Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Cell Calcium ; 120: 102886, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631163

Neurodevelopment, a complex and highly regulated process, plays a foundational role in shaping the structure and function of the nervous system. The transient receptor potential melastatin 7 (TRPM7), a divalent cation channel with an α-kinase domain, mediates a wide range of cellular functions, including proliferation, migration, cell adhesion, and survival, all of which are essential processes in neurodevelopment. The global knockout of either TRPM7 or TRPM7-kinase is embryonically lethal, highlighting the crucial role of TRPM7 in development in vivo. Subsequent research further revealed that TRPM7 is indeed involved in various key processes throughout neurodevelopment, from maintaining pluripotency during embryogenesis to regulating gastrulation, neural tube closure, axonal outgrowth, synaptic density, and learning and memory. Moreover, a discrepancy in TRPM7 expression and/or function has been associated with neuropathological conditions, including ischemic stroke, Alzheimer's disease, and Parkinson's disease. Understanding the mechanisms of proper neurodevelopment may provide us with the knowledge required to develop therapeutic interventions that can overcome the challenges of regeneration in CNS injuries and neurodegenerative diseases. Considering that ion channels are the third-largest class targeted for drug development, TRPM7's dual roles in development and degeneration emphasize its therapeutic potential. This review provides a comprehensive overview of the current literature on TRPM7 in various aspects of neurodevelopment. It also discusses the links between neurodevelopment and neurodegeneration, and highlights TRPM7 as a potential therapeutic target for neurodegenerative disorders, with a focus on repair and regeneration.


Neurodegenerative Diseases , TRPM Cation Channels , Humans , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Animals , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurogenesis , Protein Serine-Threonine Kinases/metabolism
2.
J Org Chem ; 89(9): 5977-5987, 2024 May 03.
Article En | MEDLINE | ID: mdl-38557022

Mellpaladines A-C (1-3) and dopargimine (4) are dopamine-derived guanidine alkaloids isolated from a specimen of Palauan Didemnidae tunicate as possible modulators of neuronal receptors. In this study, we isolated the dopargimine derivative 1-carboxydopargimine (5), three additional mellpaladines D-F (6-8), and serotodopalgimine (9), along with a dimer of serotonin, 5,5'-dihydroxy-4,4'-bistryptamine (10). The structures of these compounds were determined based on spectrometric and spectroscopic analyses. Compound 4 and its congeners dopargine (11), nordopargimine (15), and 2-(6,7-dimethoxy-3,4-dihydroisoquinolin-1-yl)ethan-1-amine (16) were synthetically prepared for biological evaluations. The biological activities of all isolated compounds were evaluated in comparison with those of 1-4 using a mouse behavioral assay upon intracerebroventricular injection, revealing key functional groups in the dopargimines and mellpaladines for in vivo behavioral toxicity. Interestingly, these alkaloids also emerged during a screen of our marine natural product library aimed at identifying antiviral activities against dengue virus, SARS-CoV-2, and vesicular stomatitis Indiana virus (VSV) pseudotyped with Ebola virus glycoprotein (VSV-ZGP).


Alkaloids , Dopamine , Urochordata , Animals , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemical synthesis , Urochordata/chemistry , Mice , Dopamine/chemistry , Dopamine/pharmacology , Molecular Structure , Guanidine/chemistry , Guanidine/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Antiviral Agents/chemical synthesis , Guanidines/chemistry , Guanidines/pharmacology , Guanidines/isolation & purification , SARS-CoV-2/drug effects , Humans
3.
J Nat Prod ; 87(4): 783-797, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38537009

Waixenicin A, a xenicane diterpene from the octocoral Sarcothelia edmondsoni, is a selective, potent inhibitor of the TRPM7 ion channel. To study the structure-activity relationship (SAR) of waixenicin A, we isolated and assayed related diterpenes from S. edmondsoni. In addition to known waixenicins A (1) and B (2), we purified six xenicane diterpenes, 7S,8S-epoxywaixenicins A (3) and B (4), 12-deacetylwaixenicin A (5), waixenicin E (6), waixenicin F (7), and 20-acetoxyxeniafaraunol B (8). We elucidated the structures of 3-8 by NMR and MS analyses. Compounds 1, 2, 3, 4, and 6 inhibited TRPM7 activity in a cell-based assay, while 5, 7, and 8 were inactive. A preliminary SAR emerged showing that alterations to the nine-membered ring of 1 did not reduce activity, while the 12-acetoxy group, in combination with the dihydropyran, appears to be necessary for TRPM7 inhibition. The bioactive compounds are proposed to be latent electrophiles by formation of a conjugated oxocarbenium ion intermediate. Whole-cell patch-clamp experiments demonstrated that waixenicin A inhibition is irreversible, consistent with a covalent inhibitor, and showed nanomolar potency for waixenicin B (2). Conformational analysis (DFT) of 1, 3, 7, and 8 revealed insights into the conformation of waixenicin A and congeners and provided information regarding the stabilization of the proposed pharmacophore.


Acetates , Anthozoa , Diterpenes , Protein Serine-Threonine Kinases , TRPM Cation Channels , Animals , Humans , Anthozoa/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Molecular Conformation , Molecular Structure , Structure-Activity Relationship , TRPM Cation Channels/antagonists & inhibitors
4.
Biochemistry ; 60(50): 3829-3840, 2021 12 21.
Article En | MEDLINE | ID: mdl-34845903

Catalytic promiscuity is the coincidental ability to catalyze nonbiological reactions in the same active site as the native biological reaction. Several lines of evidence show that catalytic promiscuity plays a role in the evolution of new enzyme functions. Thus, studying catalytic promiscuity can help identify structural features that predispose an enzyme to evolve new functions. This study identifies a potentially preadaptive residue in a promiscuous N-succinylamino acid racemase/o-succinylbenzoate synthase (NSAR/OSBS) enzyme from Amycolatopsis sp. T-1-60. This enzyme belongs to a branch of the OSBS family which includes many catalytically promiscuous NSAR/OSBS enzymes. R266 is conserved in all members of the NSAR/OSBS subfamily. However, the homologous position is usually hydrophobic in other OSBS subfamilies, whose enzymes lack NSAR activity. The second-shell amino acid R266 is close to the catalytic acid/base K263, but it does not contact the substrate, suggesting that R266 could affect the catalytic mechanism. Mutating R266 to glutamine in Amycolatopsis NSAR/OSBS profoundly reduces NSAR activity but moderately reduces OSBS activity. This is due to a 1000-fold decrease in the rate of proton exchange between the substrate and the general acid/base catalyst K263. This mutation is less deleterious for the OSBS reaction because K263 forms a cation-π interaction with the OSBS substrate and/or the intermediate, rather than acting as a general acid/base catalyst. Together, the data explain how R266 contributes to NSAR reaction specificity and was likely an essential preadaptation for the evolution of NSAR activity.


Amino Acid Isomerases/chemistry , Amino Acid Isomerases/metabolism , Carbon-Carbon Lyases/chemistry , Carbon-Carbon Lyases/metabolism , Amino Acid Isomerases/genetics , Amino Acid Sequence , Amino Acid Substitution , Amycolatopsis/enzymology , Amycolatopsis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Carbon-Carbon Lyases/genetics , Catalytic Domain/genetics , Conserved Sequence , Crystallography, X-Ray , Enzyme Stability/genetics , Evolution, Molecular , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
5.
Acta Pharmacol Sin ; 41(12): 1519-1524, 2020 Dec.
Article En | MEDLINE | ID: mdl-32994545

Ion channels are the third largest class of targets for therapeutic drugs. The pharmacology of ion channels is an important research area for identifying new treatment options for human diseases. The past decade or so has seen increasing interest in an ion channel protein belonging to the transient receptor potential (TRP) family, namely the melastatin subfamily member 7 (TRPM7), as an emerging drug target. TRPM7 is a bifunctional protein with a magnesium and calcium-conducting divalent ion channel fused with an active kinase domain. TRPM7 is ubiquitously expressed in human tissues, including the brain, and regulates various cell biology processes such as magnesium and calcium homeostasis, cell growth and proliferation, and embryonic development. TRPM7 provides a link between cellular metabolic status and intracellular calcium homeostasis in neurons due to TRPM7's unique sensitivity to fluctuating intracellular Mg·ATP levels. Thus, the protein plays a key role in ischemic and hypoxic neuronal cell death and brain injury, and is one of the key nonglutamate mechanisms in cerebral ischemia and stroke. Currently, the most potent and specific TRPM7 inhibitor is waixenicin A, a xenicane diterpenoid from the Hawaiian soft coral Sarcothelia edmondsoni. Using waixenicin A as a pharmacological tool, we demonstrated that TRPM7 is involved in promoting neurite outgrowth in vitro. Most recently, we found that waixenicin A reduced hypoxic-ischemic brain injury and preserved long-term behavioral outcomes in mouse neonates. We here suggest that TRPM7 is an emerging drug target for CNS diseases and disorders, and waixenicin A is a viable drug lead for these disorders.


Acetates/pharmacology , Acetates/therapeutic use , Central Nervous System Agents/pharmacology , Central Nervous System Agents/therapeutic use , Diterpenes/pharmacology , Diterpenes/therapeutic use , Hypoxia-Ischemia, Brain/drug therapy , TRPM Cation Channels/antagonists & inhibitors , Animals , Cell Line , Humans
6.
Chemistry ; 26(59): 13372-13377, 2020 Oct 21.
Article En | MEDLINE | ID: mdl-32991008

The tigliane ring system, which encompasses iconic members such as phorbol and TPA, is widely renowned due to numerous observations of displaying potent biological activity, and subsequent use as mainstream biochemical tools. Traditionally, naturally occurring phorboids are regarded as tumor promotors through PKC activation, although in recent times more highly oxidized natural derivatives have been identified as anti-tumor agents. In the view that only limited synthetic investigations toward skeletal stereochemical modification have been undertaken, non-natural systems could be useful for a better understanding of the tigliane pharmacophore via interrogation of cellular sensitivity. In this context the concise construction of a number of highly functionalized non-natural D-ring inverted phorbol esters were synthesized, via a rhodium-catalyzed [4+3] cycloaddition, and biologically evaluated using a range of cancer cell lines. The biological results highlight the notion that subtle changes in structure have dramatic effects on potency. Furthermore, although the non-natural derivatives did not outcompete the natural systems in the PKC-activation sensitive MCF7 cancer cell line, they outperformed in other cancer cell lines (MM96L and CAL27). This observation strongly suggested an alternate mode of action not involving activation of PKC, but instead involves thiol addition as indicated by glutathione addition and NF-κB reporter activity.


Neoplasms , Phorbols , Protein Kinase C/chemistry , Sulfhydryl Compounds/chemistry , Cell Line , Humans
7.
Front Chem ; 8: 608296, 2020.
Article En | MEDLINE | ID: mdl-33392151

During their infective stages, hookworms release excretory-secretory (E-S) products, small molecules, and proteins to help evade and suppress the host's immune system. Small molecules found in E-S products of mammalian hookworms include nematode derived metabolites like ascarosides, which are composed of the sugar ascarylose linked to a fatty acid side chain. The most abundant proteins found in hookworm E-S products are members of the protein family known as Ancylostoma secreted protein (ASP). In this study, two ascarosides and their fatty acid moieties were synthesized and tested for in vitro binding to Na-ASP-2 using both a ligand competition assay and microscale thermophoresis. The fatty acid moieties of both ascarosides tested and ascr#3, an ascaroside found in rat hookworm E-S products, bind to Na-ASP-2's palmitate binding cavity. These molecules were confirmed to bind to the palmitate but not the sterol binding sites. An ascaroside, oscr#10, which is not found in hookworm E-S products, does not bind to Na-ASP-2. More studies are required to determine the structural basis of ascarosides binding by Na-ASP-2 and to understand the physiological significance of these observations.

8.
Biophys J ; 118(2): 492-504, 2020 01 21.
Article En | MEDLINE | ID: mdl-31839263

The attractant chemotaxis response of Escherichia coli to norepinephrine requires that it be converted to 3,4-dihydroxymandelic acid (DHMA) by the monoamine oxidase TynA and the aromatic aldehyde dehydrogenase FeaB. DHMA is sensed by the serine chemoreceptor Tsr, and the attractant response requires that at least one subunit of the periplasmic domain of the Tsr homodimer (pTsr) has an intact serine-binding site. DHMA that is generated in vivo by E. coli is expected to be a racemic mixture of the (R) and (S) enantiomers, so it has been unclear whether one or both chiral forms are active. Here, we used a combination of state-of-the-art tools in molecular docking and simulations, including an in-house simulation-based docking protocol, to investigate the binding properties of (R)-DHMA and (S)-DHMA to E. coli pTsr. Our studies computationally predicted that (R)-DHMA should promote a stronger attractant response than (S)-DHMA because of a consistently greater-magnitude piston-like pushdown of the pTsr α-helix 4 toward the membrane upon binding of (R)-DHMA than upon binding of (S)-DHMA. This displacement is caused primarily by interaction of DHMA with Tsr residue Thr156, which has been shown by genetic studies to be critical for the attractant response to L-serine and DHMA. These findings led us to separate the two chiral species and test their effectiveness as chemoattractants. Both the tethered cell and motility migration coefficient assays validated the prediction that (R)-DHMA is a stronger attractant than (S)-DHMA. Our study demonstrates that refined computational docking and simulation studies combined with experiments can be used to investigate situations in which subtle differences between ligands may lead to diverse chemotactic responses.


Bacterial Proteins/metabolism , Chemotaxis , Escherichia coli/cytology , Escherichia coli/metabolism , Mandelic Acids/metabolism , Membrane Proteins/metabolism , Signal Transduction , Bacterial Proteins/chemistry , Membrane Proteins/chemistry , Molecular Dynamics Simulation , Protein Conformation
9.
Leukemia ; 33(7): 1663-1674, 2019 07.
Article En | MEDLINE | ID: mdl-30700841

The viability of chronic lymphocytic leukemia (CLL) is critically dependent upon staving off death by apoptosis, a hallmark of CLL pathophysiology. The recognition that Mcl-1, a major component of the anti-apoptotic response, is intrinsically short-lived and must be continually resynthesized suggested a novel therapeutic approach. Pateamine A (PatA), a macrolide marine natural product, inhibits cap-dependent translation by binding to the initiation factor eIF4A. In this study, we demonstrated that a synthetic derivative of PatA, des-methyl des-amino PatA (DMDAPatA), blocked mRNA translation, reduced Mcl-1 protein and initiated apoptosis in CLL cells. This action was synergistic with the Bcl-2 antagonist ABT-199. However, avid binding to human plasma proteins limited DMDAPatA potency, precluding further development. To address this, we synthesized a new series of PatA analogs and identified three new leads with potent inhibition of translation. They exhibited less plasma protein binding and increased cytotoxic potency toward CLL cells than DMDAPatA, with greater selectivity towards CLL cells over normal lymphocytes. Computer modeling analysis correlated their structure-activity relationships and suggested that these compounds may act by stabilizing the closed conformation of eIF4A. Thus, these novel PatA analogs hold promise for application to cancers within the appropriate biological context, such as CLL.


Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Epoxy Compounds/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Macrolides/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Protein Biosynthesis/drug effects , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/pharmacology , Thiazoles/pharmacology , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Drug Synergism , Drug Therapy, Combination , Eukaryotic Initiation Factor-4A/chemistry , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Models, Molecular , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Prognosis , Protein Conformation , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tumor Cells, Cultured
10.
Article En | MEDLINE | ID: mdl-30323040

Occidiofungin is produced by the soil bacterium Burkolderia contaminans MS14 and is structurally similar or identical to the burkholdines, xylocandins, and cepacidines. This study identified the primary cellular target of occidiofungin, which was determined to be actin. The modification of occidiofungin with a functional alkyne group enabled affinity purification assays and localization studies in yeast. Occidiofungin has a subtle effect on actin dynamics that triggers apoptotic cell death. We demonstrate the highly specific localization of occidiofungin to cellular regions rich in actin in yeast and the binding of occidiofungin to purified actin in vitro Furthermore, a disruption of actin-mediated cellular processes, such as endocytosis, nuclear segregation, and hyphal formation, was observed. All of these processes require the formation of stable actin cables, which are disrupted following the addition of a subinhibitory concentration of occidiofungin. We were also able to demonstrate the effectiveness of occidiofungin in treating a vulvovaginal yeast infection in a murine model. The results of this study are important for the development of an efficacious novel class of actin binding drugs that may fill the existing gap in treatment options for fungal infections or different types of cancer.


Actins/metabolism , Antifungal Agents/therapeutic use , Burkholderia/metabolism , Candidiasis, Vulvovaginal/drug therapy , Glycopeptides/metabolism , Glycopeptides/therapeutic use , Peptides, Cyclic/metabolism , Peptides, Cyclic/therapeutic use , Animals , Candida/drug effects , Female , Glycopeptides/chemistry , Mice , Mice, Inbred BALB C , Peptides, Cyclic/chemistry
11.
Biochemistry ; 57(26): 3676-3689, 2018 07 03.
Article En | MEDLINE | ID: mdl-29767960

Studying the evolution of catalytically promiscuous enzymes like those from the N-succinylamino acid racemase/ o-succinylbenzoate synthase (NSAR/OSBS) subfamily can reveal mechanisms by which new functions evolve. Some enzymes in this subfamily have only OSBS activity, while others catalyze OSBS and NSAR reactions. We characterized several NSAR/OSBS subfamily enzymes as a step toward determining the structural basis for evolving NSAR activity. Three enzymes were promiscuous, like most other characterized NSAR/OSBS subfamily enzymes. However, Alicyclobacillus acidocaldarius OSBS (AaOSBS) efficiently catalyzes OSBS activity but lacks detectable NSAR activity. Competitive inhibition and molecular modeling show that AaOSBS binds N-succinylphenylglycine with moderate affinity in a site that overlaps its normal substrate. On the basis of possible steric conflicts identified by molecular modeling and sequence conservation within the NSAR/OSBS subfamily, we identified one mutation, Y299I, that increased NSAR activity from undetectable to 1.2 × 102 M-1 s-1 without affecting OSBS activity. This mutation does not appear to affect binding affinity but instead affects kcat, by reorienting the substrate or modifying conformational changes to allow both catalytic lysines to access the proton that is moved during the reaction. This is the first site known to affect reaction specificity in the NSAR/OSBS subfamily. However, this gain of activity was obliterated by a second mutation, M18F. Epistatic interference by M18F was unexpected because a phenylalanine at this position is important in another NSAR/OSBS enzyme. Together, modest NSAR activity of Y299I AaOSBS and epistasis between sites 18 and 299 indicate that additional sites influenced the evolution of NSAR reaction specificity in the NSAR/OSBS subfamily.


Alicyclobacillus/enzymology , Amino Acid Isomerases/metabolism , Carbon-Carbon Lyases/metabolism , Alicyclobacillus/chemistry , Alicyclobacillus/genetics , Alicyclobacillus/metabolism , Amino Acid Isomerases/chemistry , Amino Acid Isomerases/genetics , Carbon-Carbon Lyases/chemistry , Carbon-Carbon Lyases/genetics , Catalytic Domain , Crystallography, X-Ray , Evolution, Molecular , Models, Molecular , Phylogeny , Protein Conformation , Substrate Specificity
12.
J Nat Prod ; 80(10): 2644-2651, 2017 10 27.
Article En | MEDLINE | ID: mdl-28945373

Fractionation of the ethyl acetate-soluble extract of the roots of Leplaea mayombensis afforded two new 3,4-seco-lanostane-type triterpenoids, leplaeric acids A and B (1, 2), the new lanostane-type triterpenoid leplaeric acid C (3), and six known natural products (5-10). Derivatization of the main constituent, 1, afforded the dimethyl ester 4, the monoamide 11, and diamide 12 for SAR studies. The structures of these compounds were established through spectroscopic methods, and a single-crystal X-ray diffraction analysis was used to confirm the relative configuration of compound 1. These lanostane derivatives are unique since they are the first C-21-oxygenated lanostanes isolated from plant sources. Preliminary biological assays against the MDA MB 231 breast cancer cell line showed that compounds 1, 2, 4, and 11 have modest cytotoxic activity. Compound 2 was the most active, with an IC50 of 55 ± 7 µM. From these results, the amides (11, 12) derived from triterpenoid 1 were found to be less active than the derived esters (2, 4).


Lanosterol , Meliaceae/chemistry , Plant Roots/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology , Cameroon , Humans , Lanosterol/analogs & derivatives , Lanosterol/chemistry , Lanosterol/isolation & purification , Lanosterol/pharmacology , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Triterpenes/chemistry
13.
Bioorg Med Chem ; 25(11): 2901-2916, 2017 06 01.
Article En | MEDLINE | ID: mdl-28236510

The proteasome, a validated cellular target for cancer, is central for maintaining cellular homeostasis, while fatty acid synthase (FAS), a novel target for numerous cancers, is responsible for palmitic acid biosynthesis. Perturbation of either enzymatic machine results in decreased proliferation and ultimately cellular apoptosis. Based on structural similarities, we hypothesized that hybrid molecules of belactosin C, a known proteasome inhibitor, and orlistat, a known inhibitor of the thioesterase domain of FAS, could inhibit both enzymes. Herein, we describe proof-of-principle studies leading to the design, synthesis and enzymatic activity of several novel, ß-lactone-based, dual inhibitors of these two enzymes. Validation of dual enzyme targeting through activity-based proteome profiling with an alkyne probe modeled after the most potent inhibitor, and preliminary serum stability studies of selected derivatives are also described. These results provide proof of concept for dual targeting of the proteasome and fatty acid synthase-thioesterase (FAS-TE) enabling a new approach for the development of drug-candidates with potential to overcome resistance.


Fatty Acid Synthases/antagonists & inhibitors , Lactones/pharmacology , Peptides/pharmacology , Proteasome Endopeptidase Complex/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Fatty Acid Synthases/metabolism , HeLa Cells , Humans , Lactones/chemistry , MCF-7 Cells , Molecular Structure , Orlistat , Peptides/chemistry , Structure-Activity Relationship
14.
J Am Chem Soc ; 138(9): 2921-4, 2016 Mar 09.
Article En | MEDLINE | ID: mdl-26907457

The mechanism of action of the manganese-dependent phosphotriesterase from Sphingobium sp. strain TCM1 that is capable of hydrolyzing organophosphate flame retardants was determined. The enzyme was shown to hydrolyze the RP-enantiomer of O-methyl O-cyclohexyl p-nitrophenyl thiophosphate with net inversion of configuration and without the formation of a covalent reaction intermediate. These results demonstrate that the enzyme catalyzes the hydrolysis of substrates by activation of a nucleophilic water molecule for direct attack at the phosphorus center.


Bacterial Proteins/chemistry , Flame Retardants/metabolism , Organophosphates/chemistry , Phosphoric Triester Hydrolases/chemistry , Sphingomonadaceae/enzymology , Bacterial Proteins/metabolism , Hydrolysis , Kinetics , Organophosphates/metabolism , Phosphoric Triester Hydrolases/metabolism , Stereoisomerism
15.
Biochemistry ; 54(51): 7539-49, 2015 Dec 29.
Article En | MEDLINE | ID: mdl-26629649

The most familiar organophosphorus compounds are the neurotoxic insecticides and nerve agents. A related group of organophosphorus compounds, the phosphotriester plasticizers and flame retardants, has recently become widely used. Unlike the neurotoxic phosphotriesters, the plasticizers and flame retardants lack an easily hydrolyzable bond. While the hydrolysis of the neurotoxic organophosphates by phosphotriesterase enzymes is well-known, the lack of a labile bond in the flame retardants and plasticizers renders them inert to typical phosphotriesterases. A phosphotriesterase from Sphingobium sp. strain TCM1 (Sb-PTE) has recently been reported to catalyze the hydrolysis of organophosphorus flame retardants. This enzyme has now been expressed in Escherichia coli, and the activity with a wide variety of organophosphorus substrates has been characterized and compared to the activity of the well-known phosphotriesterase from Pseudomonas diminuta (Pd-PTE). Structure prediction suggests that Sb-PTE has a ß-propeller fold, and homology modeling has identified a potential mononuclear manganese binding site. Sb-PTE exhibits catalytic activity against typical phosphotriesterase substrates such as paraoxon, but unlike Pd-PTE, Sb-PTE is also able to effectively hydrolyze flame retardants, plasticizers, and industrial solvents. Sb-PTE can hydrolyze both phosphorus-oxygen bonds and phosphorus-sulfur bonds, but not phosphorus-nitrogen bonds. The best substrate for Sb-PTE is the flame retardant triphenyl phosphate with a kcat/Km of 1.7 × 10(6) M(-1) s(-1). Quite remarkably, Sb-PTE is also able to hydrolyze phosphotriesters with simple alcohol leaving groups such as tributyl phosphate (kcat/Km = 40 M(-1) s(-1)), suggesting that this enzyme could be useful for the bioremediation of a wide variety of organophosphorus compounds.


Flame Retardants/metabolism , Organophosphorus Compounds/metabolism , Phosphoric Triester Hydrolases/metabolism , Plasticizers/metabolism , Sphingobacterium/enzymology , Biocatalysis , Hydrolysis , Mutagenesis , Phosphoric Triester Hydrolases/genetics , Substrate Specificity , Tandem Mass Spectrometry
16.
Int J Antimicrob Agents ; 41(4): 363-71, 2013 Apr.
Article En | MEDLINE | ID: mdl-23305654

Pyrimidine compounds were identified as inhibitors of DNA topoisomerase IV through high-throughput screening. This study was designed to exemplify the in vitro activity of the pyrimidines against Gram-positive and Gram-negative microorganisms, to reveal the mode of action of these compounds and to demonstrate their in vivo efficacy. Frequencies of resistance to pyrimidines among Staphylococcus aureus and Streptococcus pneumoniae were <10(-10) at four times their minimum inhibitory concentrations (MICs). These compounds exhibited a dual mode of action through inhibition of the ParE subunit of DNA topoisomerase IV as well as the GyrB subunit of DNA gyrase, a homologue of DNA topoisomerase IV. Pyrimidines were shown to have MIC(90) values (MIC that inhibited 90% of the strains tested) of ≤2 mg/L against Gram-positive pathogens, including meticillin-resistant S. aureus, quinolone- and meticillin-resistant S. aureus, vancomycin-resistant enterococci, penicillin-non-susceptible S. pneumoniae and Streptococcus pyogenes, and MIC(90) values of 2- to >16 mg/L and ≤0.5 mg/L against the Gram-negative pathogens Haemophilus influenzae and Moraxella catarrhalis, respectively. The pyrimidines were bactericidal and exhibited a ca. 1000-fold reduction of the bacterial counts at 300 mg/kg in a S. pneumoniae lung infection model. The microbiological properties and in vivo efficacy of pyrimidines underscore their potential as candidates for the treatment of soft-tissue infections and hospital-acquired pneumonia.


Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , DNA Topoisomerase IV/antagonists & inhibitors , Gram-Negative Bacteria/drug effects , Gram-Positive Cocci/drug effects , Pneumonia, Pneumococcal/drug therapy , Topoisomerase Inhibitors/pharmacology , Topoisomerase Inhibitors/therapeutic use , Animals , Anti-Bacterial Agents/chemistry , DNA Topoisomerase IV/chemistry , Disease Models, Animal , Female , Humans , Mice , Microbial Sensitivity Tests/standards , Models, Molecular , Pneumonia, Pneumococcal/microbiology , Streptococcus pneumoniae/drug effects , Topoisomerase II Inhibitors , Topoisomerase Inhibitors/chemistry , Treatment Outcome
17.
Bioorg Med Chem Lett ; 22(15): 5150-6, 2012 Aug 01.
Article En | MEDLINE | ID: mdl-22814212

We present the discovery and optimization of a novel series of bacterial topoisomerase inhibitors. Starting from a virtual screening hit, activity was optimized through a combination of structure-based design and physical property optimization. Synthesis of fewer than a dozen compounds was required to achieve inhibition of the growth of methicillin-resistant Staphyloccus aureus (MRSA) at compound concentrations of 1.56 µM. These compounds simultaneously inhibit DNA gyrase and Topoisomerase IV at similar nanomolar concentrations, reducing the likelihood of the spontaneous occurrence of target-based mutations resulting in antibiotic resistance, an increasing threat in the treatment of serious infections.


Anti-Bacterial Agents/chemistry , DNA Topoisomerase IV/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Indoles/chemistry , Topoisomerase II Inhibitors , Adenosine Triphosphatases/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Aza Compounds/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Crystallography, X-Ray , DNA Gyrase/metabolism , DNA Topoisomerase IV/metabolism , Drug Evaluation, Preclinical , Drug Resistance, Bacterial/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Protein Structure, Tertiary , Structure-Activity Relationship
18.
Biochim Biophys Acta ; 1698(2): 167-74, 2004 May 06.
Article En | MEDLINE | ID: mdl-15134649

UDP-N-acetylmuramyl-l-alanine ligase (MurC) is an essential bacterial enzyme involved in peptidoglycan biosynthesis and a target for the discovery of novel antibacterial agents. As a result of a high-throughput screen (HTS) against a chemical library for inhibitors of MurC, a series of benzofuran acyl-sulfonamides was identified as potential leads. One of these compounds, Compound A, inhibited Escherichia coli MurC with an IC(50) of 2.3 microM. Compound A exhibited time-dependent, partially reversible inhibition of E. coli MurC. Kinetic studies revealed a mode of inhibition consistent with the compound acting competitively with the MurC substrates ATP and UDP-N-acetyl-muramic acid (UNAM) with a K(i) of 4.5 microM against ATP and 6.3 microM against UNAM. Fluorescence binding experiments yielded a K(d) of 3.1 microM for the compound binding to MurC. Compound A also exhibited high-affinity binding to bovine serum albumin (BSA) as evidenced by a severe reduction in MurC inhibition upon addition of BSA. This finding is consistent with the high lipophilicity of the compound. Advancement of this compound series for further drug development will require reduction of albumin binding.


Benzofurans/pharmacology , Escherichia coli/metabolism , Peptide Synthases/antagonists & inhibitors , Sulfonamides/pharmacology , Uridine Diphosphate N-Acetylmuramic Acid/analogs & derivatives , Uridine Diphosphate N-Acetylmuramic Acid/metabolism , Benzofurans/chemistry , Data Interpretation, Statistical , Sulfonamides/chemistry
19.
Antimicrob Agents Chemother ; 48(1): 313-8, 2004 Jan.
Article En | MEDLINE | ID: mdl-14693556

The first step in ergosterol biosynthesis in Saccharomyces cerevisiae consists of the condensation of two acetyl coenzyme A (acetyl-CoA) moieties by acetoacetyl-CoA thiolase, encoded by ERG10. The inhibition of the sterol pathway results in feedback activation of ERG10 transcription. A cell-based reporter assay, in which increased ERG10 transcription results in elevated specific beta-galactosidase activity, was used to find novel inhibitors of ergosterol biosynthesis that could serve as chemical starting points for the development of novel antifungal agents. A class of pyridines and pyrimidines identified in this way had no detectable activity against the major fungal pathogen Candida albicans (MICs > 64 micro g. ml(-1)). However, a strain of C. albicans lacking the Cdr1p and Cdr2p efflux pumps was sensitive to the compounds (with MICs ranging from 2 to 64 micro g. ml(-1)), suggesting that they are efficiently removed from wild-type cells. Quantitative analysis of sterol intermediates that accumulated during growth inhibition revealed the accumulation of lanosterol at the expense of ergosterol. Furthermore, a clear correlation was found between the 50% inhibitory concentration at which the sterol profile was altered and the antifungal activity, measured as the MIC. This finding strongly suggests that the inhibition of growth was caused by a reduction in ergosterol synthesis. The compounds described here are a novel class of antifungal pyridines and pyrimidines and the first pyri(mi)dines to be shown to putatively mediate their antifungal activity against C. albicans via lanosterol demethylase.


Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/enzymology , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacology , Oxidoreductases/antagonists & inhibitors , Pyridines/pharmacology , Pyrimidines/pharmacology , Antifungal Agents/chemical synthesis , Culture Media , Fluconazole/pharmacology , Genes, Reporter/genetics , Microbial Sensitivity Tests , Naphthalenes/pharmacology , Pyridines/chemical synthesis , Pyrimidines/chemical synthesis , Sterol 14-Demethylase , Sterols/metabolism , Terbinafine
...