Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(8): e2315662121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346185

RESUMEN

Most of the geologic CO2 entering Earth's atmosphere and oceans is emitted along plate margins. While C-cycling at mid-ocean ridges and subduction zones has been studied for decades, little attention has been paid to degassing of magmatic CO2 and mineral carbonation of mantle rocks in oceanic transform faults. We studied the formation of soapstone (magnesite-talc rock) and other magnesite-bearing assemblages during mineral carbonation of mantle peridotite in the St. Paul's transform fault, equatorial Atlantic. Clumped carbonate thermometry of soapstone yields a formation (or equilibration) temperature of 147 ± 13 °C which, based on thermodynamic constraints, suggests that CO2(aq) concentrations of the hydrothermal fluid were at least an order of magnitude higher than in seawater. The association of magnesite with apatite in veins, magnesite with a δ13C of -3.40 ± 0.04‰, and the enrichment of CO2 in hydrothermal fluids point to magmatic degassing and melt-impregnation as the main source of CO2. Melt-rock interaction related to gas-rich alkali olivine basalt volcanism near the St. Paul's Rocks archipelago is manifested in systematic changes in peridotite compositions, notably a strong enrichment in incompatible elements with decreasing MgO/SiO2. These findings reveal a previously undocumented aspect of the geologic carbon cycle in one of the largest oceanic transform faults: Fueled by magmatism in or below the root zone of the transform fault and subsequent degassing, the fault constitutes a conduit for CO2-rich hydrothermal fluids, while carbonation of peridotite represents a vast sink for the emitted CO2.

2.
Proc Natl Acad Sci U S A ; 117(51): 32627-32638, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33277434

RESUMEN

Hydrothermally active submarine volcanoes are mineral-rich biological oases contributing significantly to chemical fluxes in the deep sea, yet little is known about the microbial communities inhabiting these systems. Here we investigate the diversity of microbial life in hydrothermal deposits and their metagenomics-inferred physiology in light of the geological history and resulting hydrothermal fluid paths in the subsurface of Brothers submarine volcano north of New Zealand on the southern Kermadec arc. From metagenome-assembled genomes we identified over 90 putative bacterial and archaeal genomic families and nearly 300 previously unknown genera, many potentially endemic to this submarine volcanic environment. While magmatically influenced hydrothermal systems on the volcanic resurgent cones of Brothers volcano harbor communities of thermoacidophiles and diverse members of the superphylum "DPANN," two distinct communities are associated with the caldera wall, likely shaped by two different types of hydrothermal circulation. The communities whose phylogenetic diversity primarily aligns with that of the cone sites and magmatically influenced hydrothermal systems elsewhere are characterized predominately by anaerobic metabolisms. These populations are probably maintained by fluids with greater magmatic inputs that have interacted with different (deeper) previously altered mineral assemblages. However, proximal (a few meters distant) communities with gene-inferred aerobic, microaerophilic, and anaerobic metabolisms are likely supported by shallower seawater-dominated circulation. Furthermore, mixing of fluids from these two distinct hydrothermal circulation systems may have an underlying imprint on the high microbial phylogenomic diversity. Collectively our results highlight the importance of considering geologic evolution and history of subsurface processes in studying microbial colonization and community dynamics in volcanic environments.


Asunto(s)
Respiraderos Hidrotermales/microbiología , Consorcios Microbianos/fisiología , Agua de Mar/microbiología , Erupciones Volcánicas , Archaea/genética , Bacterias/genética , Biodiversidad , Concentración de Iones de Hidrógeno , Metagenoma , Nueva Zelanda , Oxidación-Reducción , Océano Pacífico , Filogenia , Sulfuros/química
3.
Ann Rev Mar Sci ; 10: 315-343, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28853997

RESUMEN

Over the last four decades, more than 500 sites of seafloor hydrothermal venting have been identified in a range of tectonic environments. These vents represent the seafloor manifestation of hydrothermal convection of seawater through the permeable oceanic basement that is driven by a subsurface heat source. Hydrothermal circulation has fundamental effects on the transfer of heat and mass from the lithosphere to the hydrosphere, the composition of seawater, the physical and chemical properties of the oceanic basement, and vent ecosystems at and below the seafloor. In this review, we compare and contrast the vent fluid chemistry from hydrothermal fields in a range of tectonic settings to assess the relative roles of fluid-mineral equilibria, phase separation, magmatic input, seawater entrainment, and sediment cover in producing the observed range of fluid compositions. We focus particularly on hydrothermal activity in those tectonic environments (e.g., mid-ocean ridge detachment faults, back-arc basins, and island arc volcanoes) where significant progress has been made in the last decade in documenting the variations in vent fluid composition.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Respiraderos Hidrotermales/análisis , Agua de Mar/química , Ecosistema , Calor , Respiraderos Hidrotermales/química , Océanos y Mares
4.
Proc Natl Acad Sci U S A ; 112(39): 12036-41, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26324888

RESUMEN

Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite-calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in (13)C (δ(13)C(TOC) = -19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments.


Asunto(s)
Crecimiento Quimioautotrófico/fisiología , Fósiles , Respiraderos Hidrotermales , Microbiota , Agua de Mar/química , Océano Atlántico , Biomasa , Carbonato de Calcio/química , Carbono/química , Cromatografía Líquida de Alta Presión , Hidróxido de Magnesio/química , Espectrometría de Masas , Paleontología , Agua de Mar/microbiología , Temperatura
5.
Nature ; 453(7199): 1236-8, 2008 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-18580949

RESUMEN

Roughly 60% of the Earth's outer surface is composed of oceanic crust formed by volcanic processes at mid-ocean ridges. Although only a small fraction of this vast volcanic terrain has been visually surveyed or sampled, the available evidence suggests that explosive eruptions are rare on mid-ocean ridges, particularly at depths below the critical point for seawater (3,000 m). A pyroclastic deposit has never been observed on the sea floor below 3,000 m, presumably because the volatile content of mid-ocean-ridge basalts is generally too low to produce the gas fractions required for fragmenting a magma at such high hydrostatic pressure. We employed new deep submergence technologies during an International Polar Year expedition to the Gakkel ridge in the Arctic Basin at 85 degrees E, to acquire photographic and video images of 'zero-age' volcanic terrain on this remote, ice-covered ridge. Here we present images revealing that the axial valley at 4,000 m water depth is blanketed with unconsolidated pyroclastic deposits, including bubble wall fragments (limu o Pele), covering a large (>10 km(2)) area. At least 13.5 wt% CO(2) is necessary to fragment magma at these depths, which is about tenfold the highest values previously measured in a mid-ocean-ridge basalt. These observations raise important questions about the accumulation and discharge of magmatic volatiles at ultraslow spreading rates on the Gakkel ridge and demonstrate that large-scale pyroclastic activity is possible along even the deepest portions of the global mid-ocean ridge volcanic system.


Asunto(s)
Erupciones Volcánicas/estadística & datos numéricos , Animales , Regiones Árticas , Geografía , Oceanografía , Océanos y Mares , Poríferos , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA