Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 361: 142549, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851501

RESUMEN

Titanium dioxide nanoparticles (TiO2-NP) present in wastewater effluent are discharged into freshwater and saltwater (i.e., marine) systems. TiO2-NP can be solar-driven photoactivated by ultraviolet (UV)-light producing reactive oxygen species including hydroxyl radicals (·OH). ·OH are non-selective and react with a broad range of species in water. In other studies, photoactivation of TiO2-NP has been correlated with oxidative stress and ecotoxicological impacts on plant and animal biota. This study examined the photoactivation of TiO2-NP in freshwater and saltwater systems, and contrasted the oxidation potential in both systems using methylene blue (MB) as a reaction probe. Maximum MB loss (51.9%, n = 4; 95% confidence interval 49.4-54.5) was measured in salt-free, deionized water where ·OH scavenging was negligible; minimum MB loss (1%) was measured in saltwater due to significant ·OH scavenging, indicating the inverse correlation between MB loss and radical scavenging. A kinetic analysis of scavenging by seawater constituents indicated Cl- had the greatest impact due to high concentration and high reaction rate constant. Significant loss of MB occurred in the presence of Br- relative to other less aggressive scavengers present in seawater (i.e., HCO3-, HSO4-). This result is consistent with the formation of Bromate, a strong oxidant that subsequently reacts with MB. In freshwater samples collected from different water bodies in Oklahoma (n = 12), the average MB loss was 13.4%. Greater MB loss in freshwater systems relative to marine systems was due to lower ·OH scavenging by various water quality parameters. Overall, TiO2-NP photoactivation in freshwater systems has the potential to cause greater oxidative stress and ecotoxicological impacts than in marine systems where ·OH scavenging is a dominant reaction.


Asunto(s)
Depuradores de Radicales Libres , Agua Dulce , Oxidación-Reducción , Agua de Mar , Titanio , Contaminantes Químicos del Agua , Titanio/química , Titanio/toxicidad , Agua Dulce/química , Agua de Mar/química , Depuradores de Radicales Libres/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Radical Hidroxilo/química , Nanopartículas/química , Nanopartículas/toxicidad , Rayos Ultravioleta , Aguas Residuales/química , Azul de Metileno/química
2.
Chemosphere ; 330: 138648, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37037351

RESUMEN

Groundwater treatment of recalcitrant fumigant pesticides (1,2-dibromo-3-chloropropane (DBCP), 1,2-dibromoethane (EDB), 1,2-dichloropropane (DCP), and 1,2,3-trichloropropane (TCP)) often involves a pump and treat system with granular activated carbon (GAC). A novel and promising method of treating the pesticide-spent GAC is based on alkaline hydrolysis, a well-understood abiotic transformation mechanism, that offers a potentially greener approach to conventional thermal regeneration. Here, alkaline hydrolysis of these pesticide chemicals was evaluated under homogeneous (aqueous), and heterogeneous (pesticide spent-GAC) conditions involving bituminous- and coconut-based GAC. Aqueous treatment occurred at elevated pH (pH 12.0-12.4) and the pesticide rate of hydrolysis transformation was first-order (DBCP â‰« TCP â‰« EDB â‰« DCP). Significant pesticide loss (94.95-99.98%) was achieved in both types of GAC (pH 12.0-12.4; 30 d). GAC suspensions held (5 d) at pH 11.0, 12.0, and 12.6, resulted in the DBCP loss of 74%, 89%, and 99%, respectively. The pH dependency of DBCP hydrolysis underscores the correlation between alkaline conditions, aggressive hydrolysis treatment, and reaction time for engineered systems. The estimated time (4-8 min) for full OH- intraparticle diffusion into the GAC from bulk solution was much less than the pesticide hydrolysis half-lives indicating that alkaline hydrolysis treatment of pesticides in GAC was reaction rate limited. Rapid small scale column tests demonstrated that the post-treatment (i.e., base hydrolysis) impact on adsorptive characteristics of the GAC was limited.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Purificación del Agua , Purificación del Agua/métodos , Carbón Orgánico , Hidrólisis , Contaminantes Químicos del Agua/análisis , Agua , Adsorción
3.
Chem Eng J ; 4042021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34121918

RESUMEN

For the first time, the fate of radicals generated in heterogeneous chemical oxidation treatment systems has been accounted for and used to assess treatment performance in three reaction compartments; reaction with the target compound, rhodamine B (RhB), the aqueous phase scavengers, and the solid phase scavengers. Radicals formed during the ultra-violet (UV) activation of hydrogen peroxide (H2O2) (UV-AHP) and persulfate (S2O8 2-) (UV-APS) include hydroxyl (•OH) and sulfate radicals (SO4 •-), respectively. •OH and SO4 •-, used in oxidation treatment systems to degrade a broad spectrum of environmental contaminants, may also react with non-target chemical species (scavengers) that limit treatment efficiency. UV-AHP and UV-APS treatment systems were amended with solid phase alumina to assess scavenging by solid surfaces. The overall rate of reaction and rate of radical scavenging was greater for •OH than SO4 •-. Scavenging by dissolved constituents was dominated by the oxidant used (H2O2, S2O8 2-); and the rate of radical scavenging by alumina was greater than the rate of RhB oxidation in all cases. Treatment efficiency was lower in the UV-AHP than in the UV-APS treatment system and was attributed to greater aqueous and solid phase scavenging rates. The cost of commercially available H2O2 ($0.031 mol-1) and PS ($0.24 mol-1) was used in conjunction with the overall treatment efficiency to assess specific cost of treatment. The specific cost to treat the probe compound with UV-AHP was greater than UV-APS and was attributed to the much lower treatment efficiency with UV-AHP. The much-desired high reaction rate constants between •OH and environmental contaminants, relative to SO4 •-, may come at the cost of greater combined scavenging rates, and consequently lower treatment efficiency.

4.
Water Res ; 186: 116399, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32927422

RESUMEN

The comments (Kopinke, 2020) do not accurately represent the experimental conditions, parameter values, and conceptual model used in our study (Rusevova and Huling, 2020), leading to a misinterpretation of the results. The kinetic analysis used to determine the surface scavenging rate constant (kS) involved competition kinetics between the probe and the mineral surfaces (Rusevova and Huling, 2020); similar competition kinetic methods have been used regarding other widely reported rate constants (Buxton et al., 1988; Dorfman and Adams, 1973). Assuming mass transport limitations prevented ·OH reaction at mineral surfaces, as proposed in the comments, estimates of kS would be very small, or 0. However, the addition of solid phase media was found to effectively and consistently compete with the probe. The propensity of data, supporting data, and high degree of quality assurance and quality control measures provide multiple lines of evidence indicating a high level of certainty that ·OH scavenging occurred by solid surfaces.


Asunto(s)
Radical Hidroxilo , Agua , Cinética , Minerales , Estrés Oxidativo
5.
Sci Total Environ ; 734: 139435, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32470665

RESUMEN

Raw materials, activation methods, and post-activation treatment used in manufacturing granular activated carbon (GAC) results in a spectrum of physicochemical characteristics that potentially impact the adsorption oxidation treatment process. A comprehensive study is lacking that assesses the effect of GAC characteristics on adsorption oxidation treatment of contaminant spent-GAC. Consequently, it is inherently assumed the treatment process is GAC-independent. Here, GACs (n = 31) were characterized and used in the hydrogen peroxide (H2O2)-based adsorption oxidation treatment of 2-chlorophenol (2CP)-spent GAC. The GACs exhibited a range in surface area, pore volume distribution, metals content, surface functionality, and H2O2 reaction. Chloride recovery, the treatment metric for 2CP oxidation, indicated a wide range in oxidation (0-49.2%) where bituminous- and wood-based GAC performed best. A selected subset of GACs (n = 12), amended with iron, methyl tert-butyl ether (MTBE), and H2O2, exhibited a range in oxidative treatment (1.1-57.9%). Correlations were established between GAC surface functionality, H2O2 reactivity, adsorption, and MTBE oxidation indicating multiple parameters play a collective and compounding role. The order of GACs successfully used in the treatment process is bituminous-based coal > wood > coconut > peat. Results showed adsorption oxidation treatment is GAC-dependent, and therefore, GAC selection is a key factor in the success of this technology.

6.
Environ Sci Technol ; 54(3): 1955-1962, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31967801

RESUMEN

Activated persulfate (PS) is a common method used to generate sulfate radicals (SO4•-), a powerful oxidant capable of degrading a broad array of environmental contaminants. The reaction of SO4•- with nontarget species (i.e., scavenging) contributes significantly to treatment inefficiency. Radical scavenging in this manner has been quantified for nontarget chemical species in the aqueous phase but has never been quantified for solid phase media. Kinetic analysis and laboratory methods were developed to quantify the SO4•- scavenging rate constant (k≡S) for alumina, a naturally occurring mineral in soil and aquifer materials. SO4•- were generated in UV and thermally activated persulfate (UV-APS, T-APS) batch systems, and the loss of rhodamine B (RhB) served as an indicator of SO4•- activity. k≡S for alumina was 2.42 × 104 and 2.03 × 104 m-2 s-1 for UV-APS and T-APS oxidative treatment systems, respectively. At [alumina] >5 g L-1, the reaction of SO4•- with solid phase media increased over the aqueous phase reactions with RhB and aqueous scavengers. SO4•- scavenging by solid surfaces was orders of magnitude greater than the reaction with the target compound and scavengers in the aqueous phase, underscoring the significant role of solid surfaces in scavenging SO4•-.


Asunto(s)
Contaminantes Químicos del Agua , Cinética , Minerales , Oxidación-Reducción , Sulfatos
7.
Water Res ; 169: 115240, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31706122

RESUMEN

Advanced oxidation treatment processes used in various applications to treat contaminated soil, water, and groundwater involve powerful radical intermediates, including hydroxyl radicals (•OH). Inefficiency in •OH-driven treatment systems involves scavenging reactions where •OH react with non-target species in the aqueous and solid phases. Here, •OH were generated in iron (Fe)- and UV-activated hydrogen peroxide (Fe-AHP, UV-AHP) systems where the loss of rhodamine B served as a quantitative metric for •OH activity. Kinetic analysis methods were developed to estimate the specific •OH surface scavenging rate constant (k≡S). In the Fe-AHP system, k≡S for silica (2.85 × 106 1/m2 × s) and alumina (3.92 × 106 1/m2 × s) were similar. In the UV-AHP system, estimates of k≡S for silica (4.50 × 106 1/m2 × s) and alumina (7.45 × 106 1/m2 × s) were higher. k≡S for montmorillonite (MMT) in the UV-AHP system was ≤4.22 × 105 1/m2 × s. Overall, k≡S,silica ∼ k≡S, alumina > k≡S,MMT indicating k≡S is mineral specific. Radical scavenging was dominated by surface scavenging at 10-50 g/L silica, alumina, or MMT, in both Fe-AHP and UV-AHP systems. The experimentally-derived surface •OH scavenging rate constants were extended to in-situ chemical oxidation (ISCO) treatment conditions to contrast •OH reaction rates with contaminant and aqueous phase reactants found in aquifer systems. •OH reaction was dominated by solid surfaces comprised of silica, alumina, and montmorillonite minerals relative to •OH reaction with trichloroethylene, the target compound, and H2O2, a well-documented radical scavenger. These results indicate that solid mineral surfaces play a key role in limiting the degradation rate of contaminants found in soil and groundwater, and the overall treatment efficiency in ISCO systems. The aggressive •OH scavenging measured was partially attributed to the relative abundance of scavenging sites on mineral surfaces.


Asunto(s)
Peróxido de Hidrógeno , Radical Hidroxilo , Cinética , Minerales , Oxidación-Reducción , Estrés Oxidativo
8.
Sci Total Environ ; 647: 1106-1112, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30180319

RESUMEN

A method for the remediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soils was proposed involving a combination of surfactant-aided soil washing and chemical oxidation by activated persulfate (SP). In this study, Triton X-100 (TX-100) and SP was applied to the soil, either concurrently or sequentially. Results indicated that surfactant followed by amendment with a solution of SP, TX-100 + SP(l), was most effective in decreasing PAHs concentrations in a sandy loam soil (SS) and a silty clay soil (NS) from 1220 mg/kg and 2730 mg·kg-1 to 414 mg·kg-1 and 180 mg·kg-1, respectively. Compared with extraction alone and oxidation alone, TX-100 + SP(l) increased the removal of PAHs by 10-20%. TX-100 improved the degradation of 3-4 ring PAHs (M-PAHs) and 5-6 ring PAHs (H-PAHs) in SS, by approximately 8%-11%. The oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) including furans and xanthene exhibited greater reductions in soil when amended with the TX-100 and SP, than under TX-100 extraction or SP oxidation alone. Overall, increased removal of PAHs in contaminated soil can occur through simultaneous application of TX-100 and SP, relative to the sole use of TX-100 or SP. The sequential combination of surfactant and oxidant was most effective for the elimination of PAHs, especially for M-PAHs and H-PAHs in sandy loam contaminated soil.

9.
Sci Total Environ ; 644: 567-575, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-29990906

RESUMEN

Hydroxylamine (NH2OH) undergoes biotic and abiotic transformation processes in soil, producing nitrous oxide gas (N2O(g)). Little is known about the magnitude of the abiotic chemical processes in the global N cycle, and the role of abiotic nitrification is still neglected in most current nitrogen trace gas studies. The abiotic fate of NH2OH in soil systems is often focused on transition metals including manganese (Mn) and iron (Fe), and empirical correlations of nitrogen residual species including nitrite (NO2-), nitrate (NO3-), and N2O(g). In this study, abiotic NH2OH nitrification by well-characterized manganese (Mn)- and iron (Fe)-bearing minerals (pyrolusite, amorphous MnO2(s), goethite, amorphous FeOOH(s)) was investigated. A nitrogen mass balance analysis involving NH2OH, and the abiotic nitrification residuals, N2O(g), N2O(aq), NO2-, NO3-, was used, and specific reactions and mechanisms were investigated. Rapid and complete NH2OH nitrification occurred (4-5 h) in the presence of pyrolusite and amorphous MnO2(s), achieving a 95-96% mass balance of N byproducts. Conversely, NH2OH nitrification was considerably slower by amorphous FeOOH(s) (14.5%) and goethite (1.1%). Direct reactions between the Mn- and Fe-bearing mineral species and NO2- and NO3- were not detected. Brunauer-Emmett-Teller surface area and energy dispersive X-ray measurements for elemental composition were used to determine the specific concentrations of Mn and Fe. Despite similar specific concentrations of Mn and Fe in crystalline and amorphous minerals, the rate of NH2OH nitrification was much greater in the Mn-bearing minerals. Results underscore the intrinsically faster NH2OH nitrification by Mn minerals than Fe minerals.

10.
Water Res ; 123: 183-191, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28668631

RESUMEN

Arsenic (As) contamination in drinking water is an epidemic in many areas of the world, especially Eastern Asian countries. Developing affordable and efficient procedures to remove arsenic from drinking water is critical to protect human health. In this study, the oxidation of aquifer solids through the use of sodium permanganate (NaMnO4), hydrogen peroxide (H2O2), and exposure to air, enhanced the adsorption of arsenic to the aquifer material resulting in treatment of the water. NaMnO4 was more effective than H2O2. NaMnO4 was tested at different loading rates (0.5, 1.5, 2.4, 3.4, and 4.9 g NaMnO4/kg aquifer material), and after 30 days contact time, arsenic removal ([As+3]INITIAL = 610 µg/L) was 77%, 88%, 93%, 95%, 97%, respectively, relative to un-oxidized aquifer material. Arsenic removal increased with increasing contact time (30, 60, 90 days) suggesting removal was not reversible under the conditions of these experiments. Oxidative treatment by exposing the aquifer solids to air for 68 days resulted in >99% removal of Arsenic ([As+3]INITIAL = 550 µg/L). Less arsenic removal (38.2%) was measured in the un-oxidized aquifer material. In-situ oxidation of aquifer materials using NaMnO4, or ex-situ oxidation of aquifer materials through exposure to air could be effective in the removal of arsenic in ground water and a potential treatment method to protect human health.


Asunto(s)
Arsénico/química , Agua Subterránea , Peróxido de Hidrógeno , Adsorción , Oxidación-Reducción , Contaminantes Químicos del Agua , Purificación del Agua
11.
Ground Water Monit Remediat ; 37(2): 78-86, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32704225

RESUMEN

Contaminant rebound and low contaminant removal are reported more frequently with in situ chemical oxidation than other in situ technologies. Although there are multiple causes for these results, a critical analysis indicates that low oxidant volume delivery is a key issue. The volume of oxidant injected is critical and porosity of the aquifer matrix can be used to estimate the pore volume. The total porosity (q T) is the volume of voids relative to the total volume of aquifer material. The mobile porosity (q M) is the fraction of voids that readily contributes to fluid displacement, and is less than q T leading to smaller estimates of oxidant volume. Injecting low-oxidant volume may result in inadequate oxidant distribution and postinjection dispersal within the radius of influence, insufficient oxidant contact and oxidant loading, and incomplete treatment; whereas, greater oxidant volume achieves a greater oxidant footprint and may involve risk that the injected oxidant may migrate into nontarget areas and displacement of contaminated groundwater. Design guidelines and recommendations are provided that could help achieve more effective technology deployment, reduce the role of heterogeneities in the subsurface, and result in greater probability the oxidant is delivered to the targeted treatment zone.

12.
J Hazard Mater ; 276: 26-34, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24862467

RESUMEN

The extent of PAH transformation, the formation and transformation of reaction byproducts during persulfate oxidation of polycyclic aromatic hydrocarbons (PAHs) in coking plant soil was investigated. Pre-oxidation analyses indicated that oxygen-containing PAHs (oxy-PAHs) existed in the soil. Oxy-PAHs including 1H-phenalen-1-one, 9H-fluoren-9-one, and 1,8-naphthalic anhydride were also produced during persulfate oxidation of PAHs. Concentration of 1,8-naphthalic anhydride at 4h in thermally activated (50°C) persulfate oxidation (TAPO) treatment increased 12.7 times relative to the oxidant-free control. Additionally, the oxy-PAHs originally present and those generated during oxidation can be oxidized by unactivated or thermally activated persulfate oxidation. For example, 9H-fluoren-9-one concentration decreased 99% at 4h in TAPO treatment relative to the control. Thermally activated persulfate resulted in greater oxy-PAHs removal than unactivated persulfate. Overall, both unactivated and thermally activated persulfate oxidation of PAH-contaminated soil reduced PAH mass, and oxidized most of the reaction byproducts. Consequently, this treatment process could limit environmental risk related to the parent compound and associated reaction byproducts.


Asunto(s)
Restauración y Remediación Ambiental , Hidrocarburos Policíclicos Aromáticos/química , Contaminantes del Suelo/química , Sulfatos/química , Cromatografía de Gases y Espectrometría de Masas , Oxidación-Reducción
13.
J Hazard Mater ; 254-255: 228-235, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23618659

RESUMEN

The influence of persulfate activation methods on polycyclic aromatic hydrocarbons (PAHs) degradation was investigated and included thermal, citrate chelated iron, and alkaline, and a hydrogen peroxide (H2O2)-persulfate binary mixture. Thermal activation (60 °C) resulted in the highest removal of PAHs (99.1%) and persulfate consumption during thermal activation varied (0.45-1.38 g/kg soil). Persulfate consumption (0.91-1.22 g/kg soil) and PAHs removal (73.3-82.9%) varied using citrate chelated iron. No significant differences in oxidant consumption and PAH removal was measured in the H2O2-persulfate binary mixture and alkaline activated treatment systems, relative to the unactivated control. Greater removal of high molecular weight PAHs was measured with persulfate activation. Electron spin resonance spectra indicated the presence of hydroxyl radicals in thermally activated systems; weak hydroxyl radical activity in the H2O2-persulfate system; and superoxide radicals were predominant in alkaline activated systems. Differences in oxidative ability of the activated persulfate were related to different radicals generated during activation.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Hidrocarburos Policíclicos Aromáticos/química , Compuestos de Sodio/química , Contaminantes del Suelo/química , Sulfatos/química , Citratos/química , Calor , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Hierro/química , Superóxidos/química
14.
Chemosphere ; 89(10): 1218-23, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22921651

RESUMEN

Chemical oxidation regeneration of granular activated carbon (GAC) is a developing technology that can be carried out utilizing thermally-activated persulfate. During chemical regeneration of GAC, aggressive oxidative conditions lead to high acidity (pH<2) and the accumulation of sodium persulfate residuals in the GAC. In this study, we investigated the impact of chemical oxidation on the sorption characteristics of methyl-tert butyl ether (MTBE) in GAC. Loss of MTBE sorption was measured in thermally-activated persulfate regenerated GAC. The accumulation of sulfur was partially responsible for the blockage of sorption sites, but sorption loss was amplified under oxidizing and acidic conditions and attributed to the formation of acidic surface oxides and enhanced electrostatic attraction and accumulation of SO(4)(2-) in GAC. Raising the pH in the GAC slurry resulted in the removal of the residual sulfate and improved MTBE sorption indicating that the mechanisms responsible for MTBE sorption loss were reversible. These results establish baseline conditions and parameters that can be used to optimize pilot- and full-scale deployment of thermally-activated persulfate regeneration of GAC.


Asunto(s)
Carbón Orgánico/química , Éteres Metílicos/química , Sulfatos/química , Contaminantes Químicos del Agua/química , Adsorción , Éteres Metílicos/análisis , Oxidación-Reducción , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
15.
J Environ Manage ; 108: 42-8, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22658989

RESUMEN

The goal of this study was to assess the oxidation of NAPL in soil, 30% of which were composed of chlorinated ethanes and ethenes, using catalyzed hydrogen peroxide (CHP), activated persulfate (AP), and H(2)O(2)-persulfate (HP) co-amendment systems. Citrate, a buffer and iron ligand, was amended to the treatment system to enhance oxidative treatment. Four activation/catalysis methods were employed: (1) oxidant only, (2) oxidant-citrate, (3) oxidant-iron(II), and (4) oxidant-citrate-iron(II). The NAPL treatment effectiveness was the greatest in the CHP reactions, the second in HP, and the third in AP. The effective activation and catalysis methods depended on the oxidant types; oxidant only for CHP and HP and oxidant-citrate-iron for AP. The treatability trend of chlorinated ethanes and ethenes in the soil mixture was as follows: trichloroethene > tetrachloroethene > dichloroethane > trichloroethane > tetrachloroethane. A significant fraction of persulfate remained in the oxidation systems after the 2-day reaction period, especially in the citrate-iron(II) AP. In general, oxidation systems that included citrate maintained a post-treatment pH in the range of 7-9. A final pH of AP oxidation systems was acidic (pH 2-3), where a molar ratio of citrate-iron(II) was less than 1.8 and where no citrate was amended.


