Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115939

RESUMEN

Progress in cytokine engineering is driving therapeutic translation by overcoming these proteins' limitations as drugs. The interleukin-2 (IL-2) cytokine is a promising immune stimulant for cancer treatment but is limited by its concurrent activation of both pro-inflammatory immune effector cells and anti-inflammatory regulatory T cells, toxicity at high doses, and short serum half-life. One approach to improve the selectivity, safety, and longevity of IL-2 is complexation with anti-IL-2 antibodies that bias the cytokine towards immune effector cell activation. Although this strategy shows potential in preclinical models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multi-protein drug and concerns regarding complex stability. Here, we introduced a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine towards immune effector cells. We optimized IC construction and engineered the cytokine/antibody affinity to improve immune bias. We demonstrated that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared to natural IL-2, both alone and combined with immune checkpoint inhibitors. Moreover, therapeutic efficacy was observed without inducing toxicity. This work presents a roadmap for the design and translation of cytokine/antibody fusion proteins.

2.
Nat Commun ; 15(1): 5123, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879612

RESUMEN

Bacteroidales (syn. Bacteroidetes) are prominent members of the human gastrointestinal ecosystem mainly due to their efficient glycan-degrading machinery, organized into gene clusters known as polysaccharide utilization loci (PULs). A single PUL was reported for catabolism of high-mannose (HM) N-glycan glyco-polypeptides in the gut symbiont Bacteroides thetaiotaomicron, encoding a surface endo-ß-N-acetylglucosaminidase (ENGase), BT3987. Here, we discover an ENGase from the GH18 family in B. thetaiotaomicron, BT1285, encoded in a distinct PUL with its own repertoire of proteins for catabolism of the same HM N-glycan substrate as that of BT3987. We employ X-ray crystallography, electron microscopy, mass spectrometry-based activity measurements, alanine scanning mutagenesis and a broad range of biophysical methods to comprehensively define the molecular mechanism by which BT1285 recognizes and hydrolyzes HM N-glycans, revealing that the stabilities and activities of BT1285 and BT3987 were optimal in markedly different conditions. BT1285 exhibits significantly higher affinity and faster hydrolysis of poorly accessible HM N-glycans than does BT3987. We also find that two HM-processing endoglycosidases from the human gut-resident Alistipes finegoldii display condition-specific functional properties. Altogether, our data suggest that human gut microbes employ evolutionary strategies to express distinct ENGases in order to optimally metabolize the same N-glycan substrate in the gastroinstestinal tract.


Asunto(s)
Proteínas Bacterianas , Bacteroides thetaiotaomicron , Microbioma Gastrointestinal , Polisacáridos , Polisacáridos/metabolismo , Humanos , Bacteroides thetaiotaomicron/metabolismo , Bacteroides thetaiotaomicron/enzimología , Bacteroides thetaiotaomicron/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Especificidad por Sustrato , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Manosa/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/genética , Familia de Multigenes
3.
bioRxiv ; 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37205604

RESUMEN

Progress in cytokine engineering is driving therapeutic translation by overcoming the inherent limitations of these proteins as drugs. The interleukin-2 (IL-2) cytokine harbors great promise as an immune stimulant for cancer treatment. However, the cytokine's concurrent activation of both pro-inflammatory immune effector cells and anti-inflammatory regulatory T cells, its toxicity at high doses, and its short serum half-life have limited clinical application. One promising approach to improve the selectivity, safety, and longevity of IL-2 is complexation with anti-IL-2 antibodies that bias the cytokine towards the activation of immune effector cells (i.e., effector T cells and natural killer cells). Although this strategy shows therapeutic potential in preclinical cancer models, clinical translation of a cytokine/antibody complex is complicated by challenges in formulating a multi-protein drug and concerns about complex stability. Here, we introduce a versatile approach to designing intramolecularly assembled single-agent fusion proteins (immunocytokines, ICs) comprising IL-2 and a biasing anti-IL-2 antibody that directs the cytokine's activities towards immune effector cells. We establish the optimal IC construction and further engineer the cytokine/antibody affinity to improve immune biasing function. We demonstrate that our IC preferentially activates and expands immune effector cells, leading to superior antitumor activity compared to natural IL-2 without inducing toxicities associated with IL-2 administration. Collectively, this work presents a roadmap for the design and translation of immunomodulatory cytokine/antibody fusion proteins.

