Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 124
1.
Blood ; 143(8): 697-712, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38048593

ABSTRACT: Aberrant expression of stem cell-associated genes is a common feature in acute myeloid leukemia (AML) and is linked to leukemic self-renewal and therapy resistance. Using AF10-rearranged leukemia as a prototypical example of the recurrently activated "stemness" network in AML, we screened for chromatin regulators that sustain its expression. We deployed a CRISPR-Cas9 screen with a bespoke domain-focused library and identified several novel chromatin-modifying complexes as regulators of the TALE domain transcription factor MEIS1, a key leukemia stem cell (LSC)-associated gene. CRISPR droplet sequencing revealed that many of these MEIS1 regulators coordinately controlled the transcription of several AML oncogenes. In particular, we identified a novel role for the Tudor-domain-containing chromatin reader protein SGF29 in the transcription of AML oncogenes. Furthermore, SGF29 deletion impaired leukemogenesis in models representative of multiple AML subtypes in multiple AML subtype models. Our studies reveal a novel role for SGF29 as a nononcogenic dependency in AML and identify the SGF29 Tudor domain as an attractive target for drug discovery.


Homeodomain Proteins , Leukemia, Myeloid, Acute , Humans , Homeodomain Proteins/genetics , Chromatin/genetics , Transcription Factors/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Carcinogenesis
2.
Nat Commun ; 14(1): 4537, 2023 07 27.
Article En | MEDLINE | ID: mdl-37500618

Hematopoietic stem and progenitor cells (HSPCs) originate from an endothelial-to-hematopoietic transition (EHT) during embryogenesis. Characterization of early hemogenic endothelial (HE) cells is required to understand what drives hemogenic specification and to accurately define cells capable of undergoing EHT. Using Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq), we define the early subpopulation of pre-HE cells based on both surface markers and transcriptomes. We identify the transcription factor Meis1 as an essential regulator of hemogenic cell specification in the embryo prior to Runx1 expression. Meis1 is expressed at the earliest stages of EHT and distinguishes pre-HE cells primed towards the hemogenic trajectory from the arterial endothelial cells that continue towards a vascular fate. Endothelial-specific deletion of Meis1 impairs the formation of functional Runx1-expressing HE which significantly impedes the emergence of pre-HSPC via EHT. Our findings implicate Meis1 in a critical fate-determining step for establishing EHT potential in endothelial cells.


Hemangioblasts , Hematopoietic Stem Cells/metabolism , Cell Differentiation/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Hematopoiesis/genetics
3.
Leukemia ; 36(8): 1980-1989, 2022 08.
Article En | MEDLINE | ID: mdl-35624144

Myeloid ecotropic virus insertion site 1 (MEIS1) is essential for normal hematopoiesis and is a critical factor in the pathogenesis of a large subset of acute myeloid leukemia (AML). Despite the clinical relevance of MEIS1, its regulation is largely unknown. To understand the transcriptional regulatory mechanisms contributing to human MEIS1 expression, we created a knock-in green florescent protein (GFP) reporter system at the endogenous MEIS1 locus in a human AML cell line. Using this model, we have delineated and dissected a critical enhancer region of the MEIS1 locus for transcription factor (TF) binding through in silico prediction in combination with oligo pull-down, mass-spectrometry and knockout analysis leading to the identification of FLI1, an E-twenty-six (ETS) transcription factor, as an important regulator of MEIS1 transcription. We further show direct binding of FLI1 to the MEIS1 locus in human AML cell lines as well as enrichment of histone acetylation in MEIS1-high healthy and leukemic cells. We also observe a positive correlation between high FLI1 transcript levels and worse overall survival in AML patients. Our study expands the role of ETS factors in AML and our model constitutes a feasible tool for a more detailed understanding of transcriptional regulatory elements and their interactome.


Homeodomain Proteins , Leukemia, Myeloid, Acute , Myeloid Ecotropic Viral Integration Site 1 Protein , Homeodomain Proteins/chemistry , Humans , Leukemia, Myeloid, Acute/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Neoplasm Proteins/metabolism , Transcription Factors/metabolism
4.
Haematologica ; 107(2): 381-392, 2022 02 01.
Article En | MEDLINE | ID: mdl-33440923

Chemoresistance of leukemic cells has largely been attributed to clonal evolution secondary to accumulating mutations. Here, we show that a subset of leukemic blasts in contact with the mesenchymal stroma undergo cellular conversion into a distinct cell type that exhibits a stem cell-like phenotype and chemoresistance. These stroma-induced changes occur in a reversible and stochastic manner driven by cross-talk, whereby stromal contact induces interleukin-4 in leukemic cells that in turn targets the mesenchymal stroma to facilitate the development of new subset. This mechanism was dependent on interleukin-4-mediated upregulation of vascular cell adhesion molecule- 1 in mesenchymal stroma, causing tight adherence of leukemic cells to mesenchymal progenitors for generation of new subsets. Together, our study reveals another class of chemoresistance in leukemic blasts via functional evolution through stromal cross-talk, and demonstrates dynamic switching of leukemic cell fates that could cause a non-homologous response to chemotherapy in concert with the patient-specific microenvironment.


Interleukin-4 , Tumor Microenvironment , Drug Resistance, Neoplasm , Humans , Interleukin-4/pharmacology , Leukemia/metabolism , Leukemia/pathology , Mesenchymal Stem Cells
6.
Leukemia ; 34(11): 2951-2963, 2020 11.
Article En | MEDLINE | ID: mdl-32576961

To establish novel and effective treatment combinations for chronic myelomonocytic leukemia (CMML) preclinically, we hypothesized that supplementation of CMML cells with the human oncogene Meningioma 1 (MN1) promotes expansion and serial transplantability in mice, while maintaining the functional dependencies of these cells on their original genetic profile. Using lentiviral expression of MN1 for oncogenic supplementation and transplanting transduced primary mononuclear CMML cells into immunocompromised mice, we established three serially transplantable CMML-PDX models with disease-related gene mutations that recapitulate the disease in vivo. Ectopic MN1 expression was confirmed to enhance the proliferation of CMML cells, which otherwise did not engraft upon secondary transplantation. Furthermore, MN1-supplemented CMML cells were serially transplantable into recipient mice up to 5 generations. This robust engraftment enabled an in vivo RNA interference screening targeting CMML-related mutated genes including NRAS, confirming that their functional relevance is preserved in the presence of MN1. The novel combination treatment with azacitidine and the MEK-inhibitor trametinib additively inhibited ERK-phosphorylation and thus depleted the signal from mutated NRAS. The combination treatment significantly prolonged survival of CMML mice compared to single-agent treatment. Thus, we identified the combination of azacitidine and trametinib as an effective treatment in NRAS-mutated CMML and propose its clinical development.


Antineoplastic Agents/pharmacology , Drug Evaluation, Preclinical , Leukemia, Myelomonocytic, Chronic/drug therapy , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azacitidine/pharmacology , Clonal Evolution , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Drug Synergism , Female , GTP Phosphohydrolases/genetics , Humans , Leukemia, Myelomonocytic, Chronic/genetics , Leukemia, Myelomonocytic, Chronic/mortality , Leukemia, Myelomonocytic, Chronic/pathology , Membrane Proteins/genetics , Mice , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridones/pharmacology , Pyridones/therapeutic use , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , RNA, Small Interfering/genetics , Receptor, Notch1/genetics , Xenograft Model Antitumor Assays/methods
7.
Blood ; 136(5): 596-609, 2020 07 30.
Article En | MEDLINE | ID: mdl-32270193

Overcoming drug resistance and targeting cancer stem cells remain challenges for curative cancer treatment. To investigate the role of microRNAs (miRNAs) in regulating drug resistance and leukemic stem cell (LSC) fate, we performed global transcriptome profiling in treatment-naive chronic myeloid leukemia (CML) stem/progenitor cells and identified that miR-185 levels anticipate their response to ABL tyrosine kinase inhibitors (TKIs). miR-185 functions as a tumor suppressor: its restored expression impaired survival of drug-resistant cells, sensitized them to TKIs in vitro, and markedly eliminated long-term repopulating LSCs and infiltrating blast cells, conferring a survival advantage in preclinical xenotransplantation models. Integrative analysis with mRNA profiles uncovered PAK6 as a crucial target of miR-185, and pharmacological inhibition of PAK6 perturbed the RAS/MAPK pathway and mitochondrial activity, sensitizing therapy-resistant cells to TKIs. Thus, miR-185 presents as a potential predictive biomarker, and dual targeting of miR-185-mediated PAK6 activity and BCR-ABL1 may provide a valuable strategy for overcoming drug resistance in patients.


Drug Resistance, Neoplasm/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , MicroRNAs/genetics , Neoplastic Stem Cells/pathology , p21-Activated Kinases/genetics , Animals , Gene Expression Regulation, Leukemic/genetics , Heterografts , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mice , Mice, SCID , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/physiology , p21-Activated Kinases/metabolism
8.
Blood Adv ; 3(21): 3307-3321, 2019 11 12.
Article En | MEDLINE | ID: mdl-31698461

Acute megakaryoblastic leukemia (AMKL) represents ∼10% of pediatric acute myeloid leukemia cases and typically affects young children (<3 years of age). It remains plagued with extremely poor treatment outcomes (<40% cure rates), mostly due to primary chemotherapy refractory disease and/or early relapse. Recurrent and mutually exclusive chimeric fusion oncogenes have been detected in 60% to 70% of cases and include nucleoporin 98 (NUP98) gene rearrangements, most commonly NUP98-KDM5A. Human models of NUP98-KDM5A-driven AMKL capable of faithfully recapitulating the disease have been lacking, and patient samples are rare, further limiting biomarkers and drug discovery. To overcome these impediments, we overexpressed NUP98-KDM5A in human cord blood hematopoietic stem and progenitor cells using a lentiviral-based approach to create physiopathologically relevant disease models. The NUP98-KDM5A fusion oncogene was a potent inducer of maturation arrest, sustaining long-term proliferative and progenitor capacities of engineered cells in optimized culture conditions. Adoptive transfer of NUP98-KDM5A-transformed cells into immunodeficient mice led to multiple subtypes of leukemia, including AMKL, that phenocopy human disease phenotypically and molecularly. The integrative molecular characterization of synthetic and patient NUP98-KDM5A AMKL samples revealed SELP, MPIG6B, and NEO1 as distinctive and novel disease biomarkers. Transcriptomic and proteomic analyses pointed to upregulation of the JAK-STAT signaling pathway in the model AMKL. Both synthetic models and patient-derived xenografts of NUP98-rearranged AMKL showed in vitro therapeutic vulnerability to ruxolitinib, a clinically approved JAK2 inhibitor. Overall, synthetic human AMKL models contribute to defining functional dependencies of rare genotypes of high-fatality pediatric leukemia, which lack effective and rationally designed treatments.


Biomarkers , Disease Models, Animal , Leukemia, Megakaryoblastic, Acute/etiology , Leukemia, Megakaryoblastic, Acute/pathology , Nuclear Pore Complex Proteins/genetics , Oncogene Proteins, Fusion/genetics , Retinoblastoma-Binding Protein 2/genetics , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Computational Biology/methods , Disease Susceptibility , Gene Expression , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Leukemia, Megakaryoblastic, Acute/therapy , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nuclear Pore Complex Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Retinoblastoma-Binding Protein 2/metabolism , Xenograft Model Antitumor Assays
9.
Nat Commun ; 10(1): 2913, 2019 07 02.
Article En | MEDLINE | ID: mdl-31266935

Mechanistic studies in human cancer have relied heavily on cell lines and mouse models, but are limited by in vitro adaptation and species context issues, respectively. More recent efforts have utilized patient-derived xenografts; however, these are hampered by variable genetic background, inability to study early events, and practical issues with availability/reproducibility. We report here an efficient, reproducible model of T-cell leukemia in which lentiviral transduction of normal human cord blood yields aggressive leukemia that appears indistinguishable from natural disease. We utilize this synthetic model to uncover a role for oncogene-induced HOXB activation which is operative in leukemia cells-of-origin and persists in established tumors where it defines a novel subset of patients distinct from other known genetic subtypes and with poor clinical outcome. We show further that anterior HOXB genes are specifically activated in human T-ALL by an epigenetic mechanism and confer growth advantage in both pre-leukemia cells and established clones.


Homeodomain Proteins/metabolism , Leukemia/metabolism , Multigene Family , Animals , Cell Proliferation , Epigenesis, Genetic , Female , Heterografts , Homeodomain Proteins/genetics , Humans , Leukemia/genetics , Leukemia/physiopathology , Male , Mice , Mice, Inbred NOD , Models, Genetic , Oncogene Proteins/genetics , Oncogene Proteins/metabolism
10.
Cell Rep ; 27(6): 1769-1780.e4, 2019 05 07.
Article En | MEDLINE | ID: mdl-31067462

The sterile alpha motif (SAM) and SRC homology 3 (SH3) domain containing protein 1 (Sash1) acts as a scaffold in TLR4 signaling. We generated Sash1-/- mice, which die in the perinatal period due to respiratory distress. Constitutive or endothelial-restricted Sash1 loss leads to a delay in maturation of alveolar epithelial cells causing reduced surfactant-associated protein synthesis. We show that Sash1 interacts with ß-arrestin 1 downstream of the TLR4 pathway to activate Akt and endothelial nitric oxide synthase (eNOS) in microvascular endothelial cells. Generation of nitric oxide downstream of Sash1 in endothelial cells affects alveolar epithelial cells in a cGMP-dependent manner, inducing maturation of alveolar type 1 and 2 cells. Thus, we identify a critical cell nonautonomous function for Sash1 in embryonic development in which endothelial Sash1 regulates alveolar epithelial cell maturation and promotes pulmonary surfactant production through nitric oxide signaling. Lung immaturity is a major cause of respiratory distress and mortality in preterm infants, and these findings identify the endothelium as a potential target for therapy.


Endothelial Cells/metabolism , Lung/growth & development , Nitric Oxide/metabolism , Signal Transduction , Animals , Animals, Newborn , Cell Line , Cyclic GMP/metabolism , Embryo Loss/metabolism , Embryo Loss/pathology , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Endothelium/metabolism , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Humans , Lung/ultrastructure , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type III/metabolism , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Alveoli/pathology , Pulmonary Surfactant-Associated Proteins/metabolism , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , beta-Arrestins/metabolism
11.
Blood ; 134(3): 263-276, 2019 07 18.
Article En | MEDLINE | ID: mdl-31076446

FLT3, DNMT3A, and NPM1 are the most frequently mutated genes in cytogenetically normal acute myeloid leukemia (AML), but little is known about how these mutations synergize upon cooccurrence. Here we show that triple-mutated AML is characterized by high leukemia stem cell (LSC) frequency, an aberrant leukemia-specific GPR56 highCD34low immunophenotype, and synergistic upregulation of Hepatic Leukemia Factor (HLF). Cell sorting based on the LSC marker GPR56 allowed isolation of triple-mutated from DNMT3A/NPM1 double-mutated subclones. Moreover, in DNMT3A R882-mutated patients, CpG hypomethylation at the HLF transcription start site correlated with high HLF mRNA expression, which was itself associated with poor survival. Loss of HLF via CRISPR/Cas9 significantly reduced the CD34+GPR56+ LSC compartment of primary human triple-mutated AML cells in serial xenotransplantation assays. HLF knockout cells were more actively cycling when freshly harvested from mice, but rapidly exhausted when reintroduced in culture. RNA sequencing of primary human triple-mutated AML cells after shRNA-mediated HLF knockdown revealed the NOTCH target Hairy and Enhancer of Split 1 (HES1) and the cyclin-dependent kinase inhibitor CDKN1C/p57 as novel targets of HLF, potentially mediating these effects. Overall, our data establish HLF as a novel LSC regulator in this genetically defined high-risk AML subgroup.


Basic-Leucine Zipper Transcription Factors/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Nuclear Proteins/genetics , fms-Like Tyrosine Kinase 3/genetics , Animals , Biomarkers , Cell Cycle/genetics , Cell Line, Tumor , Computational Biology/methods , DNA Methyltransferase 3A , Disease Models, Animal , Gene Duplication , Gene Expression Profiling , Humans , Immunophenotyping , Mice, Transgenic , Mutation , Nucleophosmin , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Tandem Repeat Sequences , Transcription Initiation Site , Transcriptome
12.
Ann Hematol ; 98(8): 1905-1918, 2019 Aug.
Article En | MEDLINE | ID: mdl-31104089

Efficient and safe delivery of siRNA in vivo is the biggest roadblock to clinical translation of RNA interference (RNAi)-based therapeutics. To date, lipid nanoparticles (LNPs) have shown efficient delivery of siRNA to the liver; however, delivery to other organs, especially hematopoietic tissues still remains a challenge. We developed DLin-MC3-DMA lipid-based LNP-siRNA formulations for systemic delivery against a driver oncogene to target human chronic myeloid leukemia (CML) cells in vivo. A microfluidic mixing technology was used to obtain reproducible ionizable cationic LNPs loaded with siRNA molecules targeting the BCR-ABL fusion oncogene found in CML. We show a highly efficient and non-toxic delivery of siRNA in vitro and in vivo with nearly 100% uptake of LNP-siRNA formulations in bone marrow of a leukemic model. By targeting the BCR-ABL fusion oncogene, we show a reduction of leukemic burden in our myeloid leukemia mouse model and demonstrate reduced disease burden in mice treated with LNP-BCR-ABL siRNA as compared with LNP-CTRL siRNA. Our study provides proof-of-principle that fusion oncogene specific RNAi therapeutics can be exploited against leukemic cells and promise novel treatment options for leukemia patients.


Drug Delivery Systems/methods , Fusion Proteins, bcr-abl/antagonists & inhibitors , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy , Nanoparticles/administration & dosage , RNA, Small Interfering/pharmacology , Animals , Bone Marrow/drug effects , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Survival/drug effects , Disease Models, Animal , Female , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Gene Expression , Gene Targeting/methods , Humans , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Lipids/administration & dosage , Lipids/chemistry , Mice , Mice, Nude , Nanoparticles/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacokinetics , Survival Analysis , Xenograft Model Antitumor Assays
13.
Nat Cell Biol ; 20(6): 710-720, 2018 06.
Article En | MEDLINE | ID: mdl-29802403

Elucidation of the identity and diversity of mechanisms that sustain long-term human blood cell production remains an important challenge. Previous studies indicate that, in adult mice, this property is vested in cells identified uniquely by their ability to clonally regenerate detectable, albeit highly variable levels and types, of mature blood cells in serially transplanted recipients. From a multi-parameter analysis of the molecular features of very primitive human cord blood cells that display long-term cell outputs in vitro and in immunodeficient mice, we identified a prospectively separable CD33+CD34+CD38-CD45RA-CD90+CD49f+ phenotype with serially transplantable, but diverse, cell output profiles. Single-cell measurements of the mitogenic response, and the transcriptional, DNA methylation and 40-protein content of this and closely related phenotypes revealed subtle but consistent differences both within and between each subset. These results suggest that multiple regulatory mechanisms combine to maintain different cell output activities of human blood cell precursors with high regenerative potential.


Cell Proliferation , Cell Separation/methods , Fetal Blood/cytology , Mitosis , Sialic Acid Binding Ig-like Lectin 3/metabolism , Single-Cell Analysis/methods , Stem Cells/metabolism , Animals , Biomarkers/metabolism , Cord Blood Stem Cell Transplantation , DNA Methylation , Female , Flow Cytometry , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genotype , Humans , Male , Mice, Transgenic , Phenotype , Time Factors , Transcriptome
14.
J Clin Oncol ; 36(10): 1007-1016, 2018 04 01.
Article En | MEDLINE | ID: mdl-29432078

Purpose Dysregulated microRNAs are implicated in the pathogenesis and aggressiveness of acute myeloid leukemia (AML). We describe the effect of the hematopoietic stem-cell self-renewal regulating miR-193b on progression and prognosis of AML. Methods We profiled miR-193b-5p/3p expression in cytogenetically and clinically characterized de novo pediatric AML (n = 161) via quantitative real-time polymerase chain reaction and validated our findings in an independent cohort of 187 adult patients. We investigated the tumor suppressive function of miR-193b in human AML blasts, patient-derived xenografts, and miR-193b knockout mice in vitro and in vivo. Results miR-193b exerted important, endogenous, tumor-suppressive functions on the hematopoietic system. miR-193b-3p was downregulated in several cytogenetically defined subgroups of pediatric and adult AML, and low expression served as an independent indicator for poor prognosis in pediatric AML (risk ratio ± standard error, -0.56 ± 0.23; P = .016). miR-193b-3p expression improved the prognostic value of the European LeukemiaNet risk-group stratification or a 17-gene leukemic stemness score. In knockout mice, loss of miR-193b cooperated with Hoxa9/Meis1 during leukemogenesis, whereas restoring miR-193b expression impaired leukemic engraftment. Similarly, expression of miR-193b in AML blasts from patients diminished leukemic growth in vitro and in mouse xenografts. Mechanistically, miR-193b induced apoptosis and a G1/S-phase block in various human AML subgroups by targeting multiple factors of the KIT-RAS-RAF-MEK-ERK (MAPK) signaling cascade and the downstream cell cycle regulator CCND1. Conclusion The tumor-suppressive function is independent of patient age or genetics; therefore, restoring miR-193b would assure high antileukemic efficacy by blocking the entire MAPK signaling cascade while preventing the emergence of resistance mechanisms.


Leukemia, Myeloid, Acute/genetics , MicroRNAs/biosynthesis , Animals , Cell Growth Processes/genetics , Down-Regulation , Genes, Tumor Suppressor , Heterografts , Homeodomain Proteins/genetics , Humans , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , MicroRNAs/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Prognosis
15.
Haematologica ; 103(2): 246-255, 2018 02.
Article En | MEDLINE | ID: mdl-29217774

Micro-ribonucleic acid-155 (miR-155) is one of the first described oncogenic miRNAs. Although multiple direct targets of miR-155 have been identified, it is not clear how it contributes to the pathogenesis of acute myeloid leukemia. We found miR-155 to be a direct target of Meis1 in murine Hoxa9/Meis1 induced acute myeloid leukemia. The additional overexpression of miR-155 accelerated the formation of acute myeloid leukemia in Hoxa9 as well as in Hoxa9/Meis1 cells in vivo However, in the absence or following the removal of miR-155, leukemia onset and progression were unaffected. Although miR-155 accelerated growth and homing in addition to impairing differentiation, our data underscore the pathophysiological relevance of miR-155 as an accelerator rather than a driver of leukemogenesis. This further highlights the complexity of the oncogenic program of Meis1 to compensate for the loss of a potent oncogene such as miR-155. These findings are highly relevant to current and developing approaches for targeting miR-155 in acute myeloid leukemia.


Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/etiology , MicroRNAs/antagonists & inhibitors , Myeloid Ecotropic Viral Integration Site 1 Protein/pharmacology , Animals , Carcinogenesis/genetics , Gene Expression Regulation, Leukemic , Humans , Leukemia, Myeloid, Acute/genetics , Mice , MicroRNAs/metabolism
16.
Mol Ther Methods Clin Dev ; 6: 54-65, 2017 Sep 15.
Article En | MEDLINE | ID: mdl-28664166

Tracking the behavior of leukemic samples both in vitro and in vivo plays an increasingly large role in efforts to better understand the leukemogenic processes and the effects of potential new therapies. Such work can be accelerated and made more efficient by methodologies enabling the characterization of leukemia samples in multiplex assays. We recently developed three sets of lentiviral fluorescent genetic barcoding (FGB) vectors that create 26, 14, and 6 unique immunophenotyping-compatible color codes from GFP-, yellow fluorescent protein (YFP)-, and monomeric kusabira orange 2 (mKO2)-derived fluorescent proteins. These vectors allow for labeling and tracking of individual color-coded cell populations in mixed samples by real-time flow cytometry. Using the prototypical Hoxa9/Meis1 murine model of acute myeloid leukemia, we describe the application of the 6xFGB vector system for assessing leukemic cell characteristics in multiplex assays. By transplanting color-coded cell mixes, we investigated the competitive growth behavior of individual color-coded populations, determined leukemia-initiating cell frequencies, and assessed the dose-dependent potential of cells exposed to the histone deacetylase inhibitor Entinostat for bone marrow homing. Thus, FGB provides a useful tool for the multiplex characterization of leukemia samples in a wide variety of applications with a concomitant reduction in workload, processing times, and mouse utilization.

17.
Cancer Cell ; 31(4): 549-562.e11, 2017 04 10.
Article En | MEDLINE | ID: mdl-28399410

The transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feedback loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk signaling induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia.


Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/metabolism , MicroRNAs/genetics , Neoplasm Proteins/metabolism , Syk Kinase/metabolism , Animals , Gene Expression Regulation, Leukemic , Homeodomain Proteins/genetics , Humans , Integrin beta3/metabolism , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Mice, Inbred C57BL , Myeloid Ecotropic Viral Integration Site 1 Protein , Neoplasm Proteins/genetics , Signal Transduction , Syk Kinase/genetics
18.
Mol Ther ; 25(3): 606-620, 2017 03 01.
Article En | MEDLINE | ID: mdl-28253481

Retroviral integration site analysis and barcoding have been instrumental for multiplex clonal fate mapping, although their use imposes an inherent delay between sample acquisition and data analysis. Monitoring of multiple cell populations in real time would be advantageous, but multiplex assays compatible with flow cytometric tracking of competitive growth behavior are currently limited. We here describe the development and initial validation of three generations of lentiviral fluorescent genetic barcoding (FGB) systems that allow the creation of 26, 14, or 6 unique labels. Color-coded populations could be tracked in multiplex in vitro assays for up to 28 days by flow cytometry using all three vector systems. Those involving lower levels of multiplexing eased color-code generation and the reliability of vector expression and enabled functional in vitro and in vivo studies. In proof-of-principle experiments, FGB vectors facilitated in vitro multiplex screening of microRNA (miRNA)-induced growth advantages, as well as the in vivo recovery of color-coded progeny of murine and human hematopoietic stem cells. This novel series of FGB vectors provides new tools for assessing comparative growth properties in in vitro and in vivo multiplexing experiments, while simultaneously allowing for a reduction in sample numbers by up to 26-fold.


Cell Tracking/methods , Gene Expression , Genes, Reporter , Genetic Vectors/genetics , Lentivirus/genetics , Luminescent Proteins/genetics , Cell Differentiation , Codon , Flow Cytometry , Gene Order , Gene Transfer Techniques , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Homeodomain Proteins/genetics , Humans , Luminescent Proteins/metabolism , MicroRNAs/genetics , Reproducibility of Results , Transduction, Genetic
20.
Exp Hematol ; 48: 41-49, 2017 04.
Article En | MEDLINE | ID: mdl-28087429

Xenograft models are transforming our understanding of the output capabilities of primitive human hematopoietic cells in vivo. However, many variables that affect posttransplantation reconstitution dynamics remain poorly understood. Here, we show that an equivalent level of human chimerism can be regenerated from human CD34+ cord blood cells transplanted intravenously either with or without additional radiation-inactivated cells into 2- to 6-month-old NOD-Rag1-/--IL2Rγc-/- (NRG) mice given a more radioprotective conditioning regimen than is possible in conventionally used, repair-deficient NOD-Prkdcscid/scid-IL2Rγc-/- (NSG) hosts. Comparison of sublethally irradiated and non-irradiated NRG mice and W41/W41 derivatives showed superior chimerism in the W41-deficient recipients, with some differential effects on different lineage outputs. Consistently superior outputs were observed in female recipients regardless of their genotype, age, or pretransplantation conditioning, with greater differences apparent later after transplantation. These results define key parameters for optimizing the sensitivity and minimizing the intraexperimental variability of human hematopoietic xenografts generated in increasingly supportive immunodeficient host mice.


Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mutation , Proto-Oncogene Proteins c-kit/genetics , Age Factors , Animals , Biomarkers , Cell Count , Female , Graft Survival , Hematopoietic Stem Cell Transplantation , Humans , Immunophenotyping , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Sex Factors , Transplantation Chimera , Transplantation, Heterologous
...