Asunto(s)
Restauración y Remediación Ambiental , Hidrocarburos Clorados/química , Peróxido de Hidrógeno/química , Compuestos de Sodio/química , Contaminantes del Suelo/química , Sulfatos/química , Ácido Cítrico/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción
16.
J Hazard Mater ; 205-206: 55-62, 2012 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-22260751

RESUMEN

Three columns containing granular activated carbon (GAC) were placed on-line at a ground water pump and treat facility, saturated with methyl tert-butyl ether (MTBE), and regenerated with hydrogen peroxide (H2O2) under different chemical, physical, and operational conditions for 3 adsorption/oxidation cycles. Supplemental iron was immobilized in the GAC (≈6 g/kg) through the amendment of a ferrous iron solution. GAC regeneration occurred under ambient thermal conditions (21-27 °C), or enhanced thermal conditions (50 °C). Semi-continuous H2O2 loading resulted in saw tooth-like H2O2 concentrations, whereas continuous H2O2 loading resulted in sustained H2O2 levels and was more time efficient. Significant removal of MTBE was measured in all three columns using $(USD) 0.6 H2O2/lb GAC. Elevated temperature played a significant role in oxidative treatment, given the lower MTBE removal at ambient temperature (62-80%) relative to MTBE removal measured under thermally enhanced (78-95%), and thermally enhanced, acid pre-treated (92-97%) conditions. Greater MTBE removal was attributed to increased intraparticle MTBE desorption and diffusion and higher aqueous MTBE concentrations. No loss in the MTBE sorption capacity of the GAC was measured, and the reaction byproducts, tert-butyl alcohol and acetone were also degraded.


Asunto(s)
Carbono/química , Peróxido de Hidrógeno/química , Hierro/química , Éteres Metílicos/química , Oxidantes/química , Contaminantes Químicos del Agua/química , Adsorción , Costos y Análisis de Costo , Agua Subterránea , Peróxido de Hidrógeno/economía , Concentración de Iones de Hidrógeno , Oxidantes/economía , Oxidación-Reducción , Proyectos Piloto , Reciclaje/métodos , Purificación del Agua/economía , Purificación del Agua/métodos
17.
Water Res ; 45(16): 5334-42, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21864877

RESUMEN

In Fenton-driven oxidation treatment systems, reaction intermediates derived from parent compounds can play a significant role in the overall treatment process. Fenton-like reactions in the presence of toluene or benzene, involved a transformation mechanism that was highly efficient relative to the conventional Fenton-driven mechanism. A delay in hydrogen peroxide (H2O2) reaction occurred until the complete or near-complete transformation of toluene or benzene and involved the simultaneous reaction of dissolved oxygen. This highly efficient transformation mechanism is initiated by Fenton-like reactions, and therefore dependent on conventional Fenton-like parameters. Results indicated that several potential parameters and mechanisms did not play a significant role in the transformation mechanism including electron shuttles, Fe chelates, high valent oxo-iron complexes, anionic interferences in H2O2 reaction, and H2O2 formation. The Fenton-like initiation, formation, and propagation of a reaction intermediate species capable of transforming toluene, while simultaneously inhibiting H2O2 reaction is the most viable mechanism.


Asunto(s)
Tolueno/química , Peróxido de Hidrógeno/química , Hierro/química , Cinética
18.
J Hazard Mater ; 192(3): 1484-90, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21782339

RESUMEN

Activated persulfate (Na(2)S(2)O(8)) regeneration of methyl tert-butyl ether (MTBE) and chloroform-spent GAC was evaluated in this study. Thermal-activation of persulfate was effective and resulted in greater MTBE removal than either alkaline-activation or H(2)O(2)-persulfate binary mixtures. H(2)O(2) may serve multiple roles in oxidation mechanisms including Fenton-driven oxidation, and indirect activation of persulfate through thermal or ferrous iron activation mechanisms. More frequent, lower volume applications of persulfate solution (i.e., the persulfate loading rate), higher solid/solution ratio (g GAC mL(-1) solution), and higher persulfate concentration (mass loading) resulted in greater MTBE oxidation and removal. Chloroform oxidation was more effective in URV GAC compared to F400 GAC. This study provides baseline conditions that can be used to optimize pilot-scale persulfate-driven regeneration of contaminant-spent GAC.