4.
FEBS J ; 290(11): 2993-3005, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36637991

RESUMEN

We combined cell-free ribosome display and cell-based yeast display selection to build specific protein binders to the extracellular domain of the human interleukin 9 receptor alpha (IL-9Rα). The target, IL-9Rα, is the receptor involved in the signalling pathway of IL-9, a pro-inflammatory cytokine medically important for its involvement in respiratory diseases. The successive use of modified protocols of ribosome and yeast displays allowed us to combine their strengths-the virtually infinite selection power of ribosome display and the production of (mostly) properly folded and soluble proteins in yeast display. The described experimental protocol is optimized to produce binders highly specific to the target, including selectivity to common proteins such as BSA, and proteins potentially competing for the binder such as receptors of other cytokines. The binders were trained from DNA libraries of two protein scaffolds called 57aBi and 57bBi developed in our laboratory. We show that the described unconventional combination of ribosome and yeast displays is effective in developing selective small protein binders to the medically relevant molecular target.


Asunto(s)
Proteínas Portadoras , Saccharomyces cerevisiae , Humanos , Unión Proteica , Saccharomyces cerevisiae/genética , Citocinas , Receptores de Interleucina-9 , Biblioteca de Péptidos
5.
FEBS J ; 289(9): 2672-2684, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34826176

RESUMEN

We hereby describe the process of design and selection of nonantibody protein binders mimicking cytokine signaling. We chose to mimic signaling of IFN-λ1, type 3 interferon (also known as IL-29) for its novelty and the importance of its biological functions. All four known interferons λ signal through binding to the extracellular domains of IL-28 receptor 1 (IL-28R1) and IL-10 receptor 2 (IL-10R2). Our binders were therefore trained to bind both receptors simultaneously. The bifunctional binder molecules were developed by yeast display, a method of directed evolution. The signaling capacity of the bivalent binders was tested by measuring phosphorylation of the JAK/STAT signaling pathway and production of mRNA of six selected genes naturally induced by IFN- λ1 in human cell lines. The newly developed bivalent binders offer opportunities to study cytokine-related biological functions and modulation of the cell behavior by receptor activation on the cell surfaces alternative to the use of natural IFN-λ.


Asunto(s)
Interferones , Interleucinas , Antivirales/metabolismo , Citocinas/metabolismo , Humanos , Interferones/metabolismo , Interleucinas/metabolismo , Transducción de Señal
6.
Viruses ; 13(2)2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33514045

RESUMEN

Engineered small non-antibody protein scaffolds are a promising alternative to antibodies and are especially attractive for use in protein therapeutics and diagnostics. The advantages include smaller size and a more robust, single-domain structural framework with a defined binding surface amenable to mutation. This calls for a more systematic approach in designing new scaffolds suitable for use in one or more methods of directed evolution. We hereby describe a process based on an analysis of protein structures from the Protein Data Bank and their experimental examination. The candidate protein scaffolds were subjected to a thorough screening including computational evaluation of the mutability, and experimental determination of their expression yield in E. coli, solubility, and thermostability. In the next step, we examined several variants of the candidate scaffolds including their wild types and alanine mutants. We proved the applicability of this systematic procedure by selecting a monomeric single-domain human protein with a fold different from previously known scaffolds. The newly developed scaffold, called ProBi (Protein Binder), contains two independently mutable surface patches. We demonstrated its functionality by training it as a binder against human interleukin-10, a medically important cytokine. The procedure yielded scaffold-related variants with nanomolar affinity.


Asunto(s)
Evolución Molecular Dirigida/métodos , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Simulación por Computador , Bases de Datos de Proteínas , Interleucina-10/metabolismo , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Estabilidad Proteica , Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA