Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38447610

RESUMEN

PURPOSE: This study investigated how isoform switching affects the cellular response to ionizing radiation (IR), an understudied area despite its relevance to radiation therapy in cancer treatment. We aimed to identify changes in transcript isoform expression post-IR exposure and the proteins mediating these changes, with a focus on their potential to modulate radiosensitivity. METHODS AND MATERIALS: Using RNA sequencing, we analyzed the B-cell lines derived from 10 healthy individuals at 3 timepoints, applying the mixture of isoforms algorithm to quantify alternative splicing. We examined RNA binding protein motifs within the sequences of IR-responsive isoforms and validated the serine/arginine-rich splicing factor 1 (SRSF1) as a predominant mediator through RNA immunoprecipitation. We further investigated the effects of SRSF1 on radiosensitivity by RNA interference and by analyzing publicly available data on patients with cancer. RESULTS: We identified ∼1900 radiation-responsive alternatively spliced isoforms. Many isoforms were differentially expressed without changes in their overall gene expression. Over a third of these transcripts underwent exon skipping, while others used proximal last exons. These IR-responsive isoforms tended to be shorter transcripts missing vital domains for preventing apoptosis and promoting cell division but retaining those necessary for DNA repair. Our combined computational, genetic, and molecular analyses identified the proto-oncogene SRSF1 as a mediator of these radiation-induced isoform-switching events that promote apoptosis. After exposure to DNA double-strand break-inducing agents, SRSF1 expression decreased. A reduction in SRSF1 increased radiosensitivity in vitro and among patients with cancer. CONCLUSIONS: We establish a pivotal role for isoform switching in the cellular response to IR and propose SRSF1 as a promising biomarker for assessing radiation therapy effectiveness.

2.
Genes Dev ; 38(1-2): 70-94, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38316520

RESUMEN

Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA damage response (DDR) programs. However, some cells (for example, in skin) are normally exposed to high levels of DNA-damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Using melanoma as a model, we show here that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a nontranscriptional role in shaping the DDR. On exposure to DNA-damaging agents, MITF is phosphorylated at S325, and its interactome is dramatically remodeled; most transcription cofactors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement with this, high MITF levels are associated with increased single-nucleotide and copy number variant burdens in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of DNA-PKcs-phosphorylated MITF. Our data suggest that a nontranscriptional function of a lineage-restricted transcription factor contributes to a tissue-specialized modulation of the DDR that can impact cancer initiation.


Asunto(s)
Melanoma , Humanos , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Daño del ADN , Inestabilidad Genómica/genética , ADN
3.
BMC Cancer ; 23(1): 721, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528416

RESUMEN

SETD2-dependent H3 Lysine-36 trimethylation (H3K36me3) has been recently linked to the deposition of de-novo DNA methylation. SETD2 is frequently mutated in cancer, however, the functional impact of SETD2 loss and depletion on DNA methylation across cancer types and tumorigenesis is currently unknown. Here, we perform a pan-cancer analysis and show that both SETD2 mutation and reduced expression are associated with DNA methylation dysregulation across 21 out of the 24 cancer types tested. In renal cancer, these DNA methylation changes are associated with altered gene expression of oncogenes, tumour suppressors, and genes involved in neoplasm invasiveness, including TP53, FOXO1, and CDK4. This suggests a new role for SETD2 loss in tumorigenesis and cancer aggressiveness through DNA methylation dysregulation. Moreover, using a robust machine learning methodology, we develop and validate a 3-CpG methylation signature which is sufficient to predict SETD2 mutation status with high accuracy and correlates with patient prognosis.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Metilación de ADN , Histonas/metabolismo , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Carcinogénesis/genética , Transformación Celular Neoplásica/genética
4.
Nucleic Acids Res ; 51(7): 3205-3222, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36951111

RESUMEN

Chromosomal instability (CIN) drives cell-to-cell heterogeneity, and the development of genetic diseases, including cancer. Impaired homologous recombination (HR) has been implicated as a major driver of CIN, however, the underlying mechanism remains unclear. Using a fission yeast model system, we establish a common role for HR genes in suppressing DNA double-strand break (DSB)-induced CIN. Further, we show that an unrepaired single-ended DSB arising from failed HR repair or telomere loss is a potent driver of widespread CIN. Inherited chromosomes carrying a single-ended DSB are subject to cycles of DNA replication and extensive end-processing across successive cell divisions. These cycles are enabled by Cullin 3-mediated Chk1 loss and checkpoint adaptation. Subsequent propagation of unstable chromosomes carrying a single-ended DSB continues until transgenerational end-resection leads to fold-back inversion of single-stranded centromeric repeats and to stable chromosomal rearrangements, typically isochromosomes, or to chromosomal loss. These findings reveal a mechanism by which HR genes suppress CIN and how DNA breaks that persist through mitotic divisions propagate cell-to-cell heterogeneity in the resultant progeny.


Asunto(s)
Schizosaccharomyces , Humanos , Inestabilidad Cromosómica , Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinación Homóloga , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
5.
PLoS One ; 18(1): e0271016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36626373

RESUMEN

We constructed a panel of S. pombe strains expressing DNA polymerase ε variants associated with cancer, specifically POLES297F, POLEV411L, POLEL424V, POLES459F, and used these to compare mutation rates determined by canavanine resistance with other selective methods. Canavanine-resistance mutation rates are broadly similar to those seen with reversion of the ade-485 mutation to adenine prototrophy, but lower than 5-fluoroorotic acid (FOA)-resistance rates (inactivation of ura4+ or ura5+ genes). Inactivation of several genes has been associated with canavanine resistance in S. pombe but surprisingly whole genome sequencing showed that 8/8 spontaneous canavanine-resistant mutants have an R175C mutation in the any1/arn1 gene. This gene encodes an α-arrestin-like protein involved in mediating Pub1 ubiquitylation of target proteins, and the phenotypic resistance to canavanine by this single mutation is similar to that shown by the original "can1-1" strain, which also has the any1R175C mutation. Some of the spontaneous mutants have additional mutations in arginine transporters, suggesting that this may marginally increase resistance to canavanine. The any1R175C strain showed internalisation of the Cat1 arginine transporter as previously reported, explaining the canavanine-resistance phenotype.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Canavanina/farmacología , Canavanina/metabolismo , Tasa de Mutación , Proteínas de Schizosaccharomyces pombe/metabolismo , Mutación , Arginina/metabolismo , Arrestinas/metabolismo
6.
DNA Repair (Amst) ; 119: 103407, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36155242

RESUMEN

Histone Post-Translational Modifications (PTMs) play fundamental roles in mediating DNA-related processes such as transcription, replication and repair. The histone mark H3K36me3 and its associated methyltransferase SETD2 (Set2 in yeast) are archetypical in this regard, performing critical roles in each of these DNA transactions. Here, we present an overview of H3K36me3 regulation and the roles of its writers, readers and erasers in maintaining genome stability through facilitating DNA double-strand break (DSB) repair, checkpoint signalling and replication stress responses. Further, we consider how loss of SETD2 and H3K36me3, frequently observed in a number of different cancer types, can be specifically targeted in the clinic through exploiting loss of particular genome stability functions.


Asunto(s)
Inestabilidad Genómica , Histonas , ADN , Roturas del ADN de Doble Cadena , Reparación del ADN , Histonas/metabolismo , Humanos , Saccharomyces cerevisiae/genética
7.
J Clin Oncol ; 39(33): 3705-3715, 2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34538072

RESUMEN

PURPOSE: Outcomes in RAS-mutant metastatic colorectal cancer (mCRC) remain poor and patients have limited therapeutic options. Adavosertib is the first small-molecule inhibitor of WEE1 kinase. We hypothesized that aberrations in DNA replication seen in mCRC with both RAS and TP53 mutations would sensitize tumors to WEE1 inhibition. METHODS: Patients with newly diagnosed mCRC were registered into FOCUS4 and tested for TP53 and RAS mutations. Those with both mutations who were stable or responding after 16 weeks of chemotherapy were randomly assigned 2:1 between adavosertib and active monitoring (AM). Adavosertib (250 mg or 300 mg) was taken orally once on days 1-5 and days 8-12 of a 3-week cycle. The primary outcome was progression-free survival (PFS), with a target hazard ratio (HR) of 0.5 and 80% power with a one-sided 0.025 significance level. RESULTS: FOCUS4-C was conducted between April 2017 and Mar 2020 during which time 718 patients were registered; 247 (34%) were RAS/TP53-mutant. Sixty-nine patients were randomly assigned from 25 UK hospitals (adavosertib = 44; AM = 25). Adavosertib was associated with a PFS improvement over AM (median 3.61 v 1.87 months; HR = 0.35; 95% CI, 0.18 to 0.68; P = .0022). Overall survival (OS) was not improved with adavosertib versus AM (median 14.0 v 12.8 months; HR = 0.92; 95% CI, 0.44 to 1.94; P = .93). In prespecified subgroup analysis, adavosertib activity was greater in left-sided tumors (HR = 0.24; 95% CI, 0.11 to 0.51), versus right-sided (HR = 1.02; 95% CI, 0.41 to 2.56; interaction P = .043). Adavosertib was well-tolerated; grade 3 toxicities were diarrhea (9%), nausea (5%), and neutropenia (7%). CONCLUSION: In this phase II randomized trial, adavosertib improved PFS compared with AM and demonstrates potential as a well-tolerated therapy for RAS/TP53-mutant mCRC. Further testing is required in this sizable population of unmet need.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , Mutación , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirazoles/uso terapéutico , Pirimidinonas/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Espera Vigilante/estadística & datos numéricos , Proteínas ras/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Pronóstico , Calidad de Vida , Tasa de Supervivencia
8.
PLoS Genet ; 17(7): e1009526, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34228709

RESUMEN

Somatic and germline mutations in the proofreading domain of the replicative DNA polymerase ε (POLE-exonuclease domain mutations, POLE-EDMs) are frequently found in colorectal and endometrial cancers and, occasionally, in other tumours. POLE-associated cancers typically display hypermutation, and a unique mutational signature, with a predominance of C > A transversions in the context TCT and C > T transitions in the context TCG. To understand better the contribution of hypermutagenesis to tumour development, we have modelled the most recurrent POLE-EDM (POLE-P286R) in Schizosaccharomyces pombe. Whole-genome sequencing analysis revealed that the corresponding pol2-P287R allele also has a strong mutator effect in vivo, with a high frequency of base substitutions and relatively few indel mutations. The mutations are equally distributed across different genomic regions, but in the immediate vicinity there is an asymmetry in AT frequency. The most abundant base-pair changes are TCT > TAT transversions and, in contrast to human mutations, TCG > TTG transitions are not elevated, likely due to the absence of cytosine methylation in fission yeast. The pol2-P287R variant has an increased sensitivity to elevated dNTP levels and DNA damaging agents, and shows reduced viability on depletion of the Pfh1 helicase. In addition, S phase is aberrant and RPA foci are elevated, suggestive of ssDNA or DNA damage, and the pol2-P287R mutation is synthetically lethal with rad3 inactivation, indicative of checkpoint activation. Significantly, deletion of genes encoding some translesion synthesis polymerases, most notably Pol κ, partially suppresses pol2-P287R hypermutation, indicating that polymerase switching contributes to this phenotype.


Asunto(s)
ADN Polimerasa II/genética , Replicación del ADN , Mutación , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Quinasa de Punto de Control 2/genética , ADN Helicasas/genética , ADN Polimerasa II/metabolismo , Genoma Fúngico , Humanos , Neoplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Fase S/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
9.
Clin Cancer Res ; 27(4): 937-962, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257428

RESUMEN

Preclinical models of cancer have demonstrated enhanced efficacy of cell-cycle checkpoint kinase inhibitors when used in combination with genotoxic agents. This combination therapy is predicted to be exquisitely toxic to cells with a deficient G1-S checkpoint or cells with a genetic predisposition leading to intrinsic DNA replication stress, as these cancer cells become fully dependent on the intra-S and G2-M checkpoints for DNA repair and cellular survival. Therefore, abolishing remaining cell-cycle checkpoints after damage leads to increased cell death in a tumor cell-specific fashion. However, the preclinical success of these drug combinations is not consistently replicated in clinical trials. Here, we provide a perspective on the translation of preclinical studies into rationally designed clinical studies. We will discuss successes and failures of current treatment combinations and drug regimens and provide a detailed overview of all clinical trials using ATR, CHK1, or WEE1 inhibitors in combination with genotoxic agents. This highlights the need for revised patient stratification and the use of appropriate pharmacodynamic biomarkers to improve the success rate of clinical trials.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quimioradioterapia/métodos , Neoplasias/terapia , Inhibidores de Proteínas Quinasas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de Ciclo Celular/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Ensayos Clínicos como Asunto , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias/genética , Neoplasias/mortalidad , Neoplasias/patología , Supervivencia sin Progresión , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores
10.
Nucleic Acids Res ; 48(3): 1271-1284, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31828313

RESUMEN

The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability.


Asunto(s)
ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Reparación del ADN por Recombinación/genética , Proteínas de Schizosaccharomyces pombe/genética , Telómero/genética , Cromosomas Fúngicos/genética , Roturas del ADN de Doble Cadena , Exodesoxirribonucleasas/genética , Regulación Fúngica de la Expresión Génica/genética , Genoma Fúngico/genética , Inestabilidad Genómica/genética , Pérdida de Heterocigocidad/genética , Recombinasa Rad51/genética , Schizosaccharomyces/genética
11.
J Cell Sci ; 132(6)2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30674555

RESUMEN

Replication stress is a common feature of cancer cells, and thus a potentially important therapeutic target. Here, we show that cyclin-dependent kinase (CDK)-induced replication stress, resulting from Wee1 inactivation, is synthetic lethal with mutations disrupting dNTP homeostasis in fission yeast. Wee1 inactivation leads to increased dNTP demand and replication stress through CDK-induced firing of dormant replication origins. Subsequent dNTP depletion leads to inefficient DNA replication, DNA damage and to genome instability. Cells respond to this replication stress by increasing dNTP supply through histone methyltransferase Set2-dependent MBF-induced expression of Cdc22, the catalytic subunit of ribonucleotide reductase (RNR). Disrupting dNTP synthesis following Wee1 inactivation, through abrogating Set2-dependent H3K36 tri-methylation or DNA integrity checkpoint inactivation results in critically low dNTP levels, replication collapse and cell death, which can be rescued by increasing dNTP levels. These findings support a 'dNTP supply and demand' model in which maintaining dNTP homeostasis is essential to prevent replication catastrophe in response to CDK-induced replication stress.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Nucleótidos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Puntos de Control del Ciclo Celular , Daño del ADN , Replicación del ADN , Código de Histonas , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Homeostasis , Metilación , Schizosaccharomyces/metabolismo , Mutaciones Letales Sintéticas , Factores de Transcripción/metabolismo
12.
Nucleic Acids Res ; 46(15): 7731-7746, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29986057

RESUMEN

The nuclear pore complex (NPC) machinery is emerging as an important determinant in the maintenance of genome integrity and sensitivity to DNA double-strand break (DSB)-inducing agents, such as ionising radiation (IR). In this study, using a high-throughput siRNA screen, we identified the central channel NPC protein Nup54, and concomitantly its molecular partners Nup62 and Nup58, as novel factors implicated in radiosensitivity. Nup54 depletion caused an increase in cell death by mitotic catastrophe after IR, and specifically enhanced both the duration of the G2 arrest and the radiosensitivity of cells that contained replicated DNA at the time of IR exposure. Nup54-depleted cells also exhibited increased formation of chromosome aberrations arisen from replicated DNA. Interestingly, we found that Nup54 is epistatic with the homologous recombination (HR) factor Rad51. Moreover, using specific DNA damage repair reporters, we observed a decreased HR repair activity upon Nup54 knockdown. In agreement with a role in HR repair, we also demonstrated a decreased formation of HR-linked DNA synthesis foci and sister chromatid exchanges after IR in cells depleted of Nup54. Our study reveals a novel role for Nup54 in the response to IR and the maintenance of HR-mediated genome integrity.


Asunto(s)
Replicación del ADN , ADN/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Reparación del ADN por Recombinación , Línea Celular Tumoral , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , ADN/genética , Roturas del ADN de Doble Cadena/efectos de la radiación , Células HeLa , Humanos , Células MCF-7 , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Interferencia de ARN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Radiación Ionizante , Intercambio de Cromátides Hermanas/efectos de la radiación
13.
Cold Spring Harb Protoc ; 2018(4)2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-28733402

RESUMEN

The fission yeast Schizosaccharomyces pombe is an excellent model organism to study DNA metabolism, in which the DNA replication and repair mechanisms are evolutionarily conserved. In this introduction we describe a range of methods commonly used to study aspects of DNA metabolism in fission yeast, focusing on approaches used for the analysis of genome stability, DNA replication, and DNA repair. We describe the use of a minichromosome, Ch16, for monitoring different aspects of genome stability. We introduce two-dimensional gel electrophoresis and immunofluorescent visualization of combed DNA molecules for the analysis of DNA replication. Further, we introduce a pulsed field gel electrophoresis (PFGE) assay to physically monitor chromosome integrity, which can be used in conjunction with a DNA double-strand break (DSB) repair assay to genetically quantitate different DSB repair and misrepair outcomes, including gross chromosomal rearrangements, in fission yeast.


Asunto(s)
Bioquímica/métodos , ADN de Hongos/metabolismo , Schizosaccharomyces/metabolismo , Reparación del ADN , Replicación del ADN , Inestabilidad Genómica , Schizosaccharomyces/genética
14.
Cold Spring Harb Protoc ; 2018(4)2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-28733409

RESUMEN

Pulsed field gel electrophoresis (PFGE) uses alternatively oriented pulsed electrical fields to separate large DNA molecules. Here, we describe PFGE protocols and conditions for separating and visualizing chromosomes between 0.5 and 6 Mb (optimal for analyzing the endogenous fission yeast chromosomes of 5.7, 4.6, and 3.5 Mb), and for shorter chromosomal elements of between 50 and 600 kb, such as the 530 kb Ch16 minichromosome. In addition to determining chromosome size, this technique has a wide range of applications, including determining whether DNA replication or repair is complete, defining the molecular karyotype of cells, analyzing chromosomal rearrangements, assigning genes or constructs to particular chromosomes, and isolating DNA from specific chromosomes.


Asunto(s)
Cromosomas Fúngicos/genética , Electroforesis en Gel de Campo Pulsado/métodos , Schizosaccharomyces/genética , Células Cultivadas , ADN de Hongos/genética , Electroforesis en Gel de Agar , Imagenología Tridimensional , Coloración y Etiquetado
15.
Cold Spring Harb Protoc ; 2018(4)2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-28733408

RESUMEN

DNA double-strand breaks (DSBs), arising during normal DNA metabolism or following exposure to mutagenic agents such as ionizing radiation can lead to chromosomal rearrangements and genome instability, and are potentially lethal if unrepaired. Therefore, understanding the mechanisms of DSB repair and misrepair, and identifying the factors involved in these processes is of biological as well as medical interest. Here we describe a DSB assay in Schizosaccharomyces pombe that can be used to identify and quantify different repair, misrepair, and failed repair events resulting from a site-specific DSB within the context of a nonessential minichromosome, Ch16 This assay can be used to determine the contribution of most genes or genetic backgrounds to DSB repair and genome stability, and can also provide mechanistic insights into their function.


Asunto(s)
Bioensayo/métodos , Roturas del ADN de Doble Cadena , Reparación del ADN , Supervivencia Celular , Cromosomas Fúngicos/genética , Cruzamientos Genéticos , Mutación/genética , Plásmidos/metabolismo , Schizosaccharomyces/genética , Transformación Genética
16.
Cell Rep ; 20(11): 2693-2705, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28903048

RESUMEN

Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Replicación del ADN , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Puntos de Control del Ciclo Celular/genética , Daño del ADN/genética , Replicación del ADN/genética , ADN de Hongos/metabolismo , Regulación hacia Abajo/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Mutación/genética , Nucleótidos/metabolismo , Origen de Réplica/genética , Fase S/genética
17.
Proc Natl Acad Sci U S A ; 114(29): 7671-7676, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28673974

RESUMEN

The partner and localiser of BRCA2 (PALB2) plays important roles in the maintenance of genome integrity and protection against cancer. Although PALB2 is commonly described as a repair factor recruited to sites of DNA breaks, recent studies provide evidence that PALB2 also associates with unperturbed chromatin. Here, we investigated the previously poorly described role of chromatin-associated PALB2 in undamaged cells. We found that PALB2 associates with active genes through its major binding partner, MRG15, which recognizes histone H3 trimethylated at lysine 36 (H3K36me3) by the SETD2 methyltransferase. Missense mutations that ablate PALB2 binding to MRG15 confer elevated sensitivity to the topoisomerase inhibitor camptothecin (CPT) and increased levels of aberrant metaphase chromosomes and DNA stress in gene bodies, which were suppressed by preventing DNA replication. Remarkably, the level of PALB2 at genic regions was frequently decreased, rather than increased, upon CPT treatment. We propose that the steady-state presence of PALB2 at active genes, mediated through the SETD2/H3K36me3/MRG15 axis, ensures an immediate response to DNA stress and therefore effective protection of these regions during DNA replication. This study provides a conceptual advance in demonstrating that the constitutive chromatin association of repair factors plays a key role in the maintenance of genome stability and furthers our understanding of why PALB2 defects lead to human genome instability syndromes.


Asunto(s)
Cromatina/ultraestructura , Daño del ADN , Proteína del Grupo de Complementación N de la Anemia de Fanconi/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores de Transcripción/metabolismo , Proteína BRCA2/genética , Línea Celular Tumoral , Cromosomas/ultraestructura , Reparación del ADN , Replicación del ADN , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Concentración 50 Inhibidora , Mutación , Unión Proteica , Proteómica , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo
18.
Nucleic Acids Res ; 44(12): 5743-57, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27131361

RESUMEN

DNA double-strand breaks (DSBs) are toxic lesions, which if improperly repaired can result in cell death or genomic instability. DSB repair is usually facilitated by the classical non-homologous end joining (C-NHEJ), or homologous recombination (HR) pathways. However, a mutagenic alternative NHEJ pathway, microhomology-mediated end joining (MMEJ), can also be deployed. While MMEJ is suppressed by C-NHEJ, the relationship between HR and MMEJ is less clear. Here, we describe a role for HR genes in suppressing MMEJ in human cells. By monitoring DSB mis-repair using a sensitive HPRT assay, we found that depletion of HR proteins, including BRCA2, BRCA1 or RPA, resulted in a distinct mutational signature associated with significant increases in break-induced mutation frequencies, deletion lengths and the annealing of short regions of microhomology (2-6 bp) across the break-site. This signature was dependent on CtIP, MRE11, POLQ and PARP, and thus indicative of MMEJ. In contrast to CtIP or MRE11, depletion of BRCA1 resulted in increased partial resection and MMEJ, thus revealing a functional distinction between these early acting HR factors. Together these findings indicate that HR factors suppress mutagenic MMEJ following DSB resection.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN/metabolismo , Reparación del ADN por Recombinación , Proteína de Replicación A/genética , Proteína BRCA1/antagonistas & inhibidores , Proteína BRCA1/metabolismo , Proteína BRCA2/antagonistas & inhibidores , Proteína BRCA2/metabolismo , Secuencia de Bases , Bioensayo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Endodesoxirribonucleasas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Proteína Homóloga de MRE11 , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína de Replicación A/antagonistas & inhibidores , Proteína de Replicación A/metabolismo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , ADN Polimerasa theta
19.
Nucleic Acids Res ; 44(4): 1703-17, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26682798

RESUMEN

The formation of RNA-DNA hybrids, referred to as R-loops, can promote genome instability and cancer development. Yet the mechanisms by which R-loops compromise genome instability are poorly understood. Here, we establish roles for the evolutionarily conserved Nrl1 protein in pre-mRNA splicing regulation, R-loop suppression and in maintaining genome stability. nrl1Δ mutants exhibit endogenous DNA damage, are sensitive to exogenous DNA damage, and have defects in homologous recombination (HR) repair. Concomitantly, nrl1Δ cells display significant changes in gene expression, similar to those induced by DNA damage in wild-type cells. Further, we find that nrl1Δ cells accumulate high levels of R-loops, which co-localize with HR repair factors and require Rad51 and Rad52 for their formation. Together, our findings support a model in which R-loop accumulation and subsequent DNA damage sequesters HR factors, thereby compromising HR repair at endogenously or exogenously induced DNA damage sites, leading to genome instability.


Asunto(s)
Empalme Alternativo/genética , Inestabilidad Genómica/genética , Recombinación Homóloga/genética , Precursores del ARN/genética , Proteínas de Schizosaccharomyces pombe/genética , ADN/química , ADN/genética , Reparación del ADN/genética , ARN/química , ARN/genética , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Schizosaccharomyces/genética , Empalmosomas/genética , Empalmosomas/metabolismo
20.
Cancer Cell ; 28(5): 557-568, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26602815

RESUMEN

Histone H3K36 trimethylation (H3K36me3) is frequently lost in multiple cancer types, identifying it as an important therapeutic target. Here we identify a synthetic lethal interaction in which H3K36me3-deficient cancers are acutely sensitive to WEE1 inhibition. We show that RRM2, a ribonucleotide reductase subunit, is the target of this synthetic lethal interaction. RRM2 is regulated by two pathways here: first, H3K36me3 facilitates RRM2 expression through transcription initiation factor recruitment; second, WEE1 inhibition degrades RRM2 through untimely CDK activation. Therefore, WEE1 inhibition in H3K36me3-deficient cells results in RRM2 reduction, critical dNTP depletion, S-phase arrest, and apoptosis. Accordingly, this synthetic lethality is suppressed by increasing RRM2 expression or inhibiting RRM2 degradation. Finally, we demonstrate that WEE1 inhibitor AZD1775 regresses H3K36me3-deficient tumor xenografts.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Nucleótidos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Humanos , Lisina/genética , Lisina/metabolismo , Metilación/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Datos de Secuencia Molecular , Neoplasias/genética , Neoplasias/prevención & control , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Nucleótidos/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Pirazoles/farmacología , Pirimidinas/farmacología , Pirimidinonas , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleósido Difosfato Reductasa/genética , Ribonucleósido Difosfato Reductasa/metabolismo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...