Asunto(s)
Carbono/química , Cloroformo/química , Éteres Metílicos/química , Oxígeno/química , Sulfatos/química , Adsorción , Técnicas de Química Analítica , Calor , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Hierro/química , Modelos Químicos , Temperatura , Purificación del Agua/métodos
19.
Water Res ; 44(8): 2663-71, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20172581

RESUMEN

Fenton-driven regeneration of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves an Fe amendment step to increase the Fe content and to enhance the extent of MTBE oxidation and GAC regeneration. Four forms of iron (ferric sulfate, ferric chloride, ferric nitrate, ferrous sulfate) were amended separately to GAC. Following Fe amendment, MTBE was adsorbed to the GAC followed by multiple applications of H2O2. Fe retention in GAC was high (83.8-99.9%) and decreased in the following order, FeSO(4).7H2O>Fe2(SO4)(3).9H2O>Fe(NO3)(3).9H2O>FeCl3. A correlation was established between the post-sorption aqueous MTBE concentrations and Fe on the GAC for all forms of Fe investigated indicating that Fe amendment interfered with MTBE adsorption. However, the mass of MTBE adsorbed to the GAC was minimally affected by Fe loading. Relative to ferric iron amendments to GAC, ferrous iron amendment resulted in lower residual iron in solution, greater Fe immobilization in the GAC, and less interference with MTBE adsorption. MTBE oxidation was Fe limited and no clear trend was established between the counter-ion (SO4(2-), Cl-, NO3-) of the ferric Fe amended to GAC and H2O2 reaction, MTBE adsorption, or MTBE oxidation, suggesting these processes are anion independent.


Asunto(s)
Carbono/química , Peróxido de Hidrógeno/química , Hierro/química , Éteres Metílicos/química , Adsorción , Contaminación Ambiental/prevención & control , Oxidación-Reducción
20.
Chemosphere ; 78(5): 563-8, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19959205

RESUMEN

Fenton-driven oxidation of methyl tert-butyl ether (MTBE) (0.11-0.16mM) in batch reactors containing ferric iron (5mM) and hydrogen peroxide (H(2)O(2)) (6mM) (pH=3) was performed to investigate MTBE transformation mechanisms. Independent variables included the forms of iron (Fe) (Fe(2)(SO(4))(3).9H(2)O and Fe(NO(3))(3).9H(2)O), H(2)O(2) (6, 60mM), chloroform (CF) (0.2-2.4mM), isopropyl alcohol (IPA) (25, 50mM), and sulfate (7.5mM). MTBE, tert-butyl alcohol and acetone transformation were significantly greater when oxidation was carried out with Fe(NO(3))(3).9H(2)O than with Fe(2)(SO(4))(3).9H(2)O. Sulfate interfered in the formation of the ferro-peroxy intermediate species, inhibited H(2)O(2) reaction, hydroxyl radical (()OH) formation, and MTBE transformation. Transformation was faster and more complete at a higher [H(2)O(2)] (60mM), but resulted in lower oxidation efficiency which was attributed to ()OH scavenging by H(2)O(2). CF scavenging of the superoxide radical (()O(2)(-)) in the ferric nitrate system resulted in lower rates of ()O(2)(-) reduction of Fe(III) to Fe(II), ()OH production, and consequently lower rates of MTBE transformation. IPA, an excellent scavenger of ()OH, completely inhibited MTBE transformation in the ferric nitrate system indicating oxidation was predominantly by ()OH. ()OH scavenging by HSO(4)(-), formation of the sulfate radical (()SO(4)(-)), and oxidation of MTBE by ()SO(4)(-) was estimated to be negligible. The form of Fe (i.e., counter anion) selected for use in Fenton treatment systems impacts oxidative mechanisms, treatment efficiency, and post-oxidation treatment of residuals which may require additional handling and cost.


Asunto(s)
Compuestos Férricos/química , Depuradores de Radicales Libres/química , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Éteres Metílicos/metabolismo , Nitratos/química , 2-Propanol/química , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...