Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Nat Commun ; 15(1): 1063, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38316770

Immune-mediated inflammatory diseases (IMIDs) are typically characterised by relapsing and remitting flares of inflammation. However, the unpredictability of disease flares impedes their study. Addressing this critical knowledge gap, we use the experimental medicine approach of immunomodulatory drug withdrawal in rheumatoid arthritis (RA) remission to synchronise flare processes allowing detailed characterisation. Exploratory mass cytometry analyses reveal three circulating cellular subsets heralding the onset of arthritis flare - CD45RO+PD1hi CD4+ and CD8+ T cells, and CD27+CD86+CD21- B cells - further characterised by single-cell sequencing. Distinct lymphocyte subsets including cytotoxic and exhausted CD4+ memory T cells, memory CD8+CXCR5+ T cells, and IGHA1+ plasma cells are primed for activation in flare patients. Regulatory memory CD4+ T cells (Treg cells) increase at flare onset, but with dysfunctional regulatory marker expression compared to drug-free remission. Significant clonal expansion is observed in T cells, but not B cells, after drug cessation; this is widespread throughout memory CD8+ T cell subsets but limited to the granzyme-expressing cytotoxic subset within CD4+ memory T cells. Based on our observations, we suggest a model of immune dysregulation for understanding RA flare, with potential for further translational research towards novel avenues for its treatment and prevention.


Arthritis, Rheumatoid , CD8-Positive T-Lymphocytes , Humans , CD8-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes , T-Lymphocyte Subsets , T-Lymphocytes, Regulatory
2.
Cytometry A ; 105(1): 36-53, 2024 01.
Article En | MEDLINE | ID: mdl-37750225

Analysis of imaging mass cytometry (IMC) data and other low-resolution multiplexed tissue imaging technologies is often confounded by poor single-cell segmentation and suboptimal approaches for data visualization and exploration. This can lead to inaccurate identification of cell phenotypes, states, or spatial relationships compared to reference data from single-cell suspension technologies. To this end we have developed the "OPTimized Imaging Mass cytometry AnaLysis (OPTIMAL)" framework to benchmark any approaches for cell segmentation, parameter transformation, batch effect correction, data visualization/clustering, and spatial neighborhood analysis. Using a panel of 27 metal-tagged antibodies recognizing well-characterized phenotypic and functional markers to stain the same Formalin-Fixed Paraffin Embedded (FFPE) human tonsil sample tissue microarray over 12 temporally distinct batches we tested several cell segmentation models, a range of different arcsinh cofactor parameter transformation values, 5 different dimensionality reduction algorithms, and 2 clustering methods. Finally, we assessed the optimal approach for performing neighborhood analysis. We found that single-cell segmentation was improved by the use of an Ilastik-derived probability map but that issues with poor segmentation were only really evident after clustering and cell type/state identification and not always evident when using "classical" bivariate data display techniques. The optimal arcsinh cofactor for parameter transformation was 1 as it maximized the statistical separation between negative and positive signal distributions and a simple Z-score normalization step after arcsinh transformation eliminated batch effects. Of the five different dimensionality reduction approaches tested, PacMap gave the best data structure with FLOWSOM clustering out-performing phenograph in terms of cell type identification. We also found that neighborhood analysis was influenced by the method used for finding neighboring cells with a "disc" pixel expansion outperforming a "bounding box" approach combined with the need for filtering objects based on size and image-edge location. Importantly, OPTIMAL can be used to assess and integrate with any existing approach to IMC data analysis and, as it creates .FCS files from the segmentation output and allows for single-cell exploration to be conducted using a wide variety of accessible software and algorithms familiar to conventional flow cytometrists.


Algorithms , Benchmarking , Humans , Software , Cluster Analysis , Image Cytometry/methods
3.
Thromb Res ; 228: 10-20, 2023 08.
Article En | MEDLINE | ID: mdl-37263122

INTRODUCTION: Tissue factor expression on monocytes is implicated in the pathophysiology of sepsis-induced coagulopathy. How tissue factor is expressed by monocyte subsets (classical, intermediate and non-classical) is unknown. METHODS: Monocytic tissue factor surface expression was investigated during three conditions. Primary human monocytes and microvascular endothelial cell co-cultures were used for in vitro studies. Volunteers received a bolus of lipopolysaccharide (2 ng/kg) to induce endotoxemia. Patients with sepsis, or controls with critical illness unrelated to sepsis, were recruited from four intensive care units. RESULTS: Contact with endothelium and stimulation with lipopolysaccharide reduced the proportion of intermediate monocytes. Lipopolysaccharide increased tissue factor surface expression on classical and non-classical monocytes. Endotoxemia induced profound, transient monocytopenia, along with activation of coagulation pathways. In the remaining circulating monocytes, tissue factor was up-regulated in intermediate monocytes, though approximately 60 % of individuals (responders) up-regulated tissue factor across all monocyte subsets. In critically ill patients, tissue factor expression on intermediate and non-classical monocytes was significantly higher in patients with established sepsis than among non-septic patients. Upon recovery of sepsis, expression of tissue factor increased significantly in classical monocytes. CONCLUSION: Tissue factor expression in monocyte subsets varies significantly during health, endotoxemia and sepsis.


Endotoxemia , Sepsis , Humans , Monocytes/metabolism , Endotoxemia/complications , Thromboplastin/metabolism , Thromboinflammation , Lipopolysaccharides
4.
Proc Natl Acad Sci U S A ; 120(18): e2216587120, 2023 05 02.
Article En | MEDLINE | ID: mdl-37098069

Innate lymphoid cells (ILCs) play a key role in tissue-mediated immunity and can be controlled by coreceptor signaling. Here, we define a subset of ILCs that are Tbet+NK1.1- and are present within the tumor microenvironment (TME). We show programmed death-1 receptor (PD-1) expression on ILCs within TME is found in Tbet+NK1.1- ILCs. PD-1 significantly controlled the proliferation and function of Tbet+NK1.1- ILCs in multiple murine and human tumors. We found tumor-derived lactate enhanced PD-1 expression on Tbet+NK1.1- ILCs within the TME, which resulted in dampened the mammalian target of rapamycin (mTOR) signaling along with increased fatty acid uptake. In line with these metabolic changes, PD-1-deficient Tbet+NK1.1- ILCs expressed significantly increased IFNγ and granzyme B and K. Furthermore, PD-1-deficient Tbet+NK1.1- ILCs contributed toward diminished tumor growth in an experimental murine model of melanoma. These data demonstrate that PD-1 can regulate antitumor responses of Tbet+NK1.1- ILCs within the TME.


Lymphocytes , Neoplasms , Mice , Animals , Humans , Immunity, Innate , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Tumor Microenvironment , Neoplasms/metabolism , Apoptosis , Mammals/metabolism
5.
Gut ; 2022 Apr 27.
Article En | MEDLINE | ID: mdl-35477863

OBJECTIVE: Hepatocellular carcinoma (HCC) is increasingly associated with non-alcoholic steatohepatitis (NASH). HCC immunotherapy offers great promise; however, recent data suggests NASH-HCC may be less sensitive to conventional immune checkpoint inhibition (ICI). We hypothesised that targeting neutrophils using a CXCR2 small molecule inhibitor may sensitise NASH-HCC to ICI therapy. DESIGN: Neutrophil infiltration was characterised in human HCC and mouse models of HCC. Late-stage intervention with anti-PD1 and/or a CXCR2 inhibitor was performed in murine models of NASH-HCC. The tumour immune microenvironment was characterised by imaging mass cytometry, RNA-seq and flow cytometry. RESULTS: Neutrophils expressing CXCR2, a receptor crucial to neutrophil recruitment in acute-injury, are highly represented in human NASH-HCC. In models of NASH-HCC lacking response to ICI, the combination of a CXCR2 antagonist with anti-PD1 suppressed tumour burden and extended survival. Combination therapy increased intratumoural XCR1+ dendritic cell activation and CD8+ T cell numbers which are associated with anti-tumoural immunity, this was confirmed by loss of therapeutic effect on genetic impairment of myeloid cell recruitment, neutralisation of the XCR1-ligand XCL1 or depletion of CD8+ T cells. Therapeutic benefit was accompanied by an unexpected increase in tumour-associated neutrophils (TANs) which switched from a protumour to anti-tumour progenitor-like neutrophil phenotype. Reprogrammed TANs were found in direct contact with CD8+ T cells in clusters that were enriched for the cytotoxic anti-tumoural protease granzyme B. Neutrophil reprogramming was not observed in the circulation indicative of the combination therapy selectively influencing TANs. CONCLUSION: CXCR2-inhibition induces reprogramming of the tumour immune microenvironment that promotes ICI in NASH-HCC.

6.
J Immunol ; 207(9): 2245-2254, 2021 11 01.
Article En | MEDLINE | ID: mdl-34561227

Targeting interactions between α4ß7 integrin and endothelial adhesion molecule MAdCAM-1 to inhibit lymphocyte migration to the gastrointestinal tract is an effective therapy in inflammatory bowel disease (IBD). Following lymphocyte entry into the mucosa, a subset of these cells expresses αEß7 integrin, which is expressed on proinflammatory lymphocytes, to increase cell retention. The factors governing lymphocyte migration into the intestinal mucosa and αE integrin expression in healthy subjects and IBD patients remain incompletely understood. We evaluated changes in factors involved in lymphocyte migration and differentiation within tissues. Both ileal and colonic tissue from active IBD patients showed upregulation of ICAM-1, VCAM-1, and MAdCAM-1 at the gene and protein levels compared with healthy subjects and/or inactive IBD patients. ß1 and ß7 integrin expression on circulating lymphocytes was similar across groups. TGF-ß1 treatment induced expression of αE on both ß7+ and ß7- T cells, suggesting that cells entering the mucosa independently of MAdCAM-1/α4ß7 can become αEß7+ ITGAE gene polymorphisms did not alter protein induction following TGF-ß1 stimulation. Increased phospho-SMAD3, which is directly downstream of TGF-ß, and increased TGF-ß-responsive gene expression were observed in the colonic mucosa of IBD patients. Finally, in vitro stimulation experiments showed that baseline ß7 expression had little effect on cytokine, chemokine, transcription factor, and effector molecule gene expression in αE+ and αE- T cells. These findings suggest cell migration to the gut mucosa may be altered in IBD and α4ß7-, and α4ß7+ T cells may upregulate αEß7 in response to TGF-ß once within the gut mucosa.


Antigens, CD/metabolism , Inflammatory Bowel Diseases/immunology , Integrin alpha Chains/metabolism , Integrin beta Chains/metabolism , Intestinal Mucosa/immunology , Receptors, Lymphocyte Homing/metabolism , T-Lymphocytes/immunology , Adult , Aged , Cell Movement , Female , Humans , Integrin beta Chains/genetics , Male , Middle Aged , Signal Transduction , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism
7.
Immunity ; 53(2): 353-370.e8, 2020 08 18.
Article En | MEDLINE | ID: mdl-32735845

The formation of mammalian dendritic cells (DCs) is controlled by multiple hematopoietic transcription factors, including IRF8. Loss of IRF8 exerts a differential effect on DC subsets, including plasmacytoid DCs (pDCs) and the classical DC lineages cDC1 and cDC2. In humans, cDC2-related subsets have been described including AXL+SIGLEC6+ pre-DC, DC2 and DC3. The origin of this heterogeneity is unknown. Using high-dimensional analysis, in vitro differentiation, and an allelic series of human IRF8 deficiency, we demonstrated that cDC2 (CD1c+DC) heterogeneity originates from two distinct pathways of development. The lymphoid-primed IRF8hi pathway, marked by CD123 and BTLA, carried pDC, cDC1, and DC2 trajectories, while the common myeloid IRF8lo pathway, expressing SIRPA, formed DC3s and monocytes. We traced distinct trajectories through the granulocyte-macrophage progenitor (GMP) compartment showing that AXL+SIGLEC6+ pre-DCs mapped exclusively to the DC2 pathway. In keeping with their lower requirement for IRF8, DC3s expand to replace DC2s in human partial IRF8 deficiency.


Antigens, CD34/metabolism , Dendritic Cells/cytology , Hematopoiesis/physiology , Interferon Regulatory Factors/metabolism , Animals , Antigens, CD1/metabolism , Cell Line , Cell Lineage/immunology , Dendritic Cells/immunology , Glycoproteins/metabolism , Hematopoietic Stem Cells/cytology , Humans , Interleukin-3 Receptor alpha Subunit/metabolism , Lipopolysaccharide Receptors/metabolism , Mice , Receptors, Immunologic/metabolism
8.
Intensive Care Med ; 44(11): 1836-1848, 2018 Nov.
Article En | MEDLINE | ID: mdl-30291379

PURPOSE: Reliable biomarkers for predicting subsequent sepsis among patients with suspected acute infection are lacking. In patients presenting to emergency departments (EDs) with suspected acute infection, we aimed to evaluate the reliability and discriminant ability of 47 leukocyte biomarkers as predictors of sepsis (Sequential Organ Failure Assessment score ≥ 2 at 24 h and/or 72 h following ED presentation). METHODS: In a multi-centre cohort study in four EDs and intensive care units (ICUs), we standardised flow-cytometric leukocyte biomarker measurement and compared patients with suspected acute infection (cohort-1) with two comparator cohorts: ICU patients with established sepsis (cohort-2), and ED patients without infection or systemic inflammation but requiring hospitalization (cohort-3). RESULTS: Between January 2014 and February 2016, we recruited 272, 59 and 75 patients to cohorts 1, 2, and 3, respectively. Of 47 leukocyte biomarkers, 14 were non-reliable, and 17 did not discriminate between the three cohorts. Discriminant analyses for predicting sepsis within cohort-1 were undertaken for eight neutrophil (cluster of differentiation antigens (CD) CD15; CD24; CD35; CD64; CD312; CD11b; CD274; CD279), seven monocyte (CD35; CD64; CD312; CD11b; HLA-DR; CD274; CD279) and a CD8 T-lymphocyte biomarker (CD279). Individually, only higher neutrophil CD279 [OR 1.78 (95% CI 1.23-2.57); P = 0.002], higher monocyte CD279 [1.32 (1.03-1.70); P = 0.03], and lower monocyte HLA-DR [0.73 (0.55-0.97); P = 0.03] expression were associated with subsequent sepsis. With logistic regression the optimum biomarker combination was increased neutrophil CD24 and neutrophil CD279, and reduced monocyte HLA-DR expression, but no combination had clinically relevant predictive validity. CONCLUSIONS: From a large panel of leukocyte biomarkers, immunosuppression biomarkers were associated with subsequent sepsis in ED patients with suspected acute infection. CLINICAL TRIAL REGISTRATION: NCT02188992.


Antigens, CD/blood , Leukocytes/physiology , Sepsis/blood , Sepsis/diagnosis , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Cohort Studies , Emergency Service, Hospital , Female , HLA-DR Antigens/blood , Humans , Intensive Care Units , Logistic Models , Male , Middle Aged , Predictive Value of Tests , Reproducibility of Results
9.
Intensive Care Med ; 44(5): 627-635, 2018 05.
Article En | MEDLINE | ID: mdl-29915941

PURPOSE: Cellular immune dysfunctions, which are common in intensive care patients, predict a number of significant complications. In order to effectively target treatments, clinically applicable measures need to be developed to detect dysfunction. The objective was to confirm the ability of cellular markers associated with immune dysfunction to stratify risk of secondary infection in critically ill patients. METHODS: Multi-centre, prospective observational cohort study of critically ill patients in four UK intensive care units. Serial blood samples were taken, and three cell surface markers associated with immune cell dysfunction [neutrophil CD88, monocyte human leucocyte antigen-DR (HLA-DR) and percentage of regulatory T cells (Tregs)] were assayed on-site using standardized flow cytometric measures. Patients were followed up for the development of secondary infections. RESULTS: A total of 148 patients were recruited, with data available from 138. Reduced neutrophil CD88, reduced monocyte HLA-DR and elevated proportions of Tregs were all associated with subsequent development of infection with odds ratios (95% CI) of 2.18 (1.00-4.74), 3.44 (1.58-7.47) and 2.41 (1.14-5.11), respectively. Burden of immune dysfunction predicted a progressive increase in risk of infection, from 14% for patients with no dysfunction to 59% for patients with dysfunction of all three markers. The tests failed to risk stratify patients shortly after ICU admission but were effective between days 3 and 9. CONCLUSIONS: This study confirms our previous findings that three cell surface markers can predict risk of subsequent secondary infection, demonstrates the feasibility of standardized multisite flow cytometry and presents a tool which can be used to target future immunomodulatory therapies. TRIAL REGISTRATION: The study was registered with clinicaltrials.gov (NCT02186522).


Critical Illness , HLA-DR Antigens/immunology , Immune System Diseases/immunology , Receptor, Anaphylatoxin C5a/immunology , Risk Assessment/methods , T-Lymphocytes, Regulatory/immunology , Aged , Female , Humans , Immune System Diseases/complications , Intensive Care Units , Male , Middle Aged , Predictive Value of Tests , Prospective Studies
10.
BMJ Open ; 6(8): e011335, 2016 08 01.
Article En | MEDLINE | ID: mdl-27481622

INTRODUCTION: Sepsis is an acute illness resulting from infection and the host immune response. Early identification of individuals at risk of developing life-threatening severe sepsis could enable early triage and treatment, and improve outcomes. Currently available biomarkers have poor predictive value for predicting subsequent clinical course in patients with suspected infection. Circulating leucocytes provide readily accessible tissues that reflect many aspects of the complex immune responses described in sepsis. We hypothesise that measuring cellular markers of immune responses by flow cytometry will enable early identification of infected patients at risk of adverse outcomes. We aim to characterise leucocyte surface markers (biomarkers) and their abnormalities in a population of patients presenting to the hospital emergency department with suspected sepsis, and explore their ability to predict subsequent clinical course. METHODS AND ANALYSIS: We will conduct a prospective, multicentre, clinical, exploratory, cohort observational study. To answer our study question, 3 patient populations will be studied. First, patients with suspected sepsis from the emergency department (n=300). To assess performance characteristics of potential tests, critically ill patients with established sepsis, and age and gender matched patients without suspicion of infection requiring hospital admission (both n=100) will be recruited as comparator populations. In all 3 groups, we plan to assess circulating biomarker profiles using flow cytometry. We will select candidate biomarkers by cross-cohort comparison, and then explore their predictive value for clinical outcomes within the cohort with suspected sepsis. ETHICS AND DISSEMINATION: The study will be carried out based on the principles in the Declaration of Helsinki and the International Conference on Harmonisation Good Clinical Practice. Ethics approval has been granted from the Scotland A Research Ethics Committee (REC) and Oxford C REC. On conclusion of this study, the results will be disseminated via peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT02188992; Pre-results.


Critical Illness , Immunologic Tests , Leukocytes/metabolism , Sepsis/immunology , Triage , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Emergency Service, Hospital , Female , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , Research Design , Scotland , Sepsis/metabolism , Sepsis/therapy , Young Adult
11.
BMJ Open ; 6(7): e011326, 2016 07 18.
Article En | MEDLINE | ID: mdl-27431901

INTRODUCTION: Critically ill patients are at high risk of nosocomial infections, with between 20% and 40% of patients admitted to the intensive care unit (ICU) acquiring infections. These infections result in increased antibiotic use, and are associated with morbidity and mortality. Although critical illness is classically associated with hyperinflammation, the high rates of nosocomial infection argue for an importance of effect of impaired immunity. Our group recently demonstrated that a combination of 3 measures of immune cell function (namely neutrophil CD88, monocyte HLA-DR and % regulatory T cells) identified a patient population with a 2.4-5-fold greater risk for susceptibility to nosocomial infections. METHODS AND ANALYSIS: This is a prospective, observational study to determine whether previously identified markers of susceptibility to nosocomial infection can be validated in a multicentre population, as well as testing several novel markers which may improve the risk of nosocomial infection prediction. Blood samples from critically ill patients (those admitted to the ICU for at least 48 hours and requiring mechanical ventilation alone or support of 2 or more organ systems) are taken and undergo whole blood staining for a range of immune cell surface markers. These samples undergo analysis on a standardised flow cytometry platform. Patients are followed up to determine whether they develop nosocomial infection. Infections need to meet strict prespecified criteria based on international guidelines; where these criteria are not met, an adjudication panel of experienced intensivists is asked to rule on the presence of infection. Secondary outcomes will be death from severe infection (sepsis) and change in organ failure. ETHICS AND DISSEMINATION: Ethical approval including the involvement of adults lacking capacity has been obtained from respective English and Scottish Ethics Committees. Results will be disseminated through presentations at scientific meetings and publications in peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT02186522; Pre-results.


Critical Illness , Cross Infection/etiology , Immune System , Adolescent , Biomarkers/metabolism , Critical Illness/mortality , Cross Infection/immunology , Female , HLA-DR Antigens/metabolism , Humans , Immune System/cytology , Immune System/metabolism , Intensive Care Units , Length of Stay , Male , Membrane Proteins/metabolism , Monocytes/metabolism , Neutrophils/metabolism , Prospective Studies , Receptor, Anaphylatoxin C5a/metabolism , Research Design , Respiration, Artificial , Risk Factors , T-Lymphocytes, Regulatory/metabolism
...