitive deficits. More broadly, these findings represent a novel cellular mechanism underlying neuronal dysfunctions triggered by exaggerated cellular stress response to accumulated abnormal translation products in neurons.


Cognitive Dysfunction , Ribosomes , Ubiquitin-Protein Ligases , Animals , Mice , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Protein Biosynthesis , Ribosomes/genetics , Ribosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
2.
Front Mol Neurosci ; 15: 893111, 2022.
Article En | MEDLINE | ID: mdl-35875665

Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.

3.
Exp Neurol ; 351: 114010, 2022 05.
Article En | MEDLINE | ID: mdl-35167826

Cisplatin is a member of a widely utilized class of chemotherapeutic agent that initiates DNA damage response, cell cycle arrest, and p53-dependent apoptotic cell death in concert with DNA­platinum adduct formation. While normal programmed cell death (PCD) can occur in the developing neuroepithelium in the absence of caspase-3 within certain genetic backgrounds, we observed an absolute dependency upon this executioner caspase with respect to cisplatin-induced PCD in the developing central nervous system (CNS). We therefore examined the nature of this genotoxic injury in the CNS in vivo, in which cisplatin treatment causes widespread cellular injury consistent with hallmarks of apoptosis which are averted upon caspase-3 inhibition. Examination of cisplatin-mediated injury as a function of time revealed the presence of an alternative, delayed form of necroptosis-like cell death which manifests in Casp3-/- neuroepithelia for several days following the normal pattern of apoptosis. Together, these findings suggest a coordinated regulation of these disparate PCD pathways in response to genotoxic stress in vivo and highlight the unique and critical role which caspase-3 plays among executioner caspases in coordinating apoptotic versus necroptotic responsiveness of the developing CNS to genotoxic injury.


Caspases , Cisplatin , Apoptosis/physiology , Brain/metabolism , Caspase 3/metabolism , Caspases/metabolism , Cisplatin/toxicity
4.
Biol Psychiatry ; 91(4): 335-345, 2022 02 15.
Article En | MEDLINE | ID: mdl-34836635

Recent genetic approaches have demonstrated that genetic factors contribute to the pathologic origins of neuropsychiatric disorders. Nevertheless, the exact pathophysiological mechanism for most cases remains unclear. Recent studies have demonstrated alterations in pathways of protein homeostasis (proteostasis) and identified several proteins that are misfolded and/or aggregated in the brains of patients with neuropsychiatric disorders, thus providing early evidence that disrupted proteostasis may be a contributing factor to their pathophysiology. Unlike neurodegenerative disorders in which massive neuronal and synaptic losses are observed, proteostasis impairments in neuropsychiatric disorders do not lead to robust neuronal death, but rather likely act via loss- and gain-of-function effects to disrupt neuronal and synaptic functions. Furthermore, abnormal activation of or overwhelmed endoplasmic reticulum and mitochondrial quality control pathways may exacerbate the pathophysiological changes initiated by impaired proteostasis, as these organelles are critical for proper neuronal functions and involved in the maintenance of proteostasis. This perspective article reviews recent findings implicating proteostasis impairments in the pathophysiology of neuropsychiatric disorders and explores how neuronal and synaptic functions may be impacted by disruptions in protein homeostasis. A greater understanding of the contributions by proteostasis impairment in neuropsychiatric disorders will help guide future studies to identify additional candidate proteins and new targets for therapeutic development.


Neurodegenerative Diseases , Proteostasis , Endoplasmic Reticulum/metabolism , Humans , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Unfolded Protein Response
5.
Biomolecules ; 9(11)2019 11 01.
Article En | MEDLINE | ID: mdl-31683805

De novo protein synthesis by the ribosome and its multitude of co-factors must occur in a tightly regulated manner to ensure that the correct proteins are produced accurately at the right time and, in some cases, also in the proper location. With novel techniques such as ribosome profiling and cryogenic electron microscopy, our understanding of this basic biological process is better than ever and continues to grow. Concurrently, increasing attention is focused on how translational regulation in the brain may be disrupted during the progression of various neurological disorders. In fact, translational dysregulation is now recognized as the de facto pathogenic cause for some disorders. Novel mechanisms including ribosome stalling, ribosome-associated quality control, and liquid-liquid phase separation are closely linked to translational regulation, and may thus be involved in the pathogenic process. The relationships between translational dysregulation and neurological disorders, as well as the ways through which we may be able to reverse those detrimental effects, will be examined in this review.


Nervous System Diseases/genetics , Protein Biosynthesis , Ribosomes/genetics , Animals , Brain/metabolism , Humans , Nervous System Diseases/metabolism , Proteins/genetics , Proteins/metabolism , Ribosomes/metabolism
6.
Autophagy ; 15(10): 1848-1849, 2019 10.
Article En | MEDLINE | ID: mdl-31280658

The disruption of MTOR-regulated macroautophagy/autophagy was previously shown to cause autistic-like abnormalities; however, the underlying molecular defects remained largely unresolved. In a recent study, we demonstrated that autophagy deficiency induced by conditional Atg7 deletion in either forebrain GABAergic inhibitory or excitatory neurons leads to a similar set of autistic-like behavioral abnormalities even when induced following the peak period of synaptic pruning during postnatal neurodevelopment. Our proteomic analysis and molecular dissection further revealed a mechanism in which the GABAA receptor trafficking function of GABARAP (gamma-aminobutyric acid receptor associated protein) family proteins was compromised as they became sequestered by SQSTM1/p62-positive aggregates formed due to autophagy deficiency. Our discovery of autophagy as a link between MTOR and GABA signaling may have implications not limited to neurodevelopmental and neuropsychiatric disorders, but could potentially be involved in other human pathologies such as cancer and diabetes in which both pathways are implicated.


Autophagy/physiology , Brain/metabolism , Neurons/metabolism , Receptors, GABA-A/metabolism , TOR Serine-Threonine Kinases/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Brain/pathology , Humans , Mice , Mice, Knockout , Receptors, GABA-A/genetics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics
7.
Sci Adv ; 5(4): eaau8237, 2019 04.
Article En | MEDLINE | ID: mdl-30989111

Dysfunctional mTOR signaling is associated with the pathogenesis of neurodevelopmental and neuropsychiatric disorders. However, it is unclear what molecular mechanisms and pathogenic mediators are involved and whether mTOR-regulated autophagy continues to be crucial beyond neurodevelopment. Here, we selectively deleted Atg7 in forebrain GABAergic interneurons in adolescent mice and unexpectedly found that these mice showed a set of behavioral deficits similar to Atg7 deletion in forebrain excitatory neurons. By unbiased quantitative proteomic analysis, we identified γ-aminobutyric acid receptor-associated protein-like 2 (GABARAPL2) to differentially form high-molecular weight species in autophagy-deficient brains. Further functional analyses revealed a novel pathogenic mechanism involving the p62-dependent sequestration of GABARAP family proteins, leading to the reduction of surface GABAA receptor levels. Our work demonstrates a novel physiological role for autophagy in regulating GABA signaling beyond postnatal neurodevelopment, providing a potential mechanism for the reduced inhibitory inputs observed in neurodevelopmental and neuropsychiatric disorders with mTOR hyperactivation.


Apoptosis Regulatory Proteins/metabolism , Autophagy , Brain/pathology , Microtubule-Associated Proteins/metabolism , Receptors, GABA-A/metabolism , Social Behavior , Animals , Humans , Interneurons/metabolism , Mice , Mice, Transgenic , Neurons/metabolism , Prosencephalon/physiology , Protein Aggregates , Protein Binding , Protein Transport
8.
Nanomedicine ; 9(6): 795-805, 2013 Aug.
Article En | MEDLINE | ID: mdl-23434679

Matrigel, a mouse sarcoma-derived basement membrane protein mixture, is frequently used to facilitate human tumor xenograft growth in rodents. Despite its known effects on tumor growth and metastasis, its impact on tumor pathophysiology and preclinical evaluation of nanomedicines in tumor xenografts has not been reported previously. Herein bilateral MDA435 tumors were established orthotopically with (Mat+) or without (Mat-) co-injection of Matrigel. Tumor perfusion, morphology and nanoparticle retention were evaluated. As compared to Mat- tumors, Mat+tumors exhibited enhanced vascular perfusion and lymphatic flow, greater blood vessel and lymphatic growth within the tumor core, and more deformation and collapse of lymphatics in tumor-associated lymph nodes. These changes were accompanied by reduced nanoparticle retention in Mat+tumors. The results suggest that Matrigel is not a passive medium for tumor growth, but rather significantly alters long-term tumor architecture. These findings have significant implications for the evaluation of therapeutic nanomedicine in xenograft mouse models. FROM THE CLINICAL EDITOR: Matrigel is utilized in facilitating human tumor xenograft growth in rodents. The authors demonstrate that Matrigel is not a passive medium for tumor growth; instead it significantly alters long-term tumor architecture, with major implications in the evaluation of therapeutic nanomedicine in xenograft mouse models.


Adenocarcinoma/physiopathology , Breast Neoplasms/physiopathology , Collagen/administration & dosage , Heterografts/physiopathology , Laminin/administration & dosage , Proteoglycans/administration & dosage , Animals , Cell Line, Tumor , Collagen/metabolism , Drug Combinations , Female , Humans , Laminin/metabolism , Mice , Nanomedicine , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Proteoglycans/metabolism
9.
J Cell Mol Med ; 14(3): 671-86, 2010 Mar.
Article En | MEDLINE | ID: mdl-19243469

The immunosuppressive agents cyclosporin A (CsA) and FK-506 have previously been shown to exhibit neurotrophic and neuroprotective properties in vivo. Given that significant clinical expertise exists for both drugs, they represent an attractive starting point for treatment of acute neural injuries. One putative mechanism for neuroprotection by these drugs relates to inhibition of calcineurin activity. However each drug-immunophilin complex can potentially influence additional signal transduction pathways. Furthermore, several non-immunosuppressive immunophilin ligands have been described as possessing neuroprotective properties, suggesting that neuroprotection may be separable from calcineurin inhibition. In the present study, we examined the mechanism of this neuroprotection in facial motor neurons following axotomy-induced injury. Similar to previous studies in rats, CsA and FK-506 enhanced motor neuron survival in mice following acute injury. To examine the mechanism responsible for neuroprotection by these agents, pharmacologic inhibitors of several potential alternate signalling pathways (17-(allylamino)-17-demethoxygeldanamycin, rapamycin, cypermethrin) were evaluated with respect to neuroprotection. Of these, only cypermethrin, a direct calcineurin inhibitor not previously associated with neuronal survival properties, was observed to significantly enhance motor neuron survival following injury. The results demonstrate for the first time that direct inhibition of calcineurin is neuroprotective in vivo. These data support a model in which calcineurin inhibition promotes neuronal survival, distinct from effects upon neurite outgrowth.


Calcineurin Inhibitors , Motor Neurons/drug effects , Neuroprotective Agents/pharmacology , Pyrethrins/pharmacology , Animals , Animals, Newborn , Axotomy , Calcineurin/genetics , Caspase 3/metabolism , Cell Survival/drug effects , Cyclosporine/pharmacology , Enzyme Activation/drug effects , Immunohistochemistry , Immunosuppressive Agents/pharmacology , Insecticides/pharmacology , Mice , Mice, Inbred ICR , Mice, Inbred Strains , Mice, Knockout , Microscopy, Fluorescence , Motor Neurons/metabolism , Motor Neurons/pathology , Signal Transduction/drug effects , Tacrolimus/pharmacology